
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220673766

Bounded model checking of infinite state systems

Article in Formal Methods in System Design · February 2007

DOI: 10.1007/s10703-006-0019-9 · Source: DBLP

CITATIONS

14
READS

109

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Interconnection Networks View project

Klaus Schneider

Technische Universität Kaiserslautern

299 PUBLICATIONS 2,170 CITATIONS

SEE PROFILE

All content following this page was uploaded by Klaus Schneider on 06 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220673766_Bounded_model_checking_of_infinite_state_systems?enrichId=rgreq-89a371346cdd5c728bedda5d3e062111-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3Mzc2NjtBUzoxMDQ5MTY3ODE2MzM1MzdAMTQwMjAyNTUxODI0Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220673766_Bounded_model_checking_of_infinite_state_systems?enrichId=rgreq-89a371346cdd5c728bedda5d3e062111-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3Mzc2NjtBUzoxMDQ5MTY3ODE2MzM1MzdAMTQwMjAyNTUxODI0Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Interconnection-Networks-3?enrichId=rgreq-89a371346cdd5c728bedda5d3e062111-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3Mzc2NjtBUzoxMDQ5MTY3ODE2MzM1MzdAMTQwMjAyNTUxODI0Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-89a371346cdd5c728bedda5d3e062111-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3Mzc2NjtBUzoxMDQ5MTY3ODE2MzM1MzdAMTQwMjAyNTUxODI0Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Klaus-Schneider-7?enrichId=rgreq-89a371346cdd5c728bedda5d3e062111-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3Mzc2NjtBUzoxMDQ5MTY3ODE2MzM1MzdAMTQwMjAyNTUxODI0Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Klaus-Schneider-7?enrichId=rgreq-89a371346cdd5c728bedda5d3e062111-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3Mzc2NjtBUzoxMDQ5MTY3ODE2MzM1MzdAMTQwMjAyNTUxODI0Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Kaiserslautern?enrichId=rgreq-89a371346cdd5c728bedda5d3e062111-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3Mzc2NjtBUzoxMDQ5MTY3ODE2MzM1MzdAMTQwMjAyNTUxODI0Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Klaus-Schneider-7?enrichId=rgreq-89a371346cdd5c728bedda5d3e062111-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3Mzc2NjtBUzoxMDQ5MTY3ODE2MzM1MzdAMTQwMjAyNTUxODI0Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Klaus-Schneider-7?enrichId=rgreq-89a371346cdd5c728bedda5d3e062111-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY3Mzc2NjtBUzoxMDQ5MTY3ODE2MzM1MzdAMTQwMjAyNTUxODI0Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Form Method Syst Des
DOI 10.1007/s10703-006-0019-9

Bounded model checking of infinite state systems

Tobias Schuele · Klaus Schneider

C© Springer Science + Business Media, LLC 2006

Abstract Bounded model checking (BMC) is an attractive alternative to symbolic model
checking, since it often allows a more efficient verification. The idea of BMC is to reduce
the model checking problem to a satisfiability problem of the underlying base logic, so
that sophisticated decision procedures can be utilized to check the resulting formula. We
present a new approach to BMC that extends current methods in three ways: First, instead
of a reduction to propositional logic which restricts BMC to finite state systems, we focus
on infinite state systems and therefore consider more powerful, yet decidable base logics.
Second, instead of directly unwinding temporal logic formulas, we use special translations
to ω-automata that take into account the temporal logic hierarchy and maintain safety and
liveness properties. Third, we employ both global and local model checking procedures to
take advantage of the different types of specifications that can be handled by these techniques.
Based on three-valued logic, our bounded model checking procedures may either prove or
disprove a specification, or they may explicitly state that no information has been obtained
due to insufficient bounds.

Keywords Bounded model checking . Infinite state systems . Temporal logic hierarchy .

Global model checking . Local model checking

1. Introduction

1.1. Symbolic model checking

Model checking of finite state systems has evolved as a major technology for the verification
of reactive systems [26, 65] and has become state-of-the-art in many hardware design flows.

T. Schuele (�) · K. Schneider
Reactive Systems Group, Department of Computer Science, University of Kaiserslautern,
P.O. Box 3049, 67653 Kaiserslautern, Germany
e-mail: Tobias.Schuele@informatik.uni-kl.de

K. Schneider
e-mail: Klaus.Schneider@informatik.uni-kl.de

Springer

Form Method Syst Des

The breakthrough was achieved in the early nineties when it was observed that large but
finite sets can be efficiently represented by means of binary decision diagrams (BDDs),
a canonical normal form for propositional logic [13]. To this end, sets of states and the
transition relation of the system to be verified are encoded by their characteristic functions
in propositional logic. The development of BDDs was a cornerstone for symbolic model
checking procedures that perform an implicit state space exploration [5, 18, 26, 65]. With
sophisticated implementations and refinements of symbolic model checking, it became pos-
sible to verify very complex systems, and to detect errors that are unlikely to be found using
simulation [26, 28]. On the other hand, it is well-known that for most propositional formu-
las, all canonical normal forms (including BDDs) suffer from an exponential blow-up [51].
Unfortunately, this blow-up does not only occur in theory, but also for many functions of
practical interest such as multiplication of binary numbers [14]. As a result, BDD-based
symbolic model checkers may be able to handle very large systems, but they may also fail
for relatively small systems.

1.2. Infinite state systems

In recent years, the verification of infinite state systems has attained increasing interest.
According to [34], there are at least the following five ‘sources of infinity’:

– data structures over infinite domains like integers
– control structures like unbounded call stacks or dynamic creation of processes
– unbounded queues for asynchronous process communication
– parameterization to describe generic systems
– timing constraints in real-time systems

In the sequel, we concentrate on systems with a finite state control flow, but with data
structures over infinite domains. More precisely, the systems we consider contain integer
variables that may have arbitrarily large values. Systems of this class appear in different
forms, e.g. as extended finite state machines [43], and belong to the most powerful machine
models, since they are equivalent to Turing machines. As a consequence, most verification
problems are undecidable for such systems.1

As mentioned previously, symbolic model checkers utilize efficient data structures like
BDDs to encode large sets. However, as propositional logic formulas have only finitely many
models, they are naturally limited to the representation of finite sets. For the representation
of infinite sets, more powerful logics are required. In principle, any decidable predicate logic
can serve as the base logic, provided that there are efficient decision procedures or canonical
normal forms for that logic.

Presburger arithmetic [33, 58], a decidable first-order logic that subsumes propositional
logic, is a promising candidate for a base logic. As a major advantage, Presburger arithmetic
can be translated to finite state automata, thus obtaining a canonical normal form for arbitrary
formulas. Interestingly, BDDs can be viewed as a special kind of finite state automata, where
the root is the initial state and the leaves the accepting states. Hence, Presburger arithmetic and
finite state automata correspond to (quantified) propositional logic and BDDs, respectively.

1 For restricted classes of systems and properties, e.g. pushdown automata and existential reachability, some
problems are decidable [20, 78].

Springer

Form Method Syst Des

1.3. Global vs. local model checking

In general, there are two approaches to model checking, namely global and local model
checking [65]. Global model checking procedures first compute those states of a transition
system that satisfy a formula using fixpoint iteration [24, 59]. In a second step, it is then
checked whether the initial states are included in this set. In contrast, local model checking
procedures directly answer the question whether the initial states satisfy the formula [11,
12, 29, 74, 75]. This is accomplished by constructing a proof tree using syntax directed
decomposition rules.

There are many differences between global and local model checking, in particular, the
way a formula is evaluated: In global model checking, the syntax tree of a specification
is traversed in a bottom-up manner, whereas in local model checking, a specification is
evaluated by a top-down traversal of its syntax tree. However, the most important difference
is that global model checking is based on fixpoint iteration, while local model checking
follows an inductive style of reasoning.

For finite state systems, all verification problems are decidable, and for both approaches
there are algorithms with essentially the same worst case asymptotic complexity. In practice,
however, the runtimes of global and local model checking procedures may differ significantly
due to the different nature of these approaches. For example, local model checking has the
advantage that subformulas can be checked by need, i.e., in the spirit of lazy evaluation.
Moreover, only parts of the transition relation are required during the construction of a proof
tree, so that the transition relation can be computed on-the-fly. In contrast, global model
checking procedures usually require the construction of the complete transition relation to
perform a breadth-first traversal of the state space.

On the other hand, if the complete transition relation can be computed efficiently, global
model checking may be significantly faster than local model checking. In particular, classical
approaches to local model checking [12, 29, 74, 75] only consider single states and perform
a depth-first traversal of the state space. However, this does not mean that local approaches
cannot benefit from symbolic set representations. In fact, a local model checking procedure
for the propositional µ-calculus that considers sets of states instead of single states, was
already described in [11, 12]. Hence, local model checking can also benefit from symbolic
set representations.

As mentioned previously, most verification problems are undecidable for infinite state
systems, and hence, it may happen that the chosen verification procedure will not terminate.
Clearly, termination of the verification procedure does not only depend on the formula and
the transition system, but also on the verification procedure itself. Thus, for infinite state
systems, the choice of the best verification procedure is not primarily a matter of efficiency
as in the case of finite state systems, but rather a matter of termination. For instance, due
to the different nature of global and local model checking algorithms, it may happen that
one algorithm terminates for a given specification while the other does not, and vice versa.
The differences between global and local model checking of infinite state systems were
investigated in [69].

1.4. Bounded model checking

In recent years, bounded model checking (BMC) [6, 8] has gained wide acceptance as an
alternative to symbolic model checking based on BDDs. In principle, BMC can be viewed
as a restriction of global model checking, where the number of fixpoint computations is
bounded. The idea of BMC is to approximate the fixpoints according to an a priori estimated

Springer

Form Method Syst Des

bound on the number of iterations. Technically, this is achieved by unwinding both the
specification and the implementation a finite number of times. The major advantage offered
by BMC is that the verification task is reduced to a satisfiability problem of the base logic
(usually propositional logic). The obtained formulas can then be checked using sophisticated
SAT solvers [37, 49, 53] so that there is no need for canonical normal forms. Experimental
results show that BMC is sometimes much more efficient than symbolic model checking
using BDDs [2, 22].

In general, the bound for the reduction to a SAT problem is hard to determine, since
the number of iterations required to reach a fixpoint is usually not known in advance. For
this reason, BMC is often regarded as an incomplete verification method that can only be
used to verify (falsify) a specification by searching for witnesses (counterexamples) up to
a certain length. For finite state systems, however, there always exists a maximal bound
which is called the completeness threshold. Given a bound that is greater than or equal to
the completeness threshold, BMC is complete for finite systems [7, 27]. Another approach
to achieve completeness is loop detection, a technique to detect cycles in the transition
system [6, 8, 23]. However, this increases the size of the resulting formulas significantly and
slows down the verification process. For infinite state systems, the situation is even worse:
A completeness threshold may not even exist, i.e., completeness cannot be achieved by
choosing a sufficiently large bound, since the fixpoint iteration may not terminate, although
it converges to the fixpoint. Moreover, techniques like loop detection may fail due to the
existence of infinite paths that do not contain loops.

As another problem of BMC, unwinding temporal logic formulas is an intricate task, at
least if one wants to share common subterms that usually appear after some unwinding steps.
A better solution [27, 31] is to translate a given temporal logic formula to an equivalent ω-
automaton, since automata naturally have the ability to share common parts. In [27], Clarke
et al. refer to the use of automata in BMC as the semantic approach.

1.5. Temporal logic hierarchy

By considering a finite prefix of a given computation path, BMC is mainly used for the
falsification and verification of safety and liveness properties, respectively. Intuitively, safety
properties state that a property invariantly holds along a computation path, and liveness prop-
erties state that a property holds at least once on a given path. As a result, a liveness property
is satisfied once a state on a path is found that fulfills the desired property. Analogously, a
safety property is falsified as soon as a state is found that violates the property.

Besides safety and liveness properties, linear time temporal logic as well as ω-automata
can express much more powerful properties [44, 48, 65, 82]. Manna and Pnueli [48] were
the first who investigated the hierarchy of temporal logics in correspondence to the hierarchy
of ω-automata [44, 65, 77, 82]. This hierarchy consists of six classes of temporal properties:
safety, liveness, obligation, persistence, recurrence, and reactivity.

Various translations from linear time temporal logic to ω-automata have been developed
[25, 36, 40, 45, 63, 65, 84]. Most of these approaches translate a given formula to an
equivalent (generalized) Büchi automaton, thus ignoring the membership to the classes in
the above mentioned hierarchy. The acceptance condition of a Büchi automaton requires that
some set of states must be visited infinitely often, which cannot be checked directly using
BMC. For this reason, it is desirable to translate temporal logic formulas to simpler types
of ω-automata whose acceptance conditions are just safety and liveness properties. Though
impossible for arbitrary temporal logic formulas, most specifications that appear in practice
can be translated to such safety and liveness automata.

Springer

Form Method Syst Des

In theory, such a translation can be accomplished as follows: First, the formula is translated
to a Büchi automaton. Then, it is checked whether the automaton can be converted to a safety
or a liveness automaton. This can be done by the algorithms given in [42, 44, 47, 65]. However,
these algorithms are very complex, thus making the translation to ω-automata hardly feasible
in practice.

A more practical approach is to follow a syntactic classification of temporal logic formulas
regarding the translation to safety and liveness automata. To this end, Schneider extended
Manna and Pnueli’s work to future time temporal logic formulas [63, 65], and defined
complete temporal logics that correspond to the six classes of the automata hierarchy. The
algorithms for translating these sublogics to symbolic descriptions of ω-automata run in linear
time w.r.t. the length of the given formula. In addition, they yield symbolic descriptions of
the automata which may also be viewed as alternating ω-automata.

The original motivation of [63] was to speed up symbolic model checking of linear time
temporal formulas by eliminating unnecessary fairness constraints, or at least by replacing
them with simpler liveness constraints. In [68], it was shown that these translations are also
very important for bounded model checking for the following reasons:

– The classification given in [63, 65] can be used to determine the class a formula belongs to
in the temporal logic hierarchy. This is important since the applicability of BMC depends
on the kind of specification to be checked. Recall that BMC is mainly used to disprove
safety properties and to prove liveness properties.

– Unwinding the specification is simpler and more efficient for ω-automata. In particular, this
is straightforward for automata whose acceptance conditions are either safety or liveness
conditions. Moreover, this allows the direct translation of the acceptance conditions to the
alternation-free µ-calculus.

– Verification of safety properties can be done by alternative techniques such as invariant
checking and temporal induction [67, 70]. The resulting proof goals can then be checked
by decision procedures for the base logic.

1.6. Outline

In the following, we do not presuppose a particular base logic L, but present the methods
and algorithms in a generic way. Specifications are given in a linear time temporal logic
LLTL whose atomic propositions belong to L. We use the approach proposed in [63, 65]
for translating the specifications to equivalent ω-automata such that the membership to the
temporal logic hierarchy is respected. Of course, we are mainly interested in specifications
that can be translated to ω-automata whose acceptance conditions are simple safety and
liveness conditions.

Then, it is straightforward to formulate the final verification problem in a µ-calculus Lµ

whose atomic propositions in turn belong to the base logic L. After this final translation,
we can use bounded variants of both global and local model checking procedures for Lµ

to check the resulting verification problems. Clearly, these procedures can also be used to
check problems that are not obtained via the translation from temporal logic.

There is not much other work about BMC of infinite state systems. In [31], a combination
of SAT checkers with domain-specific theorem provers is described. The proposed method
is based on a reduction of Boolean constraint formulas to a satisfiability problem of propo-
sitional logic. The obtained formulas are incrementally refined using a theorem prover by
generating lemmas on demand. In this way, the approach can be used with various theories
such as linear and bitvector arithmetic. However, sophisticated techniques are required to

Springer

Form Method Syst Des

efficiently prune out spurious counterexamples that are generated by the SAT solver, but
discarded by the theorem prover. Even though the method presented in [31] also follows
the semantic approach, it is based on the construction of Büchi automata. In contrast, our
method directly exploits safety and liveness properties as described above.

The rest of this paper is organized as follows: In the next section, we describe the syntax
and semantics of Lµ, the µ-calculus on top of our base logic L. Then, we define the temporal
logic LLTL that allows more readable specifications. In Section 3, we consider the temporal
logic hierarchy and sketch translations to equivalent ω-automata. In Section 4, we then
show how alternation-free model checking problems for Lµ can be reduced to satisfiability
problems of L. In Section 5, we briefly describe some basics of our verification tool and
present experimental results. Finally, we conclude with a summary and directions for future
work.

2. Preliminaries

2.1. µ-calculus

The µ-calculus does not directly provide any means for reasoning about atomic properties
of a system, it rather serves as an extension of a given base logic L. In principle, every
logic L can be extended to a corresponding temporal logic Lµ by adding fixpoint and modal
operators as follows:

Definition 1 (Syntax of the µ-calculus). Given a logic L and a set of Boolean variables VB,
the set of µ-calculus formulas Lµ is defined as follows with α ∈ L, ϕ, ψ ∈ Lµ, and Z ∈ VB:

Lµ := α | Z | ϕ ∧ ψ | ϕ ∨ ψ | ♦ϕ | �ϕ | ←−
♦ ϕ | ←−

� ϕ | µZ .ϕ | νZ .ϕ

Note that we do not allow negations in Lµ. Nevertheless, negated formulas may be used in
the atomic propositions α ∈ L. Alternatively, one can allow negations in Lµ, but in this case
it is required that all occurrences of bound variables in fixpoint formulas µZ .ϕ and νZ .ϕ

are positive to guarantee the monotonicity of the underlying state transformers. Otherwise, it
is possible to construct fixpoint formulas with no meaning, since the specified fixpoint may
not necessarily exist. For the sake of simplicity, we decided to shift negation symbols into
atomic propositions, which makes the algorithms more readable.

Definition 2 (Kripke structure). A Kripke structure K = (S, I,R) for a base logic L over
the variablesV ∪ V ′ is a transition system, whereS is the possibly infinite set of states, I ⊆ S
are the initial states, and R ⊆ S × S is the transition relation. Every state is associated with
an assignment of the variables V in order to evaluate formulas of L in particular states. The
set of initial states I and the transition relation R must be definable in the base logic L. In
particular, it is assumed that I and R can be represented as formulas of the logic L over the
variables V and V ∪ V ′, respectively.

In the following, we denote the subset of states that satisfy a formula � ∈ Lµ by [[�]]K.
If the index K is missing, the expression denotes the set of all L-models of a formula � ∈ L.
Moreover, we write preR∃ (Q) and preR∀ (Q) for the existential and universal predecessors of a

Springer

Form Method Syst Des

set of states Q under the transition relation R. The sets of existential and universal successors
of Q are denoted by sucR∃ (Q) and sucR∀ (Q), respectively.

Definition 3 (Semantics of Lµ). Given a Kripke structure K = (S, I,R) and a formula α ∈
L, the semantics of Lµ is defined as follows:

– [[α]]K :≡ [[α]] ∩ S
– [[Z]]K :≡ {s ∈ S | s(Z)}
– [[ϕ ∧ ψ]]K :≡ [[ϕ]]K ∩ [[ψ]]K
– [[ϕ ∨ ψ]]K :≡ [[ϕ]]K ∪ [[ψ]]K
– [[♦ϕ]]K :≡ preR∃ ([[ϕ]]K)
– [[�ϕ]]K :≡ preR∀ ([[ϕ]]K)
– [[←−♦ ϕ]]K :≡ sucR∃ ([[ϕ]]K)
– [[←−� ϕ]]K :≡ sucR∀ ([[ϕ]]K)
– [[µZ .ϕ]]K is the least set Q where Q = [[ϕ]]KQ

Z
holds

– [[νZ .ϕ]]K is the greatest set Q where Q = [[ϕ]]KQ
Z

holds

KQ
Z is the Kripke structure obtained from K by changing the states s of K such that

s(Z) holds iff s ∈ Q holds. A Kripke structure K = (S, I,R) satisfies a formula � iff
I ⊆ [[�]]K holds.

2.2. Linear time temporal logic

The µ-calculus defined in the previous subsection is very expressive and its model checking
problem is well understood, although the precise complexity class is still an open problem
[65]. Unfortunately, the µ-calculus is not very readable so that even simple fixpoint formulas
may be difficult to understand. For this reason, more readable specification logics have
been proposed that can be translated to the µ-calculus in order to benefit from existing
model checking procedures. Thus, the µ-calculus is often viewed as some sort of ‘assembly’
language for verification [32, 65]. In this section, we consider a linear time temporal logic
LLTL [57] as a comfortable specification logic.

Definition 4 (Syntax of LLTL). The set of LLTL formulas is defined as follows with α ∈ L and
ϕ, ψ ∈ LLTL:

LLTL := α | ¬ϕ | ϕ ∧ ψ | Xϕ | ←−
X ϕ | [ϕ U ψ] | [ϕ←−

U ψ]

The atomic formulas of LLTL are exactly the formulas of our base logic L. Hence, LLTL is
the closure of L under Boolean and temporal operators. LLTL has four temporal operators:
X,

←−
X (next and previous) and U,

←−
U (until and past-until, often called ‘since’). Intuitively,

the formula Xϕ holds iff ϕ holds at the next point of time and [ϕ U ψ] holds iff ϕ holds until
ψ holds. The operators ←−

X and ←−
U are defined similarly but refer to the past instead of to the

future.
To interpret a formula, we need the notion of paths. Given a Kripke structure K =

(S, I,R), a path π : N → S is an infinite sequence π of states that are connected by transi-
tions, i.e., we have ∀t ∈ N.(π (t), π (t + 1)) ∈ R. The set of paths originating in a state s ∈ S
is denoted by PathsK(s) := {π : N → S | π (0) = s}.

Springer

Form Method Syst Des

Definition 5 (Semantics of LLTL). Let K = (S, I,R) be a Kripke structure, π a path, and
t ∈ N a natural number. Then, the semantics of LLTL is recursively defined as follows:

– (π, t) |= α iff π(t) ∈ [[α]] for α ∈ L
– (π, t) |= ¬ϕ iff not (π, t) |= ϕ

– (π, t) |= ϕ ∧ ψ iff (π, t) |= ϕ and (π, t) |= ψ

– (π, t) |= Xϕ iff (π, t + 1) |= ϕ

– (π, t) |= ←−
X ϕ iff t �= 0 and (π, t − 1) |= ϕ

– (π, t) |= [ϕ U ψ] iff there is a v ∈ N with v ≥ t and (π, v) |= ψ such that for all u ∈ N

with t ≤ u < v, we have (π, u) |= ϕ

– (π, t) |= [ϕ←−
U ψ] iff there is a v ∈ N with v ≤ t and (π, v) |= ψ such that for all u ∈ N

with v < u ≤ t , we have (π, u) |= ϕ

So far, we only considered the truth of a formula with respect to a given path, but not with
respect to a particular state. To this end, path quantifiers A and E are usually used to obtain
state formulas from path formulas. Thus, the semantics of a path formula is a set of states
where the formula holds. For a Kripke structure K = (S, I,R), a state s ∈ S, and a formula
ϕ ∈ LLTL, we define:

(K, s) |= Aϕ :⇔ ∀π ∈ PathsK(s).(π, 0) |= ϕ

(K, s) |= Eϕ :⇔ ∃π ∈ PathsK(s).(π, 0) |= ϕ

In the above definitions, we only considered a small set of Boolean and temporal operators.
These are sufficient to reach the expressiveness of the first-order monadic theory of linear
orders [65]. In practice, it is nevertheless convenient to define further temporal operators as
syntactic sugar:

←−
X ϕ :≡ ¬←−

X ¬ϕ

Fϕ :≡ [true U ϕ] ←−
F ϕ :≡ [true

←−
U ϕ]

Gϕ :≡ ¬F¬ϕ
←−
G ϕ :≡ ¬←−

F ¬ϕ

[ϕ U ψ] :≡ [ϕ U ψ] ∨ Gϕ [ϕ←−
U ψ] :≡ [ϕ←−

U ψ] ∨ ←−
G ϕ

The formula Fϕ holds along a path iff ϕ eventually holds, and Gϕ holds iff ϕ holds on
all positions of the path. [ϕ U ψ] holds if either [ϕ U ψ] holds or ϕ invariantly holds. The
semantics of the past operators ←−

F ,
←−
G , and ←−

U are defined analogously. ←−
U and U are often

called weak until operators, while ←−
U and U are the corresponding strong until operators.

The distinction between weak and strong operators is the key to defining liveness and safety
properties, respectively.

3. Translating safety and liveness properties to fixpoint problems

In this section, we show how specifications given in the linear time temporal logic LLTL

can be translated to equivalent ω-automata and finally to the µ-calculus Lµ. As mentioned
previously, we are particularly interested in alternation-free formulas, i.e., fixpoint formulas
without mutually interdependent fixpoints. Although such translations are impossible for
arbitrary temporal logic formulas, this can be achieved for many interesting formulas includ-
ing all safety and liveness properties. Given a particular specification, we first have to check
whether such a translation is possible. If so, we have to translate them to simple classes of

Springer

Form Method Syst Des

ω-automata so that we finally obtain alternation-free µ-calculus model checking problems.
The key to solve these problems is the work on the temporal logic hierarchy presented in
[63, 65].

In the following, we briefly consider the principles of these translations. For that purpose,
we make use of symbolic descriptions of finite state ω-automata which are given as formulas
A∃(Q, I, R, F), where

– Q is the finite set of state variables of the automaton,
– I is a formula that encodes the set of initial states,
– R is a formula with X operators that represents the transition relation, and
– F is the acceptance condition given as an LLTL formula.

An automaton formula holds on a path π of a Kripke structure iff there is a run through the
ω-automaton that satisfies the acceptance condition F . Such a run is obtained by extending
the labels on π with an assignment of the state variables Q of the automaton such that I
is initially and R invariantly satisfied. The acceptance condition F is thereby restricted to
special templates for particular classes of ω-automata (see below).

The translation we will consider as the first step is essentially given in [25], and has
already been sketched in [19]. In principle, this procedure is the same as the one devel-
oped for alternating ω-automata [54, 80]. The difference between symbolically represented
nondeterministic ω-automata and alternating ω-automata can be neglected, and seems to be
rather a matter of taste [79]. For our explanations, we take the view on symbolically rep-
resented nondeterministic ω-automata. To understand the translation, we have to consider
the elementary subformulas of a given formula �, which are those subformulas of � that
start with a temporal operator. The states of the ω-automaton to be constructed consist of the
different truth values of these elementary formulas. For example, if � has the elementary
formulas {ϕ1, . . . , ϕn}, we need n state variables {q1, . . . , qn} to encode the state set.

As the introduced state variables qi are used to abbreviate elementary subformulas, we
want for any run through the automaton that qi ↔ ϕi holds at every point of time. For this
reason, the transition relation of the automaton must respect the semantics of the temporal
operators that occur in ϕi . Since transition relations represent the values of two succeeding
points of time, it is clear that we have to obey the recursion laws of the temporal operators.
For example, if a state variable q shall invariantly satisfy q ↔ [ϕ U ψ], then we demand that
q ↔ ψ ∨ ϕ ∧ Xq is implied by the transition relation, since [ϕ U ψ] ↔ ψ ∨ ϕ ∧ X[ϕ U ψ]
holds. However, the following theorem shows that this is not sufficient [63, 65]:

Theorem 1. Given propositional formulas ϕ and ψ , then G[q ↔ ψ ∨ ϕ ∧ Xq] holds iff
G(q ↔ [ϕ U ψ]) ∨ G(q ↔ [ϕ U ψ]) holds.

Similar equivalences hold for other temporal operators including past time temporal operators
[65]. The theorem intuitively states that (1) strong and weak operators fulfill exactly the same
recursion laws (⇐), and (2) no other formulas satisfy these laws (⇒). Hence, simply using
the recursion equations to abbreviate elementary subformulas is not sufficient for a translation
to ω-automata.

For future time operators the distinction between the weak and the corresponding strong
operators can be done by using an additional fairness constraint, i.e., a formula of the form
GFϕ which states that ϕ eventually occurs at every point of time. For example, for an
abbreviation q ↔ [ϕ U ψ], we have to guarantee that ψ will eventually hold whenever q
holds, since the strong until operator requires that ψ must eventually hold. The required
fairness constraints that complete the translation are listed in the following theorem, where

Springer

Form Method Syst Des

we write �〈ϕ〉x for the formula obtained by replacing all occurrences of the variable x in �

with the formula ϕ:

Theorem 2. Given a formula �, a variable x, and propositional formulas ϕ and ψ , the
following equations are valid:

�〈←−X ϕ〉x ⇔ A∃({q}, q, Xq ↔ ϕ,�〈q〉x)

�〈←−X ϕ〉x ⇔ A∃({q}, ¬q, Xq ↔ ϕ,�〈q〉x)

�〈[ϕ←−
U ψ]〉x ⇔ A∃({q}, q, Xq ↔ ψ ∨ ϕ ∧ q, �〈ψ ∨ ϕ ∧ q〉x)

�〈[ϕ←−
U ψ]〉x ⇔ A∃({q}, ¬q, Xq ↔ ψ ∨ ϕ ∧ q, �〈ψ ∨ ϕ ∧ q〉x)
�〈Xϕ〉x ⇔ A∃({q}, true, q ↔ Xϕ, �〈q〉x)

�〈[ϕ U ψ]〉x ⇔ A∃({q}, true, q ↔ ψ ∨ ϕ ∧ Xq,�〈q〉x ∧ GF[ϕ → q])
�〈[ϕ U ψ]〉x ⇔ A∃({q}, true, q ↔ ψ ∨ ϕ ∧ Xq,�〈q〉x ∧ GF[q → ψ])

The symbol ϕ ⇔ ψ means that ϕ and ψ hold on the same paths (of all Kripke structures).
Hence, we can use the above equivalences to iteratively replace the elementary subformulas
of a given LLTL formula with the corresponding state formulas of the intended ω-automaton.

As an example, consider the formula [(a ∨ [b U c]) U d] ∨ e. We first replace [b U c] with
a new state variable p by adding the recursion equation p ↔ c ∨ b ∧ Xp and the required
fairness constraint GF[b → p]:

A∃({p}, true, p ↔ c ∨ b ∧ Xp, ([(a ∨ p) U d] ∨ e) ∧ GF[b → p])

In the next step, we replace [(a ∨ p) U d] with a new state variable q by adding the recursion
equation q ↔ d ∨ (a ∨ p) ∧ Xq and the required fairness constraint GF[q → d]:

A∃

⎛
⎜⎜⎝

{p, q},true,
(p ↔ c ∨ b ∧ Xp) ∧
(q ↔ d ∨ (a ∨ p) ∧ Xq),
(q ∨ e) ∧ GF[b → p] ∧ GF[q → d]

⎞
⎟⎟⎠

The acceptance condition requires that q ∨ e must initially hold and that infinitely often both
b → p and q → d hold. For this reason, we can alternatively use q ∨ e as initial condition
and obtain the following generalized Büchi automaton:

A∃

⎛
⎜⎜⎝

{p, q},q ∨ e,
(p ↔ c ∨ b ∧ Xp)∧
(q ↔ d ∨ (a ∨ p) ∧ Xq),
GF[b → p] ∧ GF[q → d]

⎞
⎟⎟⎠

Further (and different) explanations of this translation can be found in [19, 25, 40, 54, 63,
65, 80]. Note that the translation takes only linear time to compute the linear sized symbolic
representation of the resulting ω-automaton.

For bounded model checking, the fairness constraints in the acceptance condition of a
Büchi automaton impose a major problem: They require to reason about an infinite behavior
which is not directly possible using bounded model checking. It is therefore mandatory to

Springer

Form Method Syst Des

be able to eliminate these constraints or at least to replace them with simpler constraints that
can be handled by bounded model checking.

A first step towards such an improvement is the observation that all temporal operators are
monotonic and that the strong operators imply the weak ones. Therefore, positive occurrences
of weak operators and negative occurrences of strong operators do not require the additional
fairness constraint (see [63, 65] for details).

Theorem 3 (Translation to ω-automata w.r.t. positive/negative occurrences). Given a for-
mula �, a variable x, and propositional formulas ϕ and ψ , the following equation is valid,
provided that all occurrences of x in � are positive:

�〈[ϕ U ψ]〉x ⇔ A∃({q}, true, q ↔ ψ ∨ ϕ ∧ Xq, �〈q〉x)

If all occurrences of x in � are negative, then the following holds:

�〈[ϕ U ψ]〉x ⇔ A∃({q}, true, q ↔ ψ ∨ ϕ ∧ Xq, �〈q〉x)

In the above example, we can therefore eliminate GF[b → p] and thus simply use the
acceptance condition GF[q → d].

A second improvement is obtained by checking whether a positive occurrence of a
subformula ϕ starting with a strong operator is in the scope of another temporal operator that
requires to check ϕ infinitely often. If this is not the case, as in our example, we can replace
the fairness constraint with simpler reachability constraints.2 Hence, we can simplify the
acceptance condition once more and use F[q → d]. As this formula is now a simple liveness
property, it can be proved by bounded model checking. This is not possible without our
improvements, i.e., with the classic translation introduced at the beginning of this section.

The second improvement allows us to replace some of the remaining fairness constraints
with simpler reachability constraints. This improvement can be used as long as only strong
temporal future operators are nested into each other, followed only by nestings of weak
temporal future operators. Based on these improvements, the logics TLκ given in Fig. 1 have
been defined in [63] and the following theorem has been proved:

Theorem 4 (Temporal logic hierarchy). We define the logics TLκ for κ ∈ {G, F, Prefix, FG,
GF, Streett} by the grammar rules given in Fig. 1, where TLκ is the set of formulas that can be
derived from the nonterminal Pκ . Then, all formulas in TLκ can be translated to equivalent
ω-automata whose acceptance conditions are as follows (with formulas �i , 	i ∈ L):

κ = G: G�0 κ = F: F�0 κ = Prefix:
f∧

j=0

G� j ∨ F	 j

κ = FG: FG�0 κ = GF: GF�0 κ = Streett:
f∧

j=0

FG� j ∨ GF	 j

2 There are some involved details that have to be considered for such a simplification. We neglect these details
here and refer to [65] instead.

Springer

Form Method Syst Des

Fig. 1 Syntactic characterization of the six classes of the temporal logic hierarchy

TLG is the set of formulas where each occurrence of a weak/strong temporal future operator
is positive/negative, and similarly, each occurrence of a weak/strong temporal future operator
in TLF is negative/positive. Hence, both logics are dual to each other, which means that one
contains the negations of the other. TLPrefix is the Boolean closure of TLG (and TLF). The
logics TLGF and TLFG are constructed in the same way as TLG and TLF (with minor differences
explained in [63, 65]).

In [63, 65], translation procedures are given that translate formulas of TLκ to ω-automata
whose acceptance conditions are of the corresponding type κ . It is well-known that these
acceptance conditions yield six classes of ω-automata, where each class can be represented
by deterministic automata of type κ [44, 48, 65, 77, 82]. The different expressiveness is
indicated with � below:

For bounded model checking, we are mainly interested in ω-automata with acceptance
conditions Gϕ and Fϕ. As we can disprove Gϕ and prove Fϕ by only considering a finite
prefix of a path of a Kripke structure, these formulas can be checked using bounded model
checking.

Let us now complete the picture regarding the translation of a given model checking
problem for LLTL to an equivalent model checking problem for Lµ. For that purpose, as-
sume we are given the model checking problem K, s |= Aϕ with ϕ ∈ LLTL. First, we trans-
late ¬ϕ to an ω-automaton A¬ϕ ≡ A∃(Q, I,R,F) by the methods presented above, so
that we obtain the model checking problem K, s |= ¬EA∃(Q, I,R,F). The translation of
EA∃(Q, I,R,F) to the µ-calculus can be circumvented by considering the product struc-
ture K × A¬ϕ . We have to check whether there is a state q of the automaton A¬ϕ such that
K × A¬ϕ, (s, q) |= I ∧ ¬EF holds. As I is in L, and thus already an Lµ-formula, it remains
to translate EF to the µ-calculus. For the most interesting cases, this is accomplished as
follows:

– EGϕ = νY.ϕ ∧ ♦Y
– EFϕ = µY. (ϕ ∧ νX.♦X) ∨ ♦Y
– EFGϕ = EFEGϕ = µY. (νX.ϕ ∧ ♦X) ∨ ♦Y
– EGFϕ = νY.♦µX.(Y ∧ ϕ) ∨ ♦X

Springer

Form Method Syst Des

As can be seen, we obtain alternation-free µ-calculus formulas in the first three cases.
Moreover, EGϕ yields a simple greatest fixpoint, and EFϕ essentially a least fixpoint. The
included greatest fixpoint νX.♦X is used to guarantee that the considered states have an
infinite path. If this is guaranteed by other means, e.g. if the transition relation is total, we
can alternatively use the simpler reduction EFϕ = µY.ϕ ∨ ♦Y .

4. Verification of fixpoint problems

In the previous section, we considered the translation of temporal logic specifications to
equivalent ω-automata. This reduces the model checking problem to a simple fixed point
problem. In principle, it would now be sufficient to consider the fixpoints obtained by the
acceptance conditions of the corresponding ω-automata, i.e., the formulas EGϕ, EFϕ, EGFϕ,
and EFGϕ.

In this section, we consider the more general model checking problem for Lµ. In this
way, we are able to deal with other temporal logics such as CTL and even to check a large
class of specifications that go beyond temporal logic. As an example, consider the formula
νZ .ϕ ∧ ��Z which states that ϕ holds at every other point of time. This property cannot be
expressed in LTL [50, 83], and hence, it cannot be checked using traditional approaches for
bounded model checking. Other examples include the computation of winning strategies for
controller synthesis.

To check such specifications, we present bounded model checking procedures for both
global and local model checking. For that purpose, we employ three-valued logic to explicitly
encode information about the membership of a state in a set which may be either definitely
true, definitely false, or unknown due to insufficient bounds. We start with a description of
the formal background of ternary fixpoints in the following subsection.

4.1. Three-valued logic

Three-valued logic has been applied in many areas of computer science [1, 4, 15, 46, 60, 66,
71]. Besides the Boolean values 0 and 1, three-valued logic [15, 41] provides an additional
truth value denoted as ⊥ that is used to express unknown or uncertain information. In our
case, we will use ⊥ to express that bounded model checking was neither able to prove nor to
disprove that a state satisfies the considered property. To this end, we replace the two-valued
characteristic function of a set S with its three-valued generalization:

χS(x) :=
⎧⎨
⎩

0 : if x �∈ S is known
1 : if x ∈ S is known
⊥ : if neither x ∈ S nor x �∈ S is known

In analogy to the two-valued case, all set operations can be performed using negation,
conjunction, and disjunction that are defined as follows in the three-valued setting:

x ¬x
0 1
⊥ ⊥
1 0

∧ 0 ⊥ 1

0 0 0 0
⊥ 0 ⊥ ⊥
1 0 ⊥ 1

∨ 0 ⊥ 1

0 0 ⊥ 1
⊥ ⊥ ⊥ 1
1 1 1 1

Springer

Form Method Syst Des

We use the partial order3 0 � ⊥ � 1 and extend it to arbitrary functions f, g:S → {0,⊥, 1}
by pointwise comparison: f � g :⇔ ∀s ∈ S. f (s) � g(s). Given an arbitrary set S, it is
easily seen that the set of all functions f :S → {0,⊥, 1} is a complete lattice with this partial
order. The minimal element is fmin(s) := 0 (the set that is definitely empty) and the maximal
element is fmax(s) := 1 (the set that definitely contains all states).

By the Tarski-Knaster fixpoint theorem [65, 76], every continuous function γ : (S →
{0,⊥, 1}) → (S → {0,⊥, 1}) has fixpoints, and the uniquely defined least and greatest fix-
points are limk→∞ γ k(fmin) and limk→∞ γ k(fmax), respectively. This is in complete analogy
to the two-valued case, where fixpoints are computed over state sets, i.e., fixpoints of a
continuous function4 γ : (S → {0, 1}) → (S → {0, 1}).

Note, however, that the three-valued negation is not monotonic, and thus, it is not a
continuous function. Fortunately, the µ-calculus requires that all occurrences of fixpoint
variables are positive, so that the functions we have to consider are continuous, and therefore
monotonic.

In our implementation, we encode the three truth values by pairs of two-valued ones using
dual-rail encoding:

x 0 ⊥ 1

ε(x) (0, 1) (0, 0) (1, 0)

The three-valued extension of a formula ϕ is consequently denoted by ε(ϕ). It is easily seen
that for this encoding, the three-valued operations can be implemented as follows:

– ¬̇(ϕ1, ϕ2) := (ϕ2, ϕ1)
– (ϕ1, ϕ2)∧̇(ψ1, ψ2) := (ϕ1 ∧ ψ1, ϕ2 ∨ ψ2)
– (ϕ1, ϕ2)∨̇(ψ1, ψ2) := (ϕ1 ∨ ψ1, ϕ2 ∧ ψ2)
– (ϕ1, ϕ2)→̇(ψ1, ψ2) := (ϕ2 ∨ ψ1, ϕ1 ∧ ψ2)
– ∃̇x .(ϕ1, ϕ2) := (∃x .ϕ1,∀x .ϕ2)
– ∀̇x .(ϕ1, ϕ2) := (∀x .ϕ1, ∃x .ϕ2)

Dual-rail encoding is an elegant means to reason about three-valued logic using data struc-
tures and decision procedures for the base logic. Given that χS : S → {0,⊥, 1} is represented
by (ϕ1, ϕ0) with ϕi : S → {0, 1}, dual-rail encoding has the following meaning regarding the
representation of three-valued characteristic functions:

– ϕ1(s) = 1 implies χS(s) = 1, and therefore ϕ1(s) holds iff s definitely belongs to the
represented set.

– ϕ0(s) = 1 implies χS(s) = 0, and therefore ϕ0(s) holds iff s does definitely not belong to
the represented set.

– ϕ0(s) = ϕ1(s) = 0 implies χS(s) = ⊥, which means that we have no information about
the membership of s.

In the following, we will show how to employ dual-rail encoding for the implementation of
efficient bounded model checking procedures.

3 The truth tables are the same as in other applications of three-valued logic like causality analysis [66].
However, they may use other partial orders, where ⊥ is the least element.
4 For fixpoint formulas µZ .ϕ or νZ .ϕ, this function is defined as γ (Q) := [[ϕ]]KQ

Z
.

Springer

Form Method Syst Des

4.2. Bounded global model checking

Global model checking of µ-calculus properties is essentially performed by fixpoint itera-
tion as described in the previous subsection. To make use of the Tarski-Knaster theorem in
bounded model checking, let us consider the following definition of a syntactical represen-
tation of fixpoint iteration:

Definition 6 (Fixpoint approximation). Let [ϕ]ψZ be the formula obtained by replacing all
occurrences of Z in ϕ with ψ . Given a fixpoint formula σ Z .ϕ with σ ∈ {µ, ν}, its k-th
approximation apxk(σ Z .ϕ) is recursively defined as follows:

apx0(µZ .ϕ) := false apxk+1(µZ .ϕ) := [ϕ]apxk (µZ .ϕ)
Z

apx0(νZ .ϕ) := true apxk+1(νZ .ϕ) := [ϕ]apxk (νZ .ϕ)
Z

In global model checking (GMC), the set of satisfying states of a formula σ Z .ϕ is obtained
by computing a sequence of fixpoint approximations [[apxi (σ Z .ϕ)]]K until [[apxi (σ Z .ϕ)]]K =
[[apxi+1(σ Z .ϕ)]]K holds. Since by definition K |= ϕ iff I ⊆ [[ϕ]]K holds, and every sequence
of fixpoint approximations is increasing for least fixpoints and decreasing for greatest fix-
points, the following implications hold for all k > 0:

I ⊆ [[apxk(µZ .ϕ)]]K ⇒K |= µZ .ϕ I �⊆ [[apxk(νZ .ϕ)]]K ⇒K �|= νZ .ϕ

Hence, estimating a bound k and checking the above conditions is sufficient to prove least
fixpoint formulas and to disprove greatest fixpoint formulas. Though necessary, this is not suf-
ficient to disprove least fixpoint formulas and to prove greatest fixpoint formulas. This is only
sufficient if we know that increasing the bound does not further increase or decrease the set of
computed states, i.e., if a fixpoint has been reached. Due to the monotonicity of the fixpoint
approximations, checking whether a fixpoint has been reached can be reduced to check-
ing whether [[apxk(νZ .ϕ)]]K ⊆ [[apxk+1(νZ .ϕ)]]K and [[apxk(µZ .ϕ)]]K ⊇ [[apxk+1(µZ .ϕ)]]K
holds for least and greatest fixpoints, respectively.

Instead of computing each fixpoint approximation one after the other as in GMC, one
can also syntactically unwind a fixpoint formula a bounded number of times to obtain a
formula without fixpoint operators. Having symbolic representations of the initial states I
and the transition relation R, the algorithm5 shown in Fig. 2 translates a model checking
problem K |= ϕ with ϕ ∈ Lµ to a formula (ϕ1, ϕ0) in dual-rail encoding representing those
states where the specification holds. According to the meaning of three-valued characteristic
functions we obtain the following propositions:

– if s |= ϕ1 holds, then K, s |= � holds
– if s |= ϕ0 holds, then K, s �|= � holds
– if s �|= ϕ1 and s �|= ϕ0 holds, then we neither know K, s |= � nor K, s �|= �

5 We assume that the substitution operation used in our algorithms renames bound variables such that no free
occurrence of a variable is turned into a bound occurrence. Renaming of bound variables can be accomplished
with only two sets of variables [38, 39, 52, 65, 81]. However, if the formula has to be brought to (cleansed)
prenex normal form for checking satisfiabilty, additional variables have to be introduced to resolve multiple
bindings.

Springer

Form Method Syst Des

Fig. 2 Bounded global model checking

In other words, the algorithm computes an underapproximation ϕ1 and an overapproximation
¬ϕ0 of [[ϕ]]K. We may call ϕ1 the ‘must’ set and ¬ϕ0 the ‘cannot’ set, in accordance to other
three-valued analyses.

The correctness of the algorithm is proved as follows: For k → ∞, the algorithm follows
global model checking procedures for the µ-calculus, i.e., modal operators are evaluated by
computing predecessor or successor states, and fixpoint operators are evaluated by Tarski-
Knaster fixpoint iteration. The only difference is that these computations are performed
on pairs of formulas by means of dual-rail encoding. For fixpoint-free formulas, the re-
turned pairs (ϕ1, ϕ0) are always complementary, i.e., we have ϕ0 ↔ ¬ϕ1. Hence, these pairs
represent precisely known state sets.

The third truth value ⊥ is introduced after unrolling fixpoint formulas. At this stage, we
first check whether the fixpoint has already been reached by the k-th approximation. This
is accomplished by checking the validity of the formula �fix. Since this formula is closed,
it is equivalent to one of the constant values 0,⊥, and 1. As a consequence, �fix∨̇ε(⊥) is

Springer

Form Method Syst Des

equivalent to one of the constant values 1 or ⊥, depending on whether the fixpoint has been
reached or not.

Now consider the formula returned by unwinding a least fixpoint formula µZ .ψ . In case
the fixpoint has been reached, the formula (�fix∨̇ε(⊥)) →̇�new reduces to �new, otherwise to
ε(⊥)→̇�new. This is explained as follows: For least fixpoints, the Tarski–Knaster iteration
starts with the empty set encoded by ε(0) and iteratively adds states to the current approxi-
mation. If the fixpoint has been reached, we know that exactly those states contained in the
final approximation belong to the fixpoint. However, if the fixpoint has not been reached, we
only know that the states of the last approximation belong to the fixpoint, while we have no
information about the remaining states. In this case, we modify the characteristic function
by replacing 0 with ⊥. An analogous argumentation holds for greatest fixpoint formulas.

To verify that the returned formulas implement the required modifications, consider the
following reduced truth table:

�fix �new (�fix∨̇ε(⊥))→̇�new (�fix∨̇ε(⊥))∧̇�new

1 ∗ �new �new

⊥, 0 0 ⊥ 0
⊥, 0 ⊥ ⊥ ⊥
⊥, 0 1 1 ⊥

We return the full information �new in case a fixpoint has been reached. Otherwise, we
return 1 if the approximation of a least fixpoint returns 1, and ⊥ in all other cases. Due to the
monotonicity laws, we know that once a state is included in the k-th approximation of a least
fixpoint, it will belong to all n-th approximations with n ≥ k. The converse, however, does
not hold. For greatest fixpoints, we return 0 if its approximation returns 0, and ⊥ in all other
cases. Analogously, once a state is excluded in the k-th approximation, it will be excluded
from all n-th approximations with n ≥ k.

Note that the formula �fix appears in only one of the two rails. Given that �fix ≡ (�(1)
fix , �

(0)
fix)

and �new ≡ (�(1)
new,�

(0)
new) holds, expanding the dual-rail formulas yields:

– (�fix∨̇ε(⊥))→̇�new ≡ (�(1)
new, �

(1)
fix ∧ �

(0)
new)

– (�fix∨̇ε(⊥))∧̇�new ≡ (�(1)
fix ∧ �

(1)
new,�

(0)
new)

Having computed an approximation Unwind(k, ϕ) ≡ (ϕ1, ϕ0), which contains an underap-
proximation ϕ1 and an overapproximation ¬ϕ0 of the desired state set, it is finally checked
whether the initial states imply the unwound formula. Thus, the call BGMC(k,�, ϕ) returns
the pair ((∀x.� → ϕ1), (∃x. � ∧ ϕ0)). If all initial states belong to ϕ1, we know that the
property holds, and therefore the result is 1. If one of the initial states belongs to ϕ0, we know
that the property is definitely false, and therefore the result is 0. Otherwise, we cannot say
anything about the truth, and therefore, we return ⊥. This leads us to the following theorem:

Theorem 5 (Bounded global model checking). Let x = (x1, . . . , xn) and x′ = (x ′
1, . . . , x ′

n)
be vectors of variables with xi ∈ V and x ′

i ∈ V ′. Moreover, let I ∈ L be a formula over the
variables x and R ∈ L a formula over the variables x and x′ such that I represents the
initial states and R the transition relation of a Kripke structure K. Then, for all formulas
ϕ ∈ Lµ and all k ∈ N with (ϕ1, ϕ0) = BGMC(k, I, ϕ), we have:

– if ϕ1 is true, then ϕ0 is false and K |= ϕ

– if ϕ0 is true, then ϕ1 is false and K �|= ϕ

– if neither ϕ1 nor ϕ0 is true, then we know nothing about the truth of K |= ϕ

Springer

Form Method Syst Des

Fig. 3 Decomposition rules for local model checking

As an example, let I :≡ x = 0 and R :≡ x ′ = x + 1 ∧ x ≥ 0 represent the set of initial
states and the transition relation of a Kripke structure K, respectively. For the function call
BGMC(1, I, ϕ) with ϕ :≡ νZ . x ≥ 0 ∧ �Z we obtain the following formulas after unwinding
ϕ, i.e., after the loop:

�old = ε(x ≥ 0) ∧̇ ε(1)
�new = ε(x ≥ 0) ∧̇ (∀̇x ′.ε(x ′ = x + 1 ∧ x ≥ 0)→̇ε(x ′ ≥ 0)∧̇ε(1))

To keep the formulas small, we assume that �fix ≡ (∀̇x .�old→̇�new)∨̇ε(⊥)) has already been
evaluated. Since �fix is valid in our example, we finally obtain the formula

∀̇x .ε(x = 0) →̇(ε(x ≥ 0) ∧̇ (∀̇x ′.ε(x ′ = x + 1 ∧ x ≥ 0) →̇ε(x ′ ≥ 0)∧̇ε(1))).

Since this formula is true, i.e., equivalent to (1, 0), we conclude that the specification holds.

4.3. Bounded local model checking

In this subsection, we present a bounded local model checking (BLMC) procedure. However,
before we go into detail, we explain the foundations of unbounded LMC. In contrast to
GMC, LMC [11, 12, 29, 74, 75] aims at directly answering the question whether I ⊆ [[ϕ]]K
holds. To this end, proof goals of the form � � ϕ are considered where � is a set of states
and ϕ is aLµ formula. The meaning of a goal � � ϕ is that it has to be proved that � ⊆ [[ϕ]]K
holds. In the following, we use formulas � ∈ L over the free variables x = (x1, . . . , xn) as
symbolic representations of state sets. Proofs of such goals are obtained by syntax-directed
decomposition into subgoals using the rules shown in Fig. 3. The propositions above and
below a line are equivalent for all rules.

Rule (1) simply splits a conjunction into two subgoals. When considering rules (3) and
(5) one might be surprised that the universal modal operators are reduced to computing the
existential successor or predecessor states. This is due to the fact that after rewriting the
expanded formulas, the universal quantifiers turn into existential ones. For example, rule (3)

Springer

Form Method Syst Des

is proved as follows:

[[�]]K ⊆ [[�ϕ]]K ⇔ ∀s. s ∈ [[�]]K ⇒ s ∈ [[�ϕ]]K
⇔ ∀s. s ∈ [[�]]K ⇒ (∀s ′.(s, s ′) ∈ R ⇒ s ′ ∈ [[ϕ]]K)
⇔ ∀s, s ′. s ∈ [[�]]K ∧ (s, s ′) ∈ R ⇒ s ′ ∈ [[ϕ]]K
⇔ ∀s ′. (∃s.s ∈ [[�]]K ∧ (s, s ′) ∈ R) ⇒ s ′ ∈ [[ϕ]]K
⇔ ∀s ′. s ′ ∈ sucR∃ (�) ⇒ s ′ ∈ [[ϕ]]K
⇔ sucR∃ (�) ⊆ [[ϕ]]K

Rule (2) is explained as follows: If � � ϕ ∨ ψ holds, then the set of states encoded by � can
be partitioned into the set of states 	1 that satisfy ϕ and the set of states 	2 that satisfy ψ .
The application of this rule requires that the user guesses suitable sets 	1, 	2 such that the
goal � � ϕ ∨ ψ can be decomposed into provable subgoals. In a similar way, rules (4) and
(6) that implement the semantics of existential modal operators, require to have a suitable
set of states 	. Rules that reduce a proposition to an existentially quantified one are often
called choice rules. Their application requires that the user provides suitable witnesses, so
that the remaining proof succeeds.

Before we continue with the explanation of the rules, let us briefly discuss the meaning of
choice rules and their impact on local model checking algorithms. At first view, the existence
of these rules seems to be a severe drawback of local model checking, since they require
user interaction as opposed to global model checking. In fact, these rules are inevitable due
to the fact that local model checking is complete [11], but undecidable for the considered
transition systems. In contrast, global model checking is not complete without additional
techniques such as fixpoint induction, which in turn require user interaction. Thus, the choice
rules should not be viewed as a burden, but as a feature for semi-automatic model checking
procedures. Nevertheless, we will later present improved rules for local model checking that
do not require user interaction for many specifications occurring in practice.

Rules (7) and (8) are used for unwinding fixpoint formulas. To this end, the procedure
maintains a set � that consists of pairs (Z , σ Z .ϕ) that associate a bound variable Z with
the subformula where it is bound.6 Provided that (Z ′, σ Z .ϕ) ∈ � holds, we write �(Z ′)
for the second component of this pair. For example, let � = ∅ and � � µZ .x = 0 ∨ �Z
be a goal to be decomposed. Then, by rule (8) we have � = {(Z ′, µZ .x = 0 ∨ �Z)} and
proceed with the goal � � x = 0 ∨ �Z ′. Once the decomposition process has reached the
variable Z ′, the application of rule (7) regenerates the original formula and yields a goal
�′ � µZ .x = 0 ∨ �Z with a new set of states �′.

To avoid infinite recursion, it has to be checked whether the regeneration of a fixpoint
formula leads to a previously created goal with the same query. In this case, the construction
of the proof is successful for greatest fixpoints. For least fixpoint formulas, it has to be
checked whether the corresponding path in the proof tree is well-founded [11, 12]. The
reason for this is a deeply rooted property of the µ-calculus that intuitively states that least
fixpoints are related to finite recursion, while greatest fixpoints additionally allow infinite
recursion.

Rule (9) is applied to formulas of the base logic and terminates the decomposition process.
Finally, rule (10) can be used to strengthen a goal � � ϕ by finding an appropriate superset
of �. Again, this rule requires user interaction to set up a suitable lemma 	 � ϕ.

6 It is assumed that every variable is bound only once and has no additional free occurrences. Moreover, the
formulas are given in guarded normal form [65], i.e., every occurrence of a bound variable Z in σ Z .ϕ is
guarded by a modal operator.

Springer

Form Method Syst Des

Fig. 4 Example for local model checking

Figure 4 gives an example for local model checking. The right-hand side shows a proof
tree for the Kripke structure and the specification shown on the left-hand side. Interestingly,
the given specification cannot be proved using GMC, since the fixpoint iteration does not
terminate (the differences between local and global model checking regarding infinite state
systems were considered in [69]).

As mentioned previously, the decomposition rules shown in Fig. 3 are sufficient to prove
every valid specification using LMC [11, 12]. Unfortunately, this often requires user inter-
action which is due to the disjunctive nature of the choice rules. Additionally, the user needs
to know when to apply rule (10) which can be really challenging. Note that this rule allows
LMC to switch to a different proof goal that requires to guess the right induction lemma.
However, in practice one is mainly interested in automatic proof procedures. For this reason,
we restrict ourselves to the universal fragment of the µ-calculus that does not require the
application of choice rules.7 Although this may seem to be a hard restriction, the remaining
fragment is still powerful enough to automatically prove properties that cannot be proved
by GMC [69]. Additionally, we use the following techniques to automate the decomposition
process:

(A) Regarding rule (2): A goal � � ϕ ∨ ψ with ϕ ∈ L is reduced to the goal � ∧ ¬ϕ � ψ

which is the least remaining requirement. In this way, we are able to check disjunctions
automatically, provided that one of the disjuncts belongs to the base logic.8 For
example, this allows us to check the property AFx = 0 which is translated to the
µ-calculus formula µZ .x = 0 ∨ �Z .

(B) Regarding rule (10): Checking repetition is not only successful if the same goal � � ϕ

appears, but also if a goal 	 � ϕ appears such that 	 ⊆ � holds. Recall that rule (10)
allows us to replace the set 	 with a superset in order to match a previous goal. In
the following, this is referred to as loop test. The loop test is always performed before
unwinding a greatest fixpoint formula.

(C) Least fixpoint formulas are always unwound until the bound is reached. In this way,
many least fixpoint formulas can be verified without having to check well-foundedness
of the proof tree, provided that the formula � will eventually be unsatisfiable. This is

7 Existential properties can be proved by disproving the negated specification, provided that there are only
finitely many initial states.
8 The disjunct may also contain modal operators, but we restrict ourselves to the base logic for the sake of
simplicity.

Springer

Form Method Syst Des

due to the fact that, by definition, a goal ∅ � ϕ holds for all formulas ϕ. However, this
requires that the specification can be decomposed in a finite number of steps.

Figures 5 and 6 show the algorithm9 for BLMC. According to the rules of Fig. 3, it
recursively decomposes a µ-calculus formula ϕ into subformulas and returns a pair of
formulas using dual-rail encoding. The algorithm first checks whether the formula ϕ belongs
to the base logic L. If this is the case, rule (9) is applied and the algorithm returns a formula
that represents the inclusion � ⊆ [[ϕ]]K. The translation of conjunctions follows directly from
rule (1). By technique (A), disjunctions are decomposed if at least one of the subformulas
belongs to the base logic. If this is not the case, the algorithm returns the unknown value
⊥. Modal operators are decomposed according to rules (3) and (5) and the definition of
predecessor/successor state sets.

Recall that rule (8) substitutes the variable bound by the fixpoint operator with a new
variable to distinguish between different incarnations. The introduction of new variables can
be avoided if we explicitly take into account scopes of variables. For that purpose, we use a
stack10 to keep track of unwound formulas. In addition, the stack is used to store the current
state set and the current bound. An element of the stack is therefore a triple (�, Z , k), where
� represents the state set, Z the fixpoint variable, and k the bound. In principle, one could
also use the stack to store complete fixpoint formulas instead of only the associated fixpoint
variables. However, while this eliminates the need for the set �, this comes at the cost of
redundantly storing one and the same formula multiple times.

Let us now continue with the description of the decomposition process. If the algorithm
encounters a goal � � σ Z .ψ , it first updates the set �. Then, it successively examines the
stack from the top using function GetBound to determine the bound k ′ of the last incarnation
of Z. After that, the algorithm pushes the triple (�, Z , k ′ − 1) on the stack and continues with
the goal � � ψ . After termination of all recursive calls, the top-level element is removed
from the stack and the resulting formula is returned.

If the algorithm encounters a fixpoint variable, the corresponding formula is unwound
once more, provided that the bound has not yet been exceeded. Otherwise, the algorithm
returns ⊥ which means that the truth of the specification cannot be decided due to insufficient
bounds. Additionally, a loop test is performed for greatest fixpoint formulas according to
technique (B). This is accomplished by the function LoopTest which, similar to the function
GetBound, recursively examines the stack to find a matching element. There are three cases
to be distinguished: First, if the stack is empty, the function returns ε(0) which indicates that
the loop test has failed. Second, if an element is found where the current fixpoint variable
matches the one on top of the stack, the formula ε(∀x.�→�′) is returned. Recall that
repetition is successful if � ⊆ �′, where � represents the current state set and �′ the one of
the previously generated goal. Third, it may happen that the top-level element of the stack
refers to a different fixpoint formula. In this case, the scope has been left and the function
returns ε(0). For least fixpoint formulas it is finally checked whether the set � is empty
according to technique (C).

Theorem 6 (Bounded local model checking). Let x = (x1, . . . , xn) and x′ = (x ′
1, . . . , x ′

n)
be vectors of variables with xi ∈ V and x ′

i ∈ V ′. Moreover, let I ∈ L be a formula over the

9 Underscores denote anonymous variables for pattern matching.
10 We assume the operations push, pop, and top to push an element on the top of the stack (push), to remove
the top element of the stack (pop), and to read the topmost element of the stack (top). Moreover, empty
denotes the empty stack.

Springer

Form Method Syst Des

Fig. 5 Bounded local model checking

Fig. 6 Bounded local model checking (cont.)

Springer

Form Method Syst Des

variables x and R ∈ L a formula over the variables x and x′ such that I represents the
initial states and R the transition relation of a Kripke structure K. Then, for all formulas
ϕ ∈ Lµ and all k ∈ N with (ϕ1, ϕ0) = BLMC(k, I, ϕ), we have:

– if ϕ1 is true, then ϕ0 is false and K |= ϕ

– if ϕ0 is true, then ϕ1 is false and K �|= ϕ

– if neither ϕ1 nor ϕ0 is true, then we know nothing about the truth of K |= ϕ

Proof: Algorithm BLMC implements local model checking for the universal fragment of
Lµ when k → ∞. Since the construction of the proof tree does not require interactive rules,
a goal I � ϕ is true iff all leaf vertices of the proof tree are true. Due to the correctness of
the proof tree construction of local model checking, it follows that the goal of the root node
is valid if all goals in the leaves are valid. The converse may not hold due to the restriction
of the bound k. However, if a leaf vertex cannot be extended even if k would be increased,
the non-validity of a leaf vertex implies that the root goal I � ϕ is false, since there is no
other way to construct a proof tree due to the absence of choice rules. Note that the result of
such a leaf vertex definitely returns a Boolean value, and that ⊥ is only returned in case a
fixpoint formula could not be decided for the bound k. �

As an example, reconsider Fig. 4 where we used the formulas I :≡ x ≥ 1 and R :≡
x ′ = x + 1 to symbolically represent the initial states and the transition relation of the
Kripke structure K. Figure 7 shows a trace (entry and exit points) for the call BLMC(1, I, ϕ)
with ϕ :≡ νZ . x �= 0 ∧ �Z . After the first call we have � = {(Z , νZ .x �= 0 ∧ �Z)} and
top(Stack) = (x ≥ 1, Z , 0). Expanding the resulting dual-rail formula yields a pair (ϕ1, ϕ0)
with

ϕ1 = (∀x .x ≥ 1 → x �= 0) ∧ (0 ∨ ∀x .[∃x .R ∧ x ≥ 1]x
x ′→x ≥ 1)

≡ (∀x .x ≥ 1 → x �= 0) ∧ (∀x .(∃x ′.x = x ′ + 1 ∧ x ′ ≥ 1)→x ≥ 1)
≡ ∀x .∀x ′.(x ≥ 1 → x �= 0) ∧ (x �= x ′ + 1 ∨ x ′ < 1 ∨ x ≥ 1)

and

ϕ0 = ¬(∀x .x ≥ 1 → x �= 0) ∨ (0 ∧ ¬∀x .[∃x .R ∧ x ≥ 1]x
x ′ → x ≥ 1)

≡ ¬(∀x .x ≥ 1 → x �= 0)
≡ ∃x .x ≥ 1 ∧ x = 0.

As ϕ1 is valid, it follows that I � ϕ is true and K |= ϕ holds.
Having reduced the model checking problem to a satisfiability problem, we can employ

the same backend tools to solve the final problem as for BGMC. Needless to say that these
tools should first perform some precomputations. For example, checking the validity of a
formula ϕ ∧ ψ can be done by checking whether ϕ is valid and ψ is valid. The validity
of a formula ϕ ∨ ψ can be checked analogously, provided that ϕ and ψ do not share free
variables. Moreover, conjunctions can be checked lazily, i.e., evaluating the first subformula
may already yield the resulting truth value, so that the second subformula needs not to be
evaluated.

Springer

Form Method Syst Des

Fig. 7 Example for bounded local model checking

5. Experimental results

The algorithms presented in this paper have been implemented in Averest,11 a framework
for the design and verification of reactive systems. Averest consists of a compiler for our
synchronous language Quartz [61, 62, 64], a symbolic model checker, and a tool for hard-
ware/software synthesis. The benchmarks have been implemented in Quartz and were com-
piled to symbolically encoded transition systems. The resulting transition systems were then
verified using our symbolic model checker Beryl.

As the base logicL, we use Presburger arithmetic which is a decidable first-order predicate
logic over the integers with addition as the basic operation [33, 55, 58]. The use of Presburger
arithmetic in symbolic model checking was first proposed by Bultan, Gerber, and Pugh [16,
17]. Around the same time, Kukula, Shiple, and Aziz presented a technique for reachability
analysis of extended finite state machines using Presburger arithmetic [43]. A comparison
of Presburger decision procedures can be found in [72] and [35].

As mentioned in the introduction, an important aspect concerning the implementation
of efficient decision procedures is that every Presburger formula can be translated to a
finite automaton that encodes its models [9, 10, 21, 85]. Since there exists for every finite
automaton an equivalent minimal one, automata can serve as a canonical representation for
Presburger formulas. This is analogous to the use of binary decision diagrams as a canonical
normal form for propositional logic [13]. Hence, automata can be viewed as generalizations
of BDDs for representing infinite sets.

Our implementation can translate Presburger formulas to deterministic finite automata
(DFAs) and alternating finite automata (AFAs). For both types, we use a semi-symbolic
encoding where the states are represented explicitly, and the transitions implicitly by means
of propositional logic. To this end, we use the CUDD BDD package [73] for DFAs and
the SAT solver zChaff [53] for AFAs. The strengths and weaknesses of DFAs and AFAs
resemble those of BDDs and SAT solvers, respectively. DFAs are thus best suited for
unbounded model checking (checking equivalence of two DFAs is easy). In contrast, AFAs
are best suited for bounded model checking where satisfiability (emptiness) has to checked
only once. Consequently, we use DFAs for GMC/LMC and AFAs for BGMC/BLMC .

For BGMC and BLMC, we restricted ourselves to formulas without quantifier alternations
since quantification is a hard operation on AFAs. Again, the situation is similar to finite

11 http://www.averest.org

Springer

Form Method Syst Des

state bounded model checking that is usually based on the construction of quantifier-free
propositional formulas. Unfortunately, this restriction does not allow us to perform the loop
test in BLMC. For this reason, the following results were obtained without this test.

The results are shown in Tables 1 and 2. All experiments were performed on a Xeon
processor with 3 GHz an 1 GB RAM. A dash indicates that a benchmark could not be
checked within the limit of 1000 seconds. The first column gives the name of the benchmark
and the second one its size (all benchmarks are scalable by the size of the used data structures
or the number of processes). The third column shows the time required for the construction
of the transition relation. This is only of interest for unbounded model checking, since the
results for BGMC and BLMC include the times required for the construction of the formulas
to be checked.

The first two benchmarks implement standard algorithms for searching an element in
array [30]. The benchmark ParallelSearch is also a search algorithm that uses two parallel
processes [56]. The next three benchmarks implement different sorting algorithms and a
sorting network [30]. The benchmarks MinMax and FastMax are efficient algorithms for
computing the minimum (maximum) element in an array [30]. The latter is particularly
interesting, since it has constant runtime and consists of quadratically many processes w.r.t.
the size of the array. Partition rearranges the elements of an array according to a given
pivot element [30], and ParallelPrefixSum computes the sums of all prefixes in an array
using multiple processes [3]. Finally, the Bakery protocol implements a mutual exclusion
algorithm, and Barber rendezvous-like synchronization [3].

For most benchmarks we proved a liveness property that states termination, and we
disproved a safety property that specifies the functional correctness (the benchmarks were
slightly modified by inserting typical errors). The runtimes for GMC and LMC for both
types of specifications are shown in columns 4–7. The remaining columns give the results for
BGMC and BLMC, where k denotes the minimal bound required to decide the specification,
Size the size of the resulting formula measured in the number of function symbols, and Time
the time required to check the formula obtained for bound k. The minimal bounds were
obtained by starting with bound 1 and successively increasing the current bound until the
specifications can be decided. Finally, Total gives the runtime required for all bounds less
than or equal to k.

Let us first consider the results shown in Table 1. For the first benchmark (LinearSearch),
the liveness property is most efficiently checked using LMC. For the safety property, however,
BGMC and BLMC are much faster. In particular, both methods scale better as compared to
GMC and LMC. For BinarySearch, even the liveness property is most efficiently checked
using BGMC or BLMC. For ParallelSearch, GMC and LMC additionally suffer from signif-
icantly increasing runtimes required for the construction of the transition relation. Note that
for all three benchmarks the minimal bounds depend linearly or logarithmically on the size.

The situation is converse for the sorting algorithms. Neither BGMC nor BLMC were
able to compete with the unbounded variants. Even worse, their runtimes exceeded the limit
except for the smallest instances. This is primarily due to the fact that the minimal bounds
required to check a specification are rather large. Note that for these benchmarks the bounds
depend quadratically on the size. The next benchmark implements a sorting network with
a sub-linear number of comparator stages. As can be seen, BGMC and BLMC outperform
GMC and LMC.

Similar effects are observed for the benchmarks given in Table 2. For the sake of brevity,
we only like to mention that the best results are achieved for FastMax and Barber. This is
not surprising since the specifications could be decided for rather small bounds. To sum up,
bounded model checking of infinite state systems is clearly superior if a counterexample

Springer

Form Method Syst Des
Ta

bl
e

1
B

en
ch

m
ar

k
re

su
lts

Springer

Form Method Syst Des

Ta
bl

e
2

B
en

ch
m

ar
k

re
su

lts
(c

on
t.)

Springer

Form Method Syst Des

(witness) is found after a few number of unwinding steps. Moreover, we observe that the
differences between BGMC and BLMC are rather small in contrast to GMC and LMC.

6. Summary and conclusions

In BMC, a specification is checked by reducing it to a satisfiability problem of the base logic.
Traditionally, this is done by syntactically unwinding the specification a bounded number
of times. Recently, more sophisticated approaches have been proposed that are based on the
translation of temporal logic formulas to ω-automata. However, these approaches suffer from
the fact that even for restricted classes of properties, most translations yield a very general
type of ω-automata that cannot be used directly for BMC. To solve this problem, we presented
a technique for the translation of temporal logic formulas to the corresponding classes of
the automata hierarchy. In this way, many properties can be translated to ω-automata whose
acceptance conditions are simple safety and liveness properties.

Moreover, we presented two approaches to check the resulting specifications, namely
bounded global and bounded local model checking. The former is based on fixpoint approx-
imation and can be viewed as a variant of traditional BMC. In contrast, the latter is based on
the construction of proof trees using syntax directed decomposition rules. For the reduction
to a satisfiability problem, we employ three-valued logic in order to explicitly forward un-
certain information in the case a proof cannot be established due to insufficient bounds. As
for finite state systems, our experimental results show that both approaches are significantly
more efficient than their unbounded counterparts, provided that a witness (counterexample)
is found for small or medium-sized bounds.

Acknowledgments We thank the reviewers for their detailed and valuable comments that helped us to
substantially improve this paper.

References

1. Alt M, Ferdinand C, Martin F, Wilhelm R (1996) Cache behavior prediction by abstract interpretation.
In: Static analysis symposium (SAS). LNCS, vol 1145. Springer, Aachen, Germany, pp 52–66

2. Amla N, Kurshan R, McMillan K, Medel R (2003) Experimental analysis of different techniques for
bounded model checking. In: Garavel H, Hatcliff J (eds) Conference on tools and algorithms for the
construction and analysis of systems (TACAS). LNCS, vol 2619. Springer, Warsaw, Poland, pp 34–48

3. Andrews G (1991) Concurrent programming—Principles and practice. The Benjamin/Cummings Pub-
lishing Company, Redwood City, California

4. Berry G (1999) The constructive semantics of pure Esterel. http://www-sop.inria.fr/esterel.org
5. Berthet C, Coudert O, Madre J (1990) New ideas on symbolic manipulations of finite state machines. In:

International conference on computer design (ICCD). IEEE, pp 224–227
6. Biere A, Cimatti A, Clarke E, Fujita M, Zhu Y (1999) Symbolic model checking using SAT procedures

instead of BDDs. In: International design automation conference (DAC). ACM, New Orleans, Louisiana,
USA, pp 317–320

7. Biere A, Cimatti A, Clarke E, Strichman O, Zhu Y (2003) Bounded model checking. Adv Comput 58
8. Biere A, Cimatti A, Clarke E, Zhu Y (1999) Symbolic model checking without BDDs. In: Cleaveland R

(ed) Conference on tools and algorithms for the construction and analysis of systems (TACAS). LNCS,
vol 1579. Springer, Amsterdam, The Netherlands, pp 193–207

9. Boigelot B, Wolper P (2002) Representing arithmetic constraints with finite automata: An overview.
In: International conference on logic programming (ICPL). LNCS, vol 2401. Springer, Copenhagen,
Denmark, pp 1–19

10. Boudet A, Comon H (1996) Diophantine equations, Presburger arithmetic and finite automata. In: Kirchner
H (ed) Colloquium on trees in algebra and programming (CAAP). LNCS, vol 1059. Springer, Linköping,
Sweden, pp 30–43

Springer

Form Method Syst Des

11. Bradfield J (1992) Verifying temporal properties of systems. Progress in theoretical computer science.
Birkhäuser, Boston, Basel, Berlin

12. Bradfield J, Stirling C (1991) Local model checking for infinite state spaces. In: Larsen K, Skou A (eds)
Workshop on computer aided verification (CAV)

13. Bryant R (1986) Graph-based algorithms for Boolean function manipulation. IEEE Trans Comput C-
35(8):677–691

14. Bryant R (1991) On the complexity of VLSI implementations and graph representations of Boolean
functions with application to integer multiplication. IEEE Trans Comput 40(2):205–213

15. Brzozowski J, Seger C-J (1995) Asynchronous circuits. Springer
16. Bultan T, Gerber R, Pugh W (1997) Symbolic model checking of infinite state systems using Presburger

arithmetic. In: Grumberg O (ed) Conference on computer aided verification (CAV). LNCS, vol 1254.
Springer, Haifa, Israel, pp 400–411

17. Bultan T, Gerber R, Pugh W (1999) Model-checking concurrent systems with unbounded integer variables.
ACM Trans Progr Lang Syst (TOPLAS) 21(4):747–789

18. Burch J, Clarke E, McMillan K, Dill D, Hwang L (1990) Symbolic model checking: 1020 states and
beyond. In: Symposium on logic in computer science (LICS). IEEE Computer Society, Washington, DC,
pp 1–33

19. Burch J, Clarke E, McMillan K, Dill D, Hwang L (1992) Symbolic model checking: 1020 states and
beyond. Inf Comput 98(2):142–170

20. Burkart O, Caucal D, Moller F, Steffen B (2001) Verification of infinite structures. In: Handbook of
process algebra. Elsevier Science, pp 545–623

21. Büchi J (1960) On a decision method in restricted second order arithmetic. In: Nagel E (ed) International
Congress on logic, methodology and philosophy of science. Stanford University Press, Stanford, CA, pp
1–12

22. Cabodi G, Camurati P, Quer S (2002) Can BDDs compete with SAT solvers on bounded model checking?
In: International design automation conference (DAC). ACM, New Orleans, Louisiana, USA, pp 117–122

23. Clarke E, Biere A, Raimi R, Zhu Y (2001) Bounded model checking using satisfiability solving. Form
Meth Syst Desi 19(1):7–34

24. Clarke E, Emerson E (1981) Design and synthesis of synchronization skeletons using branching time
temporal logic. In: Kozen D (ed) Workshop on logics of programs. LNCS, vol 131. Springer, Yorktown
Heights, New York, pp 52–71

25. Clarke E, Grumberg O, Hamaguchi K (1994) Another look at LTL model checking. In: Dill D (ed)
Conference on computer aided verification (CAV). LNCS, vol 818. Springer, Stanford, California, USA,
pp 415–427

26. Clarke E, Grumberg O, Peled D (1999) Model checking. MIT, London, England
27. Clarke E, Kroening D, Ouaknine J, Strichman O (2004) Completeness and complexity of bounded model

checking. In: Steffen B, Levi G (eds) Verification, model checking, and abstract interpretation (VMCAI).
LNCS, vol 2937. Springer, Venice, Italy, pp 85–96

28. Clarke E, Wing J (1996) Formal methods: state of the art and future directions. ACM Comput Surv,
28(4):626–643

29. Cleaveland R (1989) Tableaux-based model checking in the propositional µ-calculus. Acta Informatica
27(8):725–747

30. Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction to algorithms. The MIT Press
31. de Moura L, Rueß H, Sorea M (2002) Lazy theorem proving for bounded model checking over infinite do-

mains. In: Conference on automated deduction (CADE). LNCS, vol 2392. Springer Verlag, Copenhagen,
Denmark, pp 438–455

32. Emerson E (1997) Model checking and the µ-calculus. In: Immerman N, Kolaitis P (eds) Symposium on
descriptive complexity and finite models. American Mathematical Society (AMS), pp 185–214

33. Enderton H (1972) A mathematical introduction to logic. Academic, New York, NY
34. Esparza J (2003) An automata-theoretic approach to software verification. In: Developments in language

theory. LNCS, vol 2710. Springer, pp 21
35. Ganesh V, Berezin S, Dill D (2002) Deciding Presburger arithmetic by model checking and comparisons

with other methods. In: Aagaard M, O’Leary J (eds) Conference on formal methods in computer aided
design (FMCAD). LNCS, vol 2517. Springer, Portland, USA, pp 171–186

36. Gerth R, Peled D, Vardi M, Wolper P (1995) Simple on-the-fly automatic verification of linear temporal
logic. In: Symposium on protocol specification, testing, and verification (PSTV). Warsaw, North Holland

37. Goldberg E, Novikov Y (2002) BerkMin: a fast and robust SAT-solver. In: Design, automation and test in
Europe (DATE). IEEE Computer Society, Paris, France, pp 143–149

38. Grädel E, Kolaitis P, Vardi M (1997) On the decision problem for two-variable first-order logic. The
Bulletin of Symbolic Logic 3(1):53–69

Springer

Form Method Syst Des

39. Grädel E, Rosen E (1999) Preservation theorems for two-variable logic. Mathe Log Quart 45:315–325
40. Kesten Y, Pnueli A, Raviv L (1998) Algorithmic verification of linear temporal logic specifications. In:

Colloquium on automata, languages and programming (ICALP). LNCS, vol 1443. Springer, Aalborg,
Denmark, pp 1–16

41. Kleene S (1952) Introduction to metamathematics. North Holland
42. Krishnan S, Puri A, Brayton R (1994) Deterministic ω-automata vis-a-vis deterministic Büchi automata.

In: Symposium on algorithms and computation (ISAAC). LNCS, vol 834. Springer, Beijing, China, pp
378–386

43. Kukula J, Shiple T, Aziz A (1998) Techniques for implicit state enumeration of EFSMs. In: Gopalakrishnan
G, Windley P (eds) Conference on formal methods in computer aided design (FMCAD). LNCS, vol 1522.
Springer, Palo Alto, California, USA, pp 469–482

44. Landweber L (1969) Decision problems for ω-automata. Mathe Syst Theory 3(4):376–384
45. Lichtenstein O, Pnueli A (1985) Checking that finite state concurrent programs satisfy their linear speci-

fication. In: Symposium on principles of programming languages (POPL). ACM, New York, pp 97–107
46. Malik S (1993) Analysis of cyclic combinational circuits. In: Conference on computer aided design

(ICCAD). IEEE Computer Society, Santa Clara, California, pp 618–625
47. Manna Z, Pnueli A (1988) The anchored version of the temporal framework. In: Linear time, branching

time and partial order in logics and models for concurrency. LNCS, vol 354. Springer, Noordwigherhout,
Netherland, pp 428–437

48. Manna Z, Pnueli A (1990) A hierarchy of temporal properties. In: Symposium on principles of distributed
computing (PODC), pp 377–408

49. Marques Silva J, Sakallah K (1999) Grasp: a search algorithm for propositional satisfiability. IEEE Trans
Comput 48(5):506–521

50. McNaughton R, Papert S (1971) Counter-free automata. MIT
51. Meinel C, Theobald T (1998) Algorithms and data structures in VLSI design: OBDD—foundations and

applications. Springer
52. Mortimer M (1975) On languages with two variables. Zeitschrift für Mathematische Logik und Grundlagen

der Mathematik 21:135–140
53. Moskewicz M, Madigan C, Zhao Y, Zhang L, Malik S (2001) Chaff: Engineering an efficient SAT

solver. In: International design automation conference (DAC). ACM, Las Vegas, Nevada, USA, pp 530–
535

54. Muller D, Saoudi A, Schupp P (1988) Weak alternating automata give a simple explanation of why most
temporal and dynamic logics are decidable in exponential time. In: Symposium on logic in computer
science (LICS), pp 422–427

55. Oppen D (1978) A 222pn

upper bound on the complexity of Presburger arithmetic. Comput Syst Sci
16:323–332

56. Owicki S, Gries D (1976) An axiomatic proof technique for parallel programs I. Acta Informatica
6(4):319–340

57. Pnueli A (1977) The temporal logic of programs. In: Symposium on foundations of computer science
(FOCS), vol 18. IEEE Computer Society, New York, pp 46–57

58. Presburger M (1930) Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervortritt. In: Leja F (ed) Sprawozdanie z I Kongresu
Matematyków Krajów Słowiańskich, Warszawa 1929 (Comptes–rendus du I Congrès des Mathématiciens
des Pays Slaves, Varsovie 1929). Warszawa, pp 92–101 (supplement on p 395)

59. Quielle J, Sifakis J (1981) Specification and verification of concurrent systems in CESAR. In: Symposium
on programming

60. Reps T, Sagiv M, Wilhelm R (2004) Static program analysis via 3-valued logic. In: Alur R, Peled D (eds)
Conference on computer aided verification (CAV). LNCS, vol 3114. Springer, Boston, MA, USA, pp
15–30

61. Schneider K (2000) A verified hardware synthesis for Esterel. In: Rammig F (ed) Workshop on distributed
and parallel embedded systems (DIPES). Kluwer, Schloß Ehringerfeld, Germany, pp 205–214

62. Schneider K (2001) Embedding imperative synchronous languages in interactive theorem provers. In:
Conference on application of concurrency to system design (ACSD). IEEE Computer Society, Newcastle
upon Tyne, UK, pp 143–156

63. Schneider K (2001) Improving automata generation for linear temporal logic by considering the automata
hierarchy. In: International conference on logic for programming, artificial intelligence, and reasoning
(LPAR). LNAI, vol 2250. Springer, Havanna, Cuba, pp 39–54

64. Schneider K (2002) Proving the equivalence of microstep and macrostep semantics. In: Carreño V, Muñoz
C, Tahar S (eds) Higher order logic theorem proving and its applications (TPHOL). LNCS, vol 2410.
Springer, Hampton, VA, USA, pp 314–331

Springer

Form Method Syst Des

65. Schneider K (2003) Verification of reactive systems—formal methods and algorithms. Texts in theoretical
computer science (EATCS Series), Springer

66. Schneider K, Brandt J, Schuele T, Tuerk T (2005) Maximal causality analysis. In: Conference on appli-
cation of concurrency to system design (ACSD). IEEE Computer Society, St. Malo, France, pp 106–115

67. Schneider K, Kumar R, Kropf T (1993) Alternative proof procedures for finite-state machines in higher-
order logic. In: Joyce J, Seger C-J (eds) Higher order logic theorem proving and its applications (TPHOL).
LNCS, vol 780. Springer, Vancouver, Canada, pp 213–226

68. Schuele T, Schneider K (2004) Bounded model checking of infinite state systems: exploiting the automata
hierarchy. In: Formal methods and models for codesign (MEMOCODE). IEEE, San Diego, CA, pp
17–26

69. Schuele T, Schneider K (2004) Global vs. local model checking: a comparison of verification techniques
for infinite state systems. In: International conference on software engineering and formal methods
(SEFM). IEEE, Beijing, China, pp 67–76

70. Sheeran M, Singh S, Stålmarck G (2000) Checking safety properties using induction and a SAT-solver.
In: Hunt W, Johnson S (eds) Conference on formal methods in computer aided design (FMCAD). LNCS,
vol 1954. Springer, Austin, Texas, USA, pp 108–125

71. Shiple T (1996) Formal analysis of synchronous circuits. PhD thesis, University of California at Berkeley
72. Shiple T, Kukula J, Ranjan R (1998) A comparison of Presburger engines for EFSM reachability. In:

Hu A, Vardi M (eds) Conference on computer aided verification (CAV). LNCS, vol 1427. Springer,
Vancouver, BC, Canada, pp 280–292

73. Somenzi F (2001) Efficient manipulation of decision diagrams. Softw Tools Technol Trans (STTT)
3(2):171–181

74. Stirling C, Walker D (1989) Local model checking in the modal µ-calculus. In: Diaz J, Orejas F (eds)
Theory and practice of software development (TAPSOFT). LNCS, vol 351. Springer, pp 369–383

75. Stirling C, Walker D (1991) Local model checking in the modal µ-calculus. Theor Comput Sci 89(1):161–
177

76. Tarski A (1955) A lattice-theoretical fixpoint theorem and its applications. Pacific J Math 5:285–309
77. Thomas W (1990) Automata on infinite objects, vol B, chapter automata on infinite objects, Elsevier, pp

133–191
78. Thomas W (2001) A short introduction to infinite automata. In: Conference on developments in language

theory. LNCS, vol 2295. Springer, pp 130–144
79. Tuerk T, Schneider K (2005) Relationship between alternating omega-automata and symbolically repre-

sented nondeterministic omega-automata. Internal Report 340, Department of Computer Science, Uni-
versity of Kaiserslautern, http://kluedo.ub.uni-kl.de

80. Vardi M (1994) Nontraditional applications of automata theory. In: Symposium on theoretical aspects of
computer science (STACS). LNCS, vol 789. Springer, Sendai, Japan, pp 575–597

81. Vardi M (1996) Why is modal logic so robustly decidable? In: Descriptive complexity and finite models,
no 31 in DIMACS workshop. American Mathematical Society (AMS), pp 149–184

82. Wagner K (1979) On ω-regular sets. Inform Contr 43:123–177
83. Wolper P (1983) Temporal logic can be more expressive. Inform Contr 56(1–2):72–99
84. Wolper P (2001) Constructing automata from temporal logic formulas: A tutorial. In: Summer school on

formal methods in performance analysis. LNCS, vol 2090. Springer, pp 261–277
85. Wolper P, Boigelot B (2000) On the construction of automata from linear arithmetic constraints. In: Graf

S, Schwartzbach M (eds) Conference on tools and algorithms for the construction and analysis of systems
(TACAS). LNCS, vol 1785. Springer, Berlin, Germany, pp 1–19

Springer

View publication statsView publication stats

https://www.researchgate.net/publication/220673766

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

