
Software Verification

2023-2024

Quick Tutorial on OCaml

Vincent Penelle

Topic

• OCaml

OCaml is the language used in this course. The goal of this document is rather to
be a cheat sheet than anything else: we’ll discuss about it together. Don’t waste too
much time on it. If you’re not familiar with OCaml, you might find tutorial there1, or,
for more precise questions, go to the documentation2. We summarise here some useful
notions alongside some short exercises on them.

Download the code3 and open the file exo1.ml. It contains what is discussed here,
alongside the prototypes of small exercises.

Before starting, you have to type the following commands in a terminal from which
you’ll launch vs-code (if you use that editor, otherwise the first two commands are to type
where you’ll compile):

• export OPAMROOT=/opt/local/opam

• eval $(opam env)

• code

It is advised to use the extension OCaml platform under vs-code if you use that editor.

Exercise 1: Use and Compilation: In this course, we implement a software compiled
through a Makefile. However, if you want to test some functions/program separately, you
have two ways of doing it. The quickest (but less durable) is to launch the toplevel. You
can do it with the command ocaml, but it is not very practical. A much better toplevel
exists: utop (it is installed in CREMI). It is also possible to open a .ml file in it.

The other option is to create a file MyFile.ml and compile it. The compiler, ocaml
has a similar usage as gcc. For simple project, it is sufficient to use it, but with bigger
project with multiple libraries and dependencies, it is not the easy to use it properly.

Fortunately, there are automatic builders for OCaml. The oldest (and now quite
deprecated) is ocamluild. A more recent, that we’ll use here, is named dune. We have
hidden the process under a Makefile, you’ll thus be able to compile the exercise with make

exo1.native (native version) or make exo1.byte (bytecode version). You may directly

1http://OCaml.org/learn
2http://caml.inria.fr/pub/docs/manual-OCaml/
3TP-SMT.tar.gz

1

http://OCaml.org/learn
http://caml.inria.fr/pub/docs/manual-OCaml/
TP-SMT.tar.gz

use dune with the command dune build, in which case compiled files will be placed in
build/default.

Dune allows as well to load libraries of a project in utop easily. For that, you simply
type #use output "dune top";; in a utop session, and you’ll have access to the libraries
of the project in which your session is. For the current project, dune is configured so it is
the case of the modules treating Keen (so not for this tutorial). That might allow you to
test quickly features you are developing in their context without having to write a main.

Dune is a complete build system, very customizable, and thus not so easy to learn.
The goal of this tutorial is not to explain it to you. We direct you to its documentation if
you wish to go further. In this course, we’ll provide you with projects already configured
with dune so that its use is transparent for you.

Exercise 2: Functional Language: We will use the functional paradigm of the
language (technically, it is possible to use imperative, but it is less elegant in OCaml, and
essentially less adapted to our project). A file is executed from top to bottom (like in C,
it can contain several files: if a function from another file is called, dune will compile it –
that is partly why it is complicated with the compiler).

The file is a sequence of requests which modify the memory of the program. A request
is of the form let name = expr, where name is a string and expr is an expression of the
language. For example, let toto = 4+2 will put 6 at the address toto of the memory
(not very well said, but it is broadly that). It is also possible to evaluate an expression
without putting its result in the memory with

All elements manipulated by the language are functions (a constant is simply a function
without argument). Functions are thus defined with the request let (by giving name to
the arguments). For exemple, let f x = x + 1 defines the function f which take an int x
and returns x+1. It is not necessary to precise types (the compiler infers them and signals
inconsistencies). The request let ... in defines a local function. That is generally
useful in other definitions (and serves as expression terminator). For example, let f x =

let succ x = x+1 in if(x < 0) then 0 else succ x.
There are also expression of type unit which are actions that are executed when

defined, e.g. display with Printf.printf. It is not necessary to name unit expression,
and thus we often simply write let = Printf.printf "Toto". It is possible to use them
in other expressions (with let ... in) in which case the action will be executed every
time the expression is evaluated. It is alternatively possible to use ; to chain expressions:
A ; B is equivalent to let = A in B.

In the toplevel, it is necessary to use ;; to evaluate a bloc of code. For compiled files,
it is useless (though tolerated).

As said before, all objects manipulated by the program are functions. It is thus obvi-
ously possible to have functions as argument of other functions. For example, let g f x

= (f x) + 1 defines g which has a function f : ’a -> int and a ’a x as argument and
returns the result of f x plus 1. Here, ’a stands for any type: the language supports poly-
morphic function, and this function can thus be used on any function whose type returns
an int and has a single argument. For example g int of string "25" est l’int 26.

Other example let disjunct f g b = if(b) then f else g is a well defined func-
tion (f and g must have the same type, and can have arguments). Finally, we can use
the notation fun to define anonymous functions (among other uses) as follows: let res

= (disjunct (fun x -> if(x < 0) then 0 else x+1) (fun x -> x-1) true) 3 is a
well defined int (3 here). It is possible to use the syntax let f = fun x -> x+1.

Important syntax point: in OCaml, structural equality is denoted = and not == as in
most languages. == exists, but is the physical equality. Similarly, structural inequality is

2

<> and != is physical inequality. As a rule of thumb, you want structural inequality. To
convince yourself, observe let a = 1.1 in a = 1.1 is true while let a = 1.1 in a ==

1.1 is false.
Other point: be wary of parentheses: there is left associativity, therefore the term f

x+1 will be interpreted as (f x) + 1. Iit is preferable to put parentheses to desambiguise
expression. Note that passing arguments to a function is made without parentheses (what
we would write f(1,2) in C is written f 1 2).

Exercice: Define a function compo which take two (arbitrary) functions as arguments
and returns their composition (be careful here, you cannot omit the argument of the
composition).

Exercise 3: Recursion and Tail Recursion: A versatile and important function
in functional paradigm is recursion. When defining a recursive function, it is necessary to
tell it with the compiler with the keyword rec as follows: let rec toto x = if (x < 0)

then 0 else 1 + (toto (x-1)). Without it, the compiler will not compile it, except
if toto is already defined, as redefinition is allowed (that is actually why we need this
keyword).

However, the downside of recursion is that it uses the call stack, and that it is far
from bottomless. For example, if you call toto 10000000, your program will raise a Stack
Overflow exception, while with a loop there would be no issue. Fortunately, OCaml is
optimised to avoid using the call stack in case of tail recursion, i.e., when a recursive
function whose recursive call is the last instruction. All functions ar not writable as tail-
recursive, but a lot of them are (tail recursive programs are the same as LOOP programs).
For example, toto may be rewritten as follows: let toto x = let rec aux x acc =

if(x < 0) then acc else aux (x+1) (acc-1) in aux x Note that it is aux which is
now recursive, not toto. This technique of using an accumulator to convert the function
to a tail-recursive one is usually a good way to do it.

Exercise: Define x → 2x as a tail-recursive function.
Exercice (harder): Define Fibonacci function as a tail-recursive function.

Exercise 4: Types and Pattern Matching In OCaml, base types are the same as
in C (int, float, bool, char, etc). There exist as well complex types usable without defining
them, e.g. tuples ((2,′ c′) is of type int*char). It is possible to use them directly (and the
compiler will infer them without problem).

It is possible to name types with the request type. For example, type toto = int*char.
But the most use of that request is to define ≪collection types≫, which will be defined
with constructors. They can be defined as follow: type toto = None | One of int |

Two of int*char defines a type that can contain either nothing, an int or a pair int*char.
It is also possible to define recursive types (e.g. type tree = Leaf of int | Node of

tree*tree). Note that constructors must start with an uppercase and types with a low-
ercase.

But these types would be of little use without one of the most powerful feature of
OCaml, the pattern matching: it allows to unpack the content of a type and return dif-
ferent values in function of the case we are (as long as all those values have the same
type of course). For example, the sum of all elements of a tree defined above can
be defined as follows: let rec sum of tree t = match t with Leaf a -> a | Node

(t1,t2) -> (sum of tree t1) + (sum of tree t2).
It is possible to have more complex motives in a pattern matching, not naming certain

elements if they are irrelevant (with), and do a case ≪otherwise≫ (also with). For exam-
ple: let rec silly t = match t with Node(Leaf ,) -> 1 | | Node(,t1) -> 1 +

3

silly t1 | -> failwith "arg". We’ll note that here, my default case is different: it
returns an exception that will terminate the program if it is not caught (that can be useful
in cases that are not suppose to occur and where instead of putting a value, we simply
want the program to fail). The type inference will be ok with this. It is always useful to
do so: pattern matching must be exhaustive.

Finally, we can mention the keyword when that allows to restrict a pattern to cer-
tain values: let toto a = match a with Some a when a < 0 -> 0 | Some a -> a |

None -> 0. Note that in the two above cases, there is no ambiguity: the pattern matching
is read from top to bottom and stop as soon as it matches a pattern. The order is thus
important. Moreover, constructors None and Some are the constructor of the type option
which is a generic type allowing to a function to sometimes return no value (None). That
allows to avoid exceptions in the normal flow of a program (and it is very useful).

Exercise: Define a type representing a direction (4 cardinal points) and a speed (and
a value saying to stay put). Define as well a function applying an element of that type to
a position, but which does nothing if the speed is negative.

Exercise 5: Lists: We will use lists a lot in our project. You can look the manual page
https://ocaml.org/api/List.html for more information. We’ll simply cover the basics
here.

A list is a collection of elements linearly ordered. We have access to the head of the
list in constant time. Adding an element on the head of the list is constant time, but in
queue it is linear. The empty list is named []. a::l represents the list l preceded with a.
For example 1::2::[4;5] = [1;2;4;5]. Functions hd and tl are defined as follows: hd
(a::l) = a and tl (a::l) = l. It is of course possible to use pattern matching on lists.

However, the big use of the List module lies in its functions for list operations. We’ll
present the three more versatile and useful to us:

• map is a function that applies a function to all the elements of a list. Its type is (’a ->

’b) -> ’a list -> ’b list. For example List.map (fun x -> (int of string

a) + 1) ["12";"0";"-2"] is the list [13;0;-1].

• iter is a function that recursively applies left to right to all elements of a list a
function of return type unit. Its type is (’a -> unit) -> ’a list -> unit. For
example, List.iter (Printf.printf "%d ++ ") [1;2;3] displays ”1 ++ 2 ++ 3
++ ”.

• fold left is very similar to the previous except it deals with function with a re-
turn value they can take as an argument. Its type is (’a -> ’b -> ’a) -> ’a ->

’b list -> ’a list. List.fold left f a [b1;b2;b3] is the same as f (f (f a

b1) b2) b3. a is the initial value, and the return value might be seen as an accu-
mulator. It is a very practical manner to iterate on a list without using a loop. For
example List.fold left (fun x y -> x + y) 1 [2;3;4] returns 10.

Note that the three previous function are tail-recursive (and so don’t generate stack
overflow). There is also List.fold right that applies the function on the reverse orde,
but it is not tail-recursive, so to avoid if possible.

Exercise : In the previous exercise, apply the displacement function along a direction
and a speed to a list of coordinates (with map). Determine then the point further from
(0,0) (with fold left).

Exercise 6: Modules You have probably noticed in the previous paragraph that I’ve
prefixed map, iter, etc, with List. That is because these function are declared in the

4

https://ocaml.org/api/List.html

module List. Modules are in first approximation (very broad and false) the equivalent of
files. The only convention of naming is that they must start with an uppercase. To call a
function f of module Toto, there are two options: either use open Toto earlier in the file
and thus it is possible to use names from Toto as if defined in the current file; or simply
call them Toto.f. The second method is usually preferred, except if a module is used a lot
(and even not always) as it allows to avoid conflicts in the name, or to have redefinition
problem. It is indeed possible to give the same name to functions in different modules. If
you do open List, you’ll have access to map, but if later you do let map = 3, then map
will design 3, and not the function from List (and vice-versa if you do the converse).

Modules are in reality way richer than that: nothing prevents to have modules inside
modules (that is quite widespread). And it even exists ≪functors≫ that create modules
parametrised with other modules (one of the most useful being probably Map4 which is
broadly a hash table and allows to represent a lot of stuff: as long as you have an order
on the tree, you can index the table by whatever you want). We won’t need all of this
in the course (in what we give you, we use them, but it should be transparent for you).
However if you want to use OCaml for other programs, the most versatile modules are in
my opinion List, Map and String.

4https://ocaml.org/api/Map.html

5

https://ocaml.org/api/Map.html

