
Software Verification

2024-2025

TP3: Bounded Model Checking

Vincent Penelle

Content

• Implementation of Depth-First Search Bounded Model-Checking.

• Implementation of Global Algorithm for Bounded Model-Checking.

The goal of this lab is to make you program two modules: DepthFirstBMC.ml and
GlobalBMC.ml of our tool, Simple Program Analyser. These modules will each implement
an algorithm for Bounded Model-Checking exploring the execution tree, the first in depth,
the second level by level thanks to the unfolding of the step formula.

A control-flow automaton is a tuple (Q, qi, qbad,∆) where Q is a finite set of states,
qi ∈ Q is the initial state, qbad is the final state (or ”bad”), and ∆ ⊆ Q×Op×Q is the
set of transitions, where Op is the set of possible operation of the automaton. This
set is defined hereafter. Said otherwise, it is an automaton labelled with operations
(over variables)

We consider a set of variables X. An expression is an arithmetical expression
over Z containing or not variables from X:

exp ::= n ∈ Z|x ∈ X|exp+ exp|exp− exp|exp× exp|exp/exp

A guard is a comparison between two expressions:

guard ::= exp = exp|exp < exp|exp ≤ exp|exp > exp|exp ≥ exp

An operation is either skip, or a guard, or an affectation of the form x := exp,
for x ∈ X and exp an arithmetical expression:

op ::= skip|guard|x := exp

(cf TP précédent pour plus de détails sur les opérations et leur sémantique)

Reminder:

1

A configuration of a control-flow automaton A is a pair (q, σ), where q is a state,
and σ a function from X to Z called valuation.

The semantic of a operation op is a relation containing valuations (σ1, σ2) such
that σ2 can be obtained by applying op to σ1. Formally, we have JskipK = id, JguardK
is the set containing all (σ, σ) such that σ satisfies the guard, and Jx := expK =
{(σ, σ[x := exp])}. Cf last lab session for more details on the implementation of the
semantics in an FO formula.

The semantic of a transition t = (q, op, q′) is the binary relation
t−→ on configura-

tions defined by c
t−→ c′ if c = (q, σ), c′ = (q′, σ′) and (σ, σ′) ∈ JopK.

The step relation −→A is the union of semantics of all transitions of A :
⋃

t∈∆A

t−→.
Am execution is a sequence c0, t1, c1, . . . , tn, cn alternating configurations ci and

transitions ti such that ci−1
ti−→ ci for all 0 < i ≤ n. Such a execution is also written

c0
t1−→ c1 · · ·

tn−→ cn for improved readability, and n is its length.
A path q0, op1, q1, . . . , opn, qn is said to be executable if there exist valuations

ρ0, . . . , ρn ∈ ZX such that (q0, ρ0)
t1−→ (q1, ρ1) · · ·

tn−→ (qn, ρn) is an execution, with
ti = (qi−1, opi, qi).

Technical Point:

The bounded model-checking problem asks, given a control-flow automaton A and
a bound k ∈ N, whether there exist two configurations (q, ρ) and (q′, ρ′) such that:

• q = qi,

• q′ = qbad, and

• (q, ρ)→A · →A · · · →A︸ ︷︷ ︸
i fois

(q′, ρ′) (q, ρ) →A · →A · · · →A (q′, ρ′) i times for i ≤ k.

The problem can be equivalently expressed as: Does there exist an executable path
of lenght at most k from qi to qbad.

The algorithm of bounded model-checking can simply be summarised as follows:
enumerate every paths of lenght at most k, and as soon as we find an executable one
from initial to target state, return that path.

Of course, there exist several possible exploration order of these paths, and some
simple but efficient optimisations (namely, it is useless to consider a path whose one
of the prefixes is not executable). We can also ask to the program to determine if it
did an exhaustive exploration or not (whether longer executions exist).

For now, we will implement a depth-first exploration order: given an (arbitrary)
order on transitions, look first all paths starting by the first, then the second, etc. As
soon as either the bound is reached or a non-executable path is found, we backtrack
one level and continue to explore from there. As soon that a faulty execution is
reached, we stop exploration and return it.

More precisely, the (recursive) algorithm receives as argument a CFA A, a path
τ , a current state q, the current depth ℓ, and the bound k, and can be summarised
as follows:

• if ℓ > k, return ”non-exhaustive”.

Technical Point:

2

• if τ is not executable, return ”exhaustive”.

• if τ is executable and q = qbad, we found a faulty execution : return τ .

• if τ is executable and q ̸= qbad, we continue exploration from the current node
of the tree: for each transition of the form (q, op, q′), we call the algorithm on
(A, τ :: ((q, op, q′), q′), q′, ℓ + 1, k). If all calls return ”exhaustive”, we return
”exhaustive”. If all calls return either ”exhaustive” or ”non-exhaustive”, we
return ”non-exhaustive”. As soon as we receive a path τ ′ on one of the calls
we return this τ ′ and do not explore other executions.

The algorithm is called on (A, (qi), qi, 0, k) to perform bounded model-checking
with bound k on the automaton A.

Exercise 1: Depth-first search bounded model-checking Download the sources
of the lab session. In DepthFirstBMC.ml, you have to implement dfs which performs the
depth-first exploration of the tree described above. The commentary above the prototype
contains all elements needed to help you implementing it, especially by adapting the
arguments to facilitate the computation (e.g. by retaining a formula to describe the path
up to the current state, instead of the path itself). There will be some subtlety left to you
to return correctly the faulty execution.

You can also test your program over the given examples and compare with the given
working executable bmc.solution.d.byte.

The global algorithm consist in determining, length by length up to the bound,
whether there exists a faulty run of that length. It is equivalent to ask if, for a length
k, there exist states q1, · · · , qk−1 and valuations X0, · · · , Xk, such that (qin, X0 −→

A
(q1, X1) −→

A
· · · −→

A
(qk−1, Xk−1) −→

A
(qbad, Xk).

To this end, we start by computing the formula ϕstep of the automaton, relating
two configuration if and only if the automaton allows to go from one to the other.
With it, for each length i up to the bound, we check whether the following formula
is satisfiable:

ψi(q0, X0, · · · , qi, Xi)
def
= q0 = qin ∧

i∧
j=1

φstep(qj−1, Xj−1, qj , Xj)∧qi = qbad

If so, we have the existence of a faulty execution (and we must reconstruct it
from the model of the formula, knowing that some information are missing in the
formula given here). If not, there is no faulty execution of length i. If we treated
length one by one, we can thus follow through to the next.

Note that it is useless to test ψi if no execution of length i exist. To determine
it, it is sufficient to ask the solver to satisfy ψi without ensure that the last state is
qbad (i.e., without the red part). If so, we have to continue to explore, but if it is
unsatisfiable, there is no execution of length i, and we can certify the program to be
correct (exhaustive exploration).

Technical Point:

3

Exercise 2: Global bounded model-checking
In GlobalBMC.ml, implement the function asked for. Indications are given there. Do

not hesitate to implement auxiliary functions. In Z3Helper.mli, you have functions to
help you manipulate states and transitions of the automaton in the formula.

Start with implementing a version without caring about sending back the counter-
example, then, when it works as indented, modify it to send the counter-example.

4

