
Weryfikacja wspomagana komputerowo

2016-2017

Lab 6 – Hello NuXmv

Vincent Penelle

Topics of this Lab

• Discovering NuXmv

• Familiarising with the syntax

• Understanding the concept of declarative programming

• Starting verifying LTL formulæ

In this lab session, we are moving to a new tool: nuXmv. Contrary to Spin, this tool
has no fancy interface, so you’ll have to resign to use a command line to use it. However,
it should not be that bad.

The idea of that tool is to describe a transition system. You have some variables
which can take values in a finite set, and you describe the transition relation (possibly
non-deterministic). nuXmv produces an abstraction of this transition system as a finite
state machine (or automaton), and can check over it properties expressed in LTL or CTL.
It can also check them in a bounded model checking fashion (we’ll come to that in later
lab sessions).

The manual, including an explanation of the syntax can be found here1. You can
as well found there a quite complete tutorial whose this lab session has taken a lot of
inspiration.

Exercise 1: (A first transition system)

1. Download this file2, and watch it. It is composed of a module main, which contains
two variables, state and request, that can take both two values. The model is thus
composed of two formulæ: INIT, detailing what is true at the beginning, and TRANS,
detailing what transition the system can make (if several configurations satisfy the
formula, they all can be taken next).

2. Draw (on a paper) the automaton implied by this model.

3. Run nuXmv in interactive mode with the command nuXmv -int first-example.smv

4. Before doing anything, you have to ask nuXmv to build the model you gave him. To
do so type go.

1https://es-static.fbk.eu/tools/nuxmv/index.php?n=Documentation.Home
2./first-example.smv

1

https://es-static.fbk.eu/tools/nuxmv/index.php?n=Documentation.Home
./first-example.smv


5. We will simulate the model, but first, you have to pick an initial state. This can
be done with pick state -i. The option -i stands for interactive. If you omit it,
nuXmv will pick a state at random.

6. Type simulate -v. The option -v stands for verbose. If you omit it, it won’t show
you the simulation. Yet, you can see the last simulation with show traces.

7. Type pick state to reinitialise the computation, then type again simulate -v. Is
the simulation different?

8. Do it again, but now with the option -r to simulate. Is the simulation different?
(You can compare with show traces n to see the simulation n). The option t stands
for randomize and without it, the simulation is deterministic.

9. The command goto state allow you to pick any state on any simulation to start a
new simulation from it (whereas pick state can only choose an initial state).

10. Finally, the command reset resets the whole program (if you want to use again the
model, you will have to type go again). Quite useful if you modify the program and
don’t want to entirely quit it (which by the way is done with the command quit).

Exercise 2: (The same transition system) It can be quite tricky to write a
transition system with a single formula. Hopefully, the nuXmv creators have thought to
that as well.

1. Download this file3 and watch it. It has again one module with the same variable.
But now there is a bloc ASSIGN with one init and one next assignation for each
variable (only one is authorised). The next assignments contain one case, which allow
to separate several cases. They are evaluated in the order, so if several conditions
are true, the first one is evaluated. Yet, it is possible to have non-determinacy by
indicating several values between {}.

2. Check that this model is actually the same as previously.

Exercise 3: (Factorising writing) Some models can have very similar sub-parts,
which can lead to very long models. Hopefully, it is possible to factor the similar parts
with sub-modules.

1. Download this file4, and watch it. It is composed of two modules. counter cell

contains one variable, takes one arguments, updates its variable value according to
the previous one and its argument. It also compute at each step a value carry out

(this is done in the DEFINE section. That is a value which only depends on the current
values). The module main is thus composed of three sub-modules counter cell, and
defines their relation. Notice that when you declare sub-modules, you can use the
value they define, but you cannot modify them in the ASSIGN section (their transition
is described in the sub-module).

2. What does this system is doing? Draw it on paper and check what you think with
nuXmv.

3./first-example-bis.smv
4./counter.smv

2

./first-example-bis.smv
./counter.smv


Exercise 4: (LTL) As with Spin, nuXmv is able to check LTL formula over specification.
You can find the (not unusual) syntax of LTL on the manual. In general you declare a LTL
formula with a line of the form LTLSPEC formula (e.g LTLSPEC G (i=0 -> X (i=1))),
and you can check it with nuXmv with the command check ltlspec. If they are false, it
will exhibit an execution violating them.

1. Take the program of the first exercise and write the following formulæ. Then check
them.

• Whenever a request is made, the state will become busy.

• Whenever a request is made, the state is busy the next time step.

• If the state is ready, then whenever a request is made, it becomes busy the next
time step.

• If there is no request, the state cannot become busy until a request is made.

• Eventually, the state will be busy.

2. Check that these formulæ over the program of the second exercice par acquis de
conscience.

3. On the program of the third exercise, write and check formulæ expressing that:

• Eventually bit2.carry out will be true.

• Eventually bit2.carry out will always be true.

• Whenever bit0.carry out is true, at the next time step bit1.value is true.

• Whenever bit1.carry out is true, at the next time step bit2.value changes
of value (warning, quite tricky).

Exercise 5: (Writing your first own model)
Write a program that implements a counter as in exercise 3, but whenever n carry out

are on, it waits n steps before continuing incrementing the counter (after switching off the
carry out and updating the values).

Tool box: you may want to use the function toint which convert any data type to an
integer. You can declare an integer variable that can take values between i and j with
name:i..j. You are advised to make a submodule for checking if you add 1 or not.

Check the formulæ of the previous exercise on your new model. Did something change?

Exercise 6: (Processes (deprecated)) If we have time, we will quickly discuss
of a feature which should disappear in a next version (announced since some years now
though): processes. In nuXmv, it is not possible to have cycling dependency as it was
the case in Spin. With processes, it used to be the case. Here5 is an example of that
behaviour, which should not be unfamiliar. Understand it and check it, but do not put to
much time in this: this feature is not supposed to be used.

5./semaphore.smv

3

./semaphore.smv

