
Software Verification

2024-2025

TP2: Semantics

Vincent Penelle

Content

• Implementation of the semantics of a control-flow automaton.

The goal of this lab session is for you to implement the module CommandSemantics.ml
of our tool Simple Program Analyser. More precisely, you simply have to provide the
traduction of each command in a formula describing its effect on a configuration of the
control-flow automaton.

A control-flow automaton is a tuple (Q, qi, qbad,∆) where Q is a finite set of states,
qi ∈ Q is the initial state, qbad is the final state (or ”bad”), and ∆ ⊆ Q×Op×Q is the
set of transitions, where Op is the set of possible operation of the automaton. This
set is defined hereafter. Said otherwise, it is an automaton labelled with operations
(over variables)

We consider a set of variables X. An expression is an arithmetical expression
over Z containing or not variables from X:

exp ::= n ∈ Z|x ∈ X|exp+ exp|exp− exp|exp× exp|exp/exp

A guard is a comparison between two expressions:

guard ::= exp = exp|exp < exp|exp ≤ exp|exp > exp|exp ≥ exp

An operation is either skip, or a guard, or an affectation of the form x := exp,
for x ∈ X and exp an arithmetical expression:

op ::= skip|guard|x := exp

Rappel:

A configuration of a control-flow automaton A is a pair (q, σ), where q is a state,
and σ a function from X to Z called valuation.

The semantic of a operation op is a relation containing valuations (σ1, σ2) such
that σ2 can be obtained by applying op to σ1. Formally, we have JskipK = id, JguardK
is the set containing all (σ, σ) such that σ satisfies the guard, and Jx := expK =
{(σ, σ[x := exp])}.

Point technique:

1

More precisely, this semantics will be described as a first-order formula over Z,
which uses two copies of X, Xb and Xa representing respectively valuations before
and after the operation.

The semantics of operations are the following:

JskipK =
∧
x∈X

xb == xa

JguardK = guardb ∧ sideb(exp1) ∧ sideb(exp2) ∧
∧
x∈X

xb == xa

Jx := expK = xa == expb ∧ sideb(exp) ∧
∧

y∈X,x ̸=y

yb == ya

where expb, sideb and guardb denote these expressions on the copy Xb of X,
exp1 and exp2 are the two members of guard and side(exp) is a formula ensuring
that the expression is well-defined, i.e., no division by 0 occurs. This is necessary
as Z3 considers that division by 0 is defined, but with no value specified (thus, if
you don’t put this restriction, the value of a division by 0 will exists, but can be
anything).

Exercice 1: CommandSemantics.ml
Download the archive containing the code of this lab session. Complete the module

CommandSemantics.ml, with the help of the following indications, and of those in Com-
mandSemantics.mli which indicate the syntax used in the project and precise the role of
functions.

Important point: you have to return a result of the form (f, list), where list is the list
of variables modified by the operation (i.e., empty for skip and guard and equal to [x] for
x := exp), and f is the formula described earlier, without the right part (in red) indicating
equalities between unmodified variables (this allows to abstract this part and to give you a
more efficient variant of this part of the formula when we’ll treat the executions).

1. Start with formula of skip.

2. Define recursively side (on paper). This formula must be true if and only if the
values of the variables ensure the expression does not contain any division by 0.

3. Implement expr to z3 expr. This function returns a formula representing the expres-
sion received as an argument, and a list of formula representing the different part of
side (this allows to perform a unique AND at the end).

4. End by implementing formula of guard, fwd formula of assign and bwd formula of assign.
Note that in those formula, we only use symmetrical operations (that should help
you deducing the backward formula from the forward one).

At any moment in the lab, you can launch maketest to test your code (it will tell you if
your formula correspond to what is expected, and will display potential differences – note
that some of them are not so problematic if it is simply about the order). Think to replace
failures with simple formula for the program to execute (e.g., you can put everywhere the
same result as formula of skip as a placeholder).

2

