
Weryfikacja wspomagana komputerowo

2016-2017

Lab 2 – Mutual Exclusion Problem and LTL

Vincent Penelle

Topics of this Lab

• Mutual Exclusion Problem.

• Checking LTL properties over Promela programs.

Exercice 1: (Mutual Exclusion and Peterson’s Algorithm)
When making concurent programs, a crucial point is avoid undesirable side-effects

between processes that could introduce undesirable behaviour, by having two processes
acting at the same time on the same variable. For example, if a process A tries to read a
variable x and add 1 to its value, if between the read and the write, a process B reads x
and writes back the double of its value, we do not have an expected behaviour. To solve
this, we should ensure that A and B cannot act on x while the other process is currently
using it.

In the modelling of a program, we will identify so-called critical sections which are
the part of the code in which a process access to the shared variables and must not be
interfered with to ensure a correct behaviour. The mutual exclusion problem consist to
determine if it is impossible for two processes to be simultaneously in their critical section.

1. The first algorithm ensuring that two properties has been given by Dekker in 19651.
Open the file Mutual-exclusion-1.pml2 and observe the modelisation of this algo-
rithm. Verify it using spin (add an assert testing a relevant condition).

2. This algorithm is complex. An idea to simplify it could be to use the following code3.
Verify it. Does it work? How can you fix it?

3. A more modern solution is the Peterson’s algorithm (1981). Here4 is its promela
implementation. Observe how simpler it is. Verify it (add an assert at the relevant
place).

1http://en.wikipedia.org/wiki/Dekker’s_algorithm
2./Mutual-exclusion-1.pml
3./Mutual-exclusion-2.pml
4./peterson.pml

1

http://en.wikipedia.org/wiki/Dekker's_algorithm

We will now manipulate LTL formulæ to check more complex properties over pro-
grams. LTL formula can express a property to be checked over one run of the
program. Spin is able to check if a formula is falsified on one run, and give it to you
(of course, if there is a too long run falsifying the formula, Spin may not see it).

In a Promela program, you declare a LTL formula as follows:

ltl name {formula}

The syntax of LTL in Promela is:

• [] for “always”

• <> for “eventually”

• ! for negation

• U for strong until

• W for weak until

• V for the dual of V (“p V q” is equivalent to “!(!p U !q)”)

• && or /\ for the and

• || or \/ for the or

• − > for the implication

• < − > for the equivalence.

The atoms you can use to form your formulæ include any test expressible in
Promela. You can also use as an atom the position of a process. To do that you can
put label in your code. For example, let us say that you have a process with pid P
containing a label crit, the atom P@crit is true whenever the process with pid P is
in the line labelled by crit.

To use this plainly, you may want to declare active processes at the start of the
program, as for example, if you started two instances of a process dummy, dummy[0]
is the pid of the first one and dummy[1] the one of the second.

You can check one LTL formula at a time in the verification tab of Spin.

Technical point:

Exercice 2: Mutual exclusion problem and LTL Take back the program about
the Peterson algorithm. Write in LTL, and check with SPIN the following properties:

• the critical section contains at most one process,

• every process enters the critical section,

• if a process has its flag[pid] to 1, it will eventually enter the critical section,

• if a process p is waiting to enter the critical section, the other one will not enter it
before p has entered it.

• if a process p is waiting to enter the critical section, the other one will not enter it
twice before p has entered it.

2

Do the same exercice with the perterson algorithm for N processes.

Exercice 3: Peterson algorithm for N processes Propose a variant of the al-
gorithm working for N concurrent processes. Adapt as well the LTL formula of the last
exercise and check them.

Exercice 4: Syracuse Problem An infamous problem that holds since centuries is
known as the Syracuse problem. It considers a sequence of integer u such that for every
term ui of the sequence if ui is even, ui+1 = ui/2, and if it is odd, ui+1 = 3× ui + 1.

Collatz has conjectured that whatever u0 you choose, 1 will appear in the sequence. It
is not yet proved, yet as far as people have checked (and that goes to very high numbers)
it has not been falsified.

1. Create a Promela program that construct the Syracuse sequence from a number
(that you give in the code). For example 100 (but you are free to test other ones).

2. State as LTL formula the following properties:

• 1 will eventually be reached,

• whenever a term is odd, the next is even,

• whenever a term is even, the next is odd,

and check them with SPIN.

Exercice 5: (Goats and wolves)
Let us now conceive a program to solve a more consequent problem.
G goats and W wolves travelling together come across the Vistula and want to cross

it. There is no bridge, but a boat is on the shores. It can welcome L animals at the same
time (who can drive the boat, yes. You are not require to explain how they do that). The
trouble is that if at any time in the boat or one of the banks there are strictly more wolves
than goats, the predator nature of these otherwise nice animals will take over. And we
don’t want any casualty.

• Create a promela program modelling this problem. You are strongly encouraged
to use several process, for example one to load animals to the boat, one to unload
animals, one to move the boat, etc. And leave the non-determinism take care of
the rest. You should as well use atomic to prevent too much strange and useless
behaviours.

• Use LTL formulæ to check the behaviour of your program and to test if there is a
solution or not. Clue 1: With G=W=3 and L=2, there is a solution (but search for
other). Clue 2: You want to check the existence of a successful path, but Spin is
able to check if a formula is satisfied for all path. How could you do?

3

