
Software Verification - Part 1

M2 informatique - parcours VL

Université de Bordeaux

Vincent Penelle

2024-2025

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Ideal Goal and limits . 4

1.3 Compromises . 5

1.3.1 Incomplete algorithms 5

1.3.2 Restricting the semantic 5

1.3.3 Restricting the specification 6

1.3.4 Summary and complexity considerations 6

1.4 Overview of this course . 7

1.4.1 Summary . 7

1.4.2 Summary of the first part 8

2 Tool for deciding: SMT-solvers 9

2.1 SAT . 9

2.1.1 Definition . 9

2.1.2 SAT and verification 10

2.1.3 DPLL algorithm . 10

2.2 SAT Modulo Theory (SMT) 12

2.2.1 Definition . 12

2.2.2 SMT-solvers . 13

2.2.3 SMT and Verification 15

2.3 Implementation . 16

3 A minimal Programming Language 17

3.1 A restricted language . 17

3.2 Control-Flow Automata . 19

3.2.1 Representing a program as a CFA 19

3.2.2 Semantic of CFA . 20

3.3 Encoding the semantics in FO 23

i

CONTENTS 1

3.3.1 Backward Semantics 25
3.4 Implementation . 25

4 Bounded Model-Checking 27
4.1 Principle . 27

4.1.1 The problem and its encoding in FO 27
4.1.2 Backward VS Forward 28
4.1.3 Example: classical lock process 29

4.2 Depth First Search Algorithm 31
4.2.1 The algorithm . 31
4.2.2 Implementation . 32

4.3 Global Algorithm . 32
4.3.1 Implementation . 32

2 CONTENTS

Chapter 1

Introduction - A quick
overview of verification and
the course

1.1 Motivation

Bugs are undesirable in a program, especially in critical systems whose fail-
ure would be costly (in lives, resources, or something else). In such a case,
it is desirable to spot bugs before the program is executed in real context.

A widespread approach is to test a program on input which are deemed
representative of the behaviour of the program. This approach is called val-
idation. It relies on devising enough scenarios and observe that the program
behaves as expected on these scenarios. If not, a bug is spotted and can
be corrected. However, such an approach can only show the presence of
bugs, not their absence, as the method relies on the fact that the scenarios
are representative of the behaviour of the program, and thus depends on
the (usually human) input of these scenarios. While sufficient for a good
confidence in most programs, for critical software, such an approach might
not be enough, and a lot of well-known bugs escaped such detection (e.g.,
Ariane 5 (litteral) crash, or more recently, the SSL bug hartbleed).

A symmetrical approach, called verification has been concurrently de-
velopped, whose goal is to prove the absence of bugs. The technique we will
use in this course is called static analysis, which relies on analysing the code
before compiling it. Il also have the goal of being sound, meaning never
deeming a program correct when it is not. That means that if our tool says
a program is correct, it is surely correct, but it might say a correct program

3

4 CHAPTER 1. INTRODUCTION

Software Verifier

x = 1;

if (y <= 10)

y = 10;

else {

while (x < y) {

x = 2 * x;

y = y - 1;

}

}

x = y + 1;

Program

Requirements

Results

Figure 1.1: An ideal (and impossible) software verifier

is incorrect.

1.2 Ideal Goal and limits

The problem we want to answer is that a given program, given by its code,
satisfies a specification, given in a logic (which we’ll tell more about later).
This problem is called the model-checking problem. Formally, it can be
presented this way:

Input: A program P and a specification φ.

Output: Do all executions of P satisfy φ?

Of course, the exact formulation of the question will depend on the logic
in which φ is written, and we will need to introduce more formalism to
express formally what it means to be satisfied by an execution.

What we would like ideally is to have a program answering this problem,
as depicted in Figure 1.1.

However, such a goal is impossible without restricting what we aim for.
Indeed, it is well-known that the halting problem of a Turing machine is in-
decidable, and as presented earlier, the model-checking problem can express

1.3. COMPROMISES 5

that a program represtented by a Turing machine halts. A formulation of
that fact is Rice Theorem:

Theorem 1.2.1 (Rice’s Theorem). Any non-trivial semantic property of
programs is undecidable.

Another idea would be to notice that the number of possible execution of
a program on an actual machine is finite, and it is sufficient to check all these
execution. However, the number of such execution is so astronomically high
(around 102400000 states for 1 MB of memory) that in practice it is impossible
to do so (if it were, that would be systematicizing validation).

We therefore need to do compromises on our goal to get usable tools.

1.3 Compromises

It is not because it is impossible to get a verifier that answers to every
model-checking instances that we cannot get verifiers that answers to some
model-checking instances. We will thus conceive verifiers which are sound
in the sense that if the verifier answers a programs satisfies the specification,
it is proven that it does, but might not guarantee that a negative answer
proves the presence of a bug (which would be called complete). To get such
a verifier several approaches are possible, we describe a few here. Of course,
these approaches are not mutually exclusive (on the contrary), so we might
use several of them in some algorithm.

1.3.1 Incomplete algorithms

This approach consists in having a program that instead of applying a deci-
sion algorithm, applying a semi-decision algorithm and stopping it after a
bound on the time (to not get stuck on an infinite loop). In this approach,
we might get three answers to the model-checking problem: yes, no and un-
known. Of course, we will try to get algorithms in which unknown occurs as
little as possible. In our course, the bounded model-checking method will
be an exemple of such a method.

1.3.2 Restricting the semantic

On Turing-complete programs, the Theorem of Rice states that we cannot
decide any property. But on model with less expressivity, this theorem
does not hold, and some properties are decidable. This approach consists
in abstracting the semantic of the program in a less expressive model and

6 CHAPTER 1. INTRODUCTION

decide the model-checking on that abstraction. Of course, to be coherent,
the abstraction will need to be sound in the sense that it will need to ensure
that if the model-checking returns yes on the abstraction, it would have
returned yes on the concrete program. Therefore the abstraction might
depend on the specification (or rather the class of specification).

1.3.3 Restricting the specification

This technique will always go alongside the others because of Rice Theorem.
It consists in restricting the type of specification we will accept as input of
the verifier. Typically, that consists either in restricting the logic in which
the specification is expressed (e.g., considering First-Order Logic instead of
Monadic Second-Order Logic) or only consider questions like reachability or
liveness. In this course, we will focus on the reachability question, which
asks whether a given position of the program is reachable or not, the target
position representing a bug.

1.3.4 Summary and complexity considerations

In summary, the problem we will focus on in this course, can be reformulated
as the following: given an abstraction function A,

Input: A program P and a position q of P .

Output: Whether A(q) is reachable in A(P).

Furthermore, we might allow the algorithm answering this problem to
only be a semi-algorithm.

Of course, this might seem as an unacceptable compromise with truth, as
we will accept that we do not always answer faithfully the problem. However
we cannot expect more and it is better to be able to answer sometimes than
never. Furthermore, our soundness obligation ensures that we will never
promise a program is correct when it isn’t, which will allow to effectively
validate some programs, which is what we need for safety of critical system.
This is actually the converse than testing, which can never guarantee abso-
lutely that a program is correct. Actually, it is usually desirable to use both
techniques alongside.

Finally, there is a last thing to consider: complexity. Usually, the more
a technique is close to the correct answer, the worse its complexity will be.
And complexity of model-checking (or reachability) algorithm is usually not
that good, except on very restricted model (exponential complexity or worse

1.4. OVERVIEW OF THIS COURSE 7

is far from uncommon). It will therefore be sometimes very efficient to have
coarse algorithm which are not very precise (while being sound) but have
good complexity. They will allow to quickly check some part of the program
and deem them correct, and may even lead to the direction to explore to
either find a bug or show the program is correct with an other analysis. The
third part of the course will actually concern such techniques.

1.4 Overview of this course

1.4.1 Summary

The course is separated in three parts. The goal is to present several veri-
fication techniques through the implementation of a tool, Simple Program
Analyser.

Introduction and Bounded Model-Checking

The first part will first introduce broadly verification (this chapter). Then
it presents the tool we use in background of ours to automatically decide
properties (SMT-solvers), the language of programs we will verify and their
formal semantics. Finally, it presents the technique of Bounded Model-
Checking, which is an imcomplete method.

It will be taught by Vincent Penelle, and is summarised in the present
document.

Abstract Interpretation

The second part focuses on abstract interpretations, i.e., a way of astracting
the semantics of the program in an abstract domain in which the reachability
set of the program is effectively computable.

It will be taught by Grégoire Sutre.

CEGAR and counter-systems

The third part will present an approach called Counter-Example Guided
Abstraction Refinement, which starts by studying a very coarse abstraction
of the program, and if that analysis finds a false counter-example, use that
false counter-example to find a abstraction that excludes it and start over.
It will also present some results on the reachability over counter-systems
and vector addition systems.

It will be taught by Jérôme Leroux.

8 CHAPTER 1. INTRODUCTION

1.4.2 Summary of the first part

The rest of the document is separated in three parts:

• A definition of the SAT Modulo Theory problem and an overview of
SMT-solvers.

• A definition of the programming language we are using and its seman-
tics.

• The definition of the Bounded Model-Checking problem and two al-
gorithm to solve it.

Alongside this part are one exercice session on modelling with SAT and
SMT, and four practice sessions, one on implementing a solver to famil-
iarize with SMT, one on implementing the semantics of our programming
language, and two on implementing the two algorithms for Bounded Model-
Checking.

Chapter 2

Tool for
deciding: SMT-solvers

The goal of this chapter is to present the problem of SAT Modulo Theory,
and explain how it can be used for verification purposes. To do that, we
first recall SAT problem, as it is closely related.

2.1 SAT

2.1.1 Definition

Propositional Logic

Propositional Logic is a logic which deals with Booleans.

We first define the Boolean set as B = {⊥,⊤}, and three connectors on
it ∧, ∨ and ¬ whose semantics is recalled in Figure 2.1.

We also fix a (possibly infinite) set of variables Var, and we define a
propositional formula with the following grammar:

φ ::= x ∈ Var | ¬φ | φ ∨ φ′ | φ ∧ φ′

∧ ⊥ ⊥
⊥ ⊥ ⊥
⊤ ⊥ ⊤

∨ ⊥ ⊥
⊥ ⊥ ⊤
⊤ ⊤ ⊤

¬
⊥ ⊤
⊤ ⊥

Figure 2.1: Boolean connectors

9

10 CHAPTER 2. TOOL FOR DECIDING: SMT-SOLVERS

For the sake of simplicity, we do not include more in the definition, but
for clarity, we will allow the use of usual connectors and constant in formulae
(⇒, ⇔, ⊤, ⊥, etc).

An assignment of variables or valuation is a function ν : Var → B. We
define the evaluation of a formula φ in a valuation ν recursively:

• JxKν = ν(x).

• Jφ ∧ φ′Kν = JφKν ∧ Jφ′Kν .

• Jφ ∨ φ′Kν = JφKν ∨ Jφ′Kν .

• J¬φKν = ¬JφKν .

If JφKν = ⊤, we write ν |= φ.
The SAT problem is the following:

Input: A propositional formula φ.

Output: Is there an assignment of variable such that ν |= φ?

2.1.2 SAT and verification

It is a well-known fact that SAT is an NP-complete problem. The interest-
ing feature of SAT is that despite its NP-completeness, there are a lot of
efficient algorithms that solves it. Therefore, an interesting strategy to solve
a problem is to encode it in a propositional formula through a reduction,
solve the SAT problem with a SAT-solver, and in case of satisfiability, use
the assignment constructed to get an information on the input problem.

As you know if you have a polynomial reduction to SAT from a problem
P , you prove that P is in NP, but you can actually still use a non-polynomial
reduction to SAT as an algorithm to decide a problem (it just won’t be an
NP algorithm).

A strategy could be to encode our reachability problems in SAT and use
a SAT solver. However, when we deal with infinite domains, as program do,
it won’t be possible to do so. SAT modulo theory will be an answer to that.

But before moving to it, let us first quickly detail the core algorithm of
SAT solvers, as it is an algorithm useful for verification in itself.

2.1.3 DPLL algorithm

This algorithm was introduced by Martin Davis, Hilary Putnam, George
Logemann and Donald Loveland (hence its name). It is basically a deep

2.1. SAT 11

Algorithm 1: DPLL(φ, ν)

Input: A CNF formula φ = C1 ∧ · · · ∧ Ck, and a variable
assignment ν : Var→ B

Output: ”Not satisfiable” or ”Satisfiable with ν ′ : Var→ B”
1 (φ′, ν ′)← (φ, ν)
2 repeat
3 (φ, ν)← (φ′, ν ′)
4 (φ′, ν ′)← UnitPropagation(φ, ν)
5 (φ′, ν ′)← PureLiteralElimination(φ′, ν ′)

6 until (φ′, ν ′) == (φ, ν)
7 if φ == ⊤ then
8 return ”Satisfiable with ν”

9 if φ == ∅ then
10 return ”Not Satisfiable”

11 (ℓ, b)← GuessNext(φ, ν)
12 if DPLL(φ, ν[ℓ← b]) == ”Satisfiable with ν ′′ then
13 return ”Satisfiable with ν ′′”

14 return DPLL(φ, ν[ℓ← ¬b])

first search algorithm (the branching being the guessing of truth values of
variable), but with two very important twists : first, before guessing, it sim-
plifies the formula with unit propagation and elimination of pure literals, and
secondly, it relies on heuristic to guess which variable to which attribute a
value (and which one). We will detail here the first point, but not the second
(the heuristic involved are different from one solver to another and compli-
cated to explain here, but are at the center of the efficiency of SAT solvers).
Of course, in the worst case, this algorithm has exponential complexity (I
hope you had guessed it), though on most formulæ, SAT solvers are insanely
efficient. Its pseudo-code is given in Algorithm 1.

Unit Propagation and Elimination of Pure Literals

The unit propagation simply observes that if a clause is reduced to a single
literal, the only possibility for the formula to be satisfied is that this literal
is true. Therefore, if a formula is of the form ℓ ∧ C1 ∧ · · · ∧ Ck, we Unit
propagation puts ℓ to ⊤ in ν, and replaces ℓ with ⊤ in C1, · · · , Ck and
simplifies them. Otherwise Unit Propagation does nothing.

The elimination of pure quantifiers makes another simple observation :

12 CHAPTER 2. TOOL FOR DECIDING: SMT-SOLVERS

if a variable only appears positively (resp. negatively), we can simply put it
to true (resp. false), and all clauses containing it will be satisfied. Therefore,
if a formula is of the form (ℓ ∨ C1) ∧ · · · ∧ (ℓ ∨ Ck) ∧ C ′1 ∧ · · · ∧ C ′k′ (where
¬ℓ does not appear), Elimination of Pure Quantifiers puts ℓ to ⊤ in ν, and
considers the formula C ′1 ∧ · · · ∧ C ′k′ . Otherwise it does nothing.

2.2 SAT Modulo Theory (SMT)

As propositional logic cannot handle infinite domain, we will use first-order
logic to handle them. However, the full first-order logic being indecidable in
general, we will turn to subsets of it which enjoy decidability.

2.2.1 Definition

For the rest of the section, we fix an universe U which will (informally)
represent the domain of the program. We do not ask that this universe has
any property, and we will actually consider that it can be heterogeneous. For
exemple, if a program manipulates both integers and floats, we will consider
our universe contains both of them. We will discuss what this implies later.
For now, for the sake of simplicity, we just define FO over an arbitrary
universe U .

As before, we fix a (possibly infinite) set of variables Var.

A predicate of arity n is function from Un to B. We denote P the set of
predicates over U , and Pn the set of predicates of arity n.

A good example of predicates (and the one we will focus in this course)
are arithmitic inequalities. For example, x+ 3 == y is a predicate of arity
2, as it has two variables.

We can now define first-order logic over U ,P (FO[U ,P]), through the
following grammar:

φ ::= P (x1, · · · , x|P |) | ¬φ | φ ∨ φ′ | φ ∧ φ′ | ∃x, φ | ∀x, φ

where P ∈ P, |P | is its arity, and x1, · · ·x|P | ∈ Var. The red part represent
the quantifiers. Removing it from the grammar gives the quantifier-free
fragment of FO.

We define valuations similarly as before as functions ν : Var→ U . Given
a valuation ν, a variable x ∈ Var and an integer z, we define the substition
of x by z in ν as the valuation ν[x ← z] such that, ν[x ← z](x) = z, and
for all variable y different from x, ν[x ← z](y) = ν(y). The evaluation of a
formula φ in a valuation ν is defined recursively:

2.2. SAT MODULO THEORY (SMT) 13

• JP (x1, · · · , x|P |)Kν = P (ν(x1), · · · , ν(x|P |)).

• Jφ ∧ φ′Kν = JφKν ∧ Jφ′Kν .

• Jφ ∨ φ′Kν = JφKν ∨ Jφ′Kν .

• J¬φKν = ¬JφKν .

• J∃x, φKν = ⊤ if and only if there exists u ∈ U , such that JφKν[x←u] = ⊤.

• J∀x, φKν = ⊤ if and only if for all u ∈ U , JφKν[x←u] = ⊤.

If JφKν = ⊤, we write ν |= φ.

We consider the problem of satisfiability of such formulae:

Input: A formula φ of FO[U ,P]

Output: Does there exists a valuation ν such that ν |= φ?

Contrary to the propositional case, this problem is undecidable in an
arbitrary universe, even in the quantifier-free fragment. Which would seem
to seal the case of its use in verification. Yet we’re not done yet.

2.2.2 SMT-solvers

Though the satisfiability problem for FO is undecidable in general, we can
still do something.

First, we can always try to use only sets of predicates on which the
problem is decidable. For example, it is the case of Presburger arithmetic, in
which we manipulate integers, and only allow for addition and substraction
between variables (i.e., x+y = z−3 is a predicate of Presburger arithmetic,
as well as 2x = 6 − y (as multiplying by a constant is an addition), but
xy = z is not).

An other option is to use incomplete methods, as described in the in-
troduction section, i.e., use semi-algorithms which we allow to run up to a
timeout and allow the tool to answer unknown if the timeout is reached.
When dealing with undecidable logic, that is better than nothing.

In these two cases, there is a need for efficient algorithms to solve the
satisfiability problem for FO, that so-called SMT-solver strive to implement.
As the SAT problem is well-understood and has efficient algorithms, most
techniques for SMT borrow idea from it, or even use SAT solvers as backend,
limiting the solving of propositions in the theory to atoms.

14 CHAPTER 2. TOOL FOR DECIDING: SMT-SOLVERS

A first idea, called eager consist in trying to encode a FO-formula into
full SAT formula (which depending on the theory will obviously be not
polynomial in size, if at all possible).

Another technique that is used in most SMT-solvers, called lazy, consists
in ”cutting” the resolution of the problem in two distinct parts:

• The propositional part, i.e., the formula where the predicates are re-
placed with variables, and use the efficients SAT-solving methods to
determine possible truth values of the atoms.

• The theory parts, in which, for each predicate, depending on the uni-
verse and the set of predicates (called theory) it belongs to, runs a
decision or semi-decision algorithm to determine if it is satisfiable or
not (or unknown). The theory solver is dependent on the theory,
many different algorithm exist, and their efficiency varies greatly, de-
pending on the theory (for example, if you can encode an arithmetic
problem without variable multiplication, solvers will usually behave
better). Thanks to some techniques, it is also possible to use solvers
from different theories on a same formula.

The solver thus strives to make the two parts communicate by using the
theory part only on assignations that would satisfy the propositional part,
and thus ease the computational cost (the theory solver is usually costly).
The broad idea is to first put the formula in CNF, separating the differ-
ent theories properly, and then run a modified version of DPLL that uses
unit propagation (but not pure literal elimination, as the literals might not
be independent), and when finding a possible assignment of variable that
satisfies the propositional part, run the theory solver, and if an inconsis-
tency is returned, uses it to enrich the formula with a new clause (to avoid
rechecking the same bad properties many times), backtracks and continue
the algorithm.

Of course, the tools are more complicating than what is summarised here,
the interaction can occur more early than on a full assignment for example,
and the theory can be used to cut whole branches that would otherwise be
explored (basically, by implementing an alternate version of DPLL), but the
base idea is still the one sketched above. The process is also complexified in
the presence of quantifiers, but most SMT solvers have a way to deal with
them.

A last advantage of this lazy method is that it is possible to extract
a satisfying assignment of a satisfied formula, and most SMT-solver are
actually able to do that. (to complete)

2.2. SAT MODULO THEORY (SMT) 15

There are several SMT-solvers that exists and have different strength
and weakness. In this course, we will use Z3, developped by Microsoft
Research, namely through its Ocaml interface. Though it’s not the only
existing, among others we could cite Alt-Ergo (developped by OcamlPro,
a french company), or Barcelogic (from the UPC of Barcelona). To fa-
cilitate comparison, and ultimately improvement of SMT-Solvers, they all
implement the so-called SMT-Lib which allows to provide normalised inputs
to the solvers. Thus, they can all compare on the same benchmarks, and
can contribute to develop new libraries for Theories which are not yet well
supported.

The main structures supported by SMT-Libs are Uninterpreted Func-
tions (only equality), Boolean, Integers, Reals, Bitvectors of fixed size, Ar-
rays and Inductive Data Types. On these structures, cohabit several theo-
ries, depending on the form of the predicates used in the formula (as noted
before, an arithmetic formula over integer which doesn’t include multipli-
cation between variable can be treated in Presburger arithmetic, which,
contrary to full arithmetic, is decidable).

More details about SMT solvers can be found in [1], and on slides by
one of the authors at a summer school1

2.2.3 SMT and Verification

So, why did we discuss SAT and SMT?
The reason is that, despite its high complexity, or even undecidability

depending on the theory, SMT-solver provide efficient algorithms, and the
satisfiability problem is actually very similar to the reachability problem we
want to study. Therefore, rather than implementing an ad-hoc algorithm
that would not necessarily be as efficient, a strategy we will use for deciding
the reachability problem is to encode it as an FO formula, and call Z3 on it.

Our strategy will be the following:

• Provide an automata-like presentation of the program (Chapter 3)

• Encode the successor relation of that automaton as a FO-formula.

• Translate the question of reachability into a formula (using the suc-
cessor relation), and asks the answer to a SMT-solver.

Of course, that is a broad picture of what we will do, and depending
on the part of the course, the encoding of the successor relation will not

1https://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa08/

slides/barret2_smt.pdf

16 CHAPTER 2. TOOL FOR DECIDING: SMT-SOLVERS

be the same. More precisely, some parts of the decision procedure can be
kept out of the formula but treated with an ad-hoc algorithm (that will
be the case with the depth-first search algorithm of the bounded model-
checking). But whatever our strategy is, the successor relation will give
arithmitic constraints, and that is mainly the resolution of those we will ask
to a solver.

2.3 Implementation

The exercise session linked to this chapter consist in familiarising with the
Ocaml API of Z3 through the implementation of a logic game necessitating
to handle first-order logic.

Chapter 3

A minimal Programming
Language

In this chapter, we present the language we will work on. Basically, the lan-
guage we use is C-like, but ripped of features that, while being important for
a programmer, would complicate our work without changing the principles
we are dealing with. The goal of this course being to present the verification
technique and show that they are applicable, we restrict ourselves to a sim-
pler language in order to have the time to implement a simple tool during
the course. Note two points, though. First, despite being simpler in syntax,
this language remains Turing-complete, and therefore still serves as a proof
of concept that verification is implementable. Secondly, to develop a tool
usable for actual program, we would need to include the language feature
we let aside for now. But some tool dealing with the full language exists,
like frama-c for example, though it focuses on Weakest Precondition rather
than reachability property.

3.1 A restricted language

Our program will only manipulate integers. Though SMT-solver can handle
reals, floats are actually not reals and pose a variety of difficulties for verifi-
cation purposes and handling them would require a full course on that prob-
lem. We thus let them aside, and consider our programs manipulate only
integers. Similarly, we let aside pointers, as the handling of dynamic mem-
ory is also source of many problems. Here, we will only consider programs
as a single unit (no function), and therefore all memory will be modelled as
variables.

17

18 CHAPTER 3. A MINIMAL PROGRAMMING LANGUAGE

We thus first define Arith, the set of arithmetic expressions over integers
and variables (in a set Var), which will be the core of our programming
language.

t ::= x ∈ Var | z ∈ Z | t+ t | t− t | t× t | t/t | t%t

Given an arithmetic expression t and a variable assignment ν : Var→ Z,
we recursively define the value of t in ν:

• JxKν = ν(x)

• JzKν = z

• Jt1 + t2Kν = Jt1Kν + Jt2Kν

• Jt1 − t2Kν = Jt1Kν − Jt2Kν

• Jt1 × t2Kν = Jt1Kν × Jt2Kν

• Jt1/t2Kν = Jt1Kν/Jt2Kν , and is undefined if Jt2Kν == 0.

• Jt1%t2Kν = Jt1Kν mod Jt2Kν , and is undefined if Jt2Kν == 0.

We consider the set of usual comparison operators over Z, Comp = {<,>
,==,≤,≥, ̸=}. A guard is a comparison between two arithmetic expressions,
i.e., t1 op t2, with t1, t2 ∈ Arith and op ∈ Comp. We denote Guard the set
of these guards. In the formalism presented earlier, Guard will be the set of
predicate we allow in FO. The semantic of a guard is the natural one, so we
do not detail it here.

We now define the set of instructions we allow in our small language.

sk ip ;
x = t ;
P1 ; P2 ;
i f (guard) P1 ; e l s e P2 ;
whi l e (guard) P;
a s s e r t (guard) ;

In the above, t is in Arith, and guard is in Guard. The instructions are
the classic C instructions. Assert instruction is a special instruction that if
the guard is violated goes to an error state. As we are only concerned with
reachability of an error state here, we do not model return statements or

3.2. CONTROL-FLOW AUTOMATA 19

outputs of the program. The only thing we will investigate in our program
is that asserts are never violated.

But as simple as this language is, it is still not practical enough to handle
in our tool. Rather than giving its semantics, we will therefore explain
how to convert a program in an automata-like model (which manipulates
memory) to simplify its manipulation. We will thus give the semantic of
that automata-like model.

3.2 Control-Flow Automata

A control-flow automaton (CFA) is a tuple (Q, qi, qbad,∆) where Q is a finite
set of states, qi ∈ Q is the initial state, qbad is the final states (representing
the ”bug” position), and ∆ ⊆ Q × Op × Q is the set of transitions, where
Op is the set of possible operations: Op = {skip} ∪ {x := t | x ∈ Var, t ∈
Arith} ∪Guard.

Said otherwise, it is an automaton that can manipulate variables with
value in Z, and test their values. We will first describe how to represent
programs as CFA, and then give their semantics.

3.2.1 Representing a program as a CFA

We will define inductively a translation from programs to CFA. Informally,
states of the CFA represents position of the program. Affectations and skip
will be represented directly as a single transition. Sequences will be obtained
by concatenating the representation of its components. Tests will be repre-
sented as two transitions outputing from a single state. While instructions
will be represented as a cycle in the automaton. Finally, assert will be rep-
resented as tests whose negative branch goes to the bad test, and positive
branch continues to the next instruction.

The representations are given in the Figures 3.1, 3.2, 3.3, 3.4 and 3.5. ¬
guard is obtained by replacing the comparator operation by its opposite (<
is opposite of ≥, > is the opposite of ≤ and ̸= is the opposite of ==). For the
sake of simplicity in the induction presentation, we put a lot of skip edges.
However, in the concrete automata we will produce, we will collapse these
edges whenever it is possible (actually, in a CFA produced by a concrete
program, it is always possible to get rid of them). However, we keep skip in
the automata for a reason. First, we may give example directly as automaton
where skip instruction might help giving a more concise presentation of
an algorithm. Secondly, skip may be used to represent non-determinism in
programs, whereas it comes from a test that is to complex to formalise in

20 CHAPTER 3. A MINIMAL PROGRAMMING LANGUAGE

q1

q2

x := t

Figure 3.1: The CFA representing x := t

CFA(A)

CFA(B)

skip

Figure 3.2: The CFA representing A; B;

the setting studied, or that we want to model user input (which we cannot
make any assumption on).

In Figure 3.6, we give a short program and its representation as a CFA,
where skip edges have been collapsed.

3.2.2 Semantic of CFA

We now move to the definition of the semantics of a CFA. That will be
done through the notion of configurations, transition relation, executions,
and runs.

A configuration of a control-flow automaton A is a pair (q, ν), where q
is a state, and ν a valuation in ZVar.

The semantic of an operation op is the relation JopK over pairs of val-
uations, containing all valuation (ν1, ν2) such that ν2 can be obtained by
applying op to ν1. Formally,

• JskipK = id (the identity relation),

• JguardK = {(ν, ν) | ν |= guard},

• Jx := expK = {(ν, ν[x← JexpKν]) | JexpKν is defined}.

3.2. CONTROL-FLOW AUTOMATA 21

q1

CFA(A) CFA(B)

CFA(C)

guard ¬ guard

skip skip

Figure 3.3: The CFA representing if(guard) then A else B; C;

q1

CFA(A)

CFA(B)

guard

skip

¬ guard

Figure 3.4: The CFA representing while(guard) A; B;

q1

qbadCFA(A)

¬ guardguard

Figure 3.5: The CFA representing assert(guard); A;

22 CHAPTER 3. A MINIMAL PROGRAMMING LANGUAGE

x = 1;

if (y <= 10) {

y = 10;

}

else {

while (x < y) {

x = 2 * x;

y = y - 1;

}

}

x = y + 1;

assert(x != 0);

q1

q2

q3 q6

q7

q8
q11

q12

q13 qbad

x := 1

y <= 10 y > 10

y := 10

x < y

x := 2 * x

x >= y

x := y + 1

y := y - 1

x ̸= 0 x == 0

Figure 3.6: A CFA representing a short program.

3.3. ENCODING THE SEMANTICS IN FO 23

The semantic of a transition t = (q, op, q′) is the binary relation
t−→ over

configurations defined as

c
t−→ c′ ⇔ c = (q, ν), c′ = (q′, ν ′), (ν, ν ′) ∈ JopK

The step relation −→A is the union of all the transition semantics of A:⋃
t∈∆A

t−→.
An execution is a sequence c0, t1, c1, . . . , tn, cn alterning configurations ci

and transitions ti such that ci−1
ti−→ ci for all 0 < i ≤ n. Such an execution

is also written c0
t1−→ c1 · · ·

tn−→ cn to improve readability, and n is ets length.
A path q0, op1, q1, . . . , opn, qn is said executable if there exist valuations

ρ0, . . . , ρn ∈ ZVar such that (q0, ρ0)
t1−→ (q1, ρ1) · · ·

tn−→ (qn, ρn) is an execu-
tion, with ti = (qi−1, opi, qi).

Finally, a run of a CFA is an execution whose first configuration is
initial, i.e., contains the initial state. We do not suppose that there are any
restriction in the valuation in the initial configuration in our setting. A run
whose last configuration contains qbad is called a faulty run.

We can now formulate the variant of the reachability problem we will be
studying on CFA:

Input: A CFA A = (Q, qi, qbad,∆).

Output: Does there exist a faulty run?

Observe that, as already promised, as CFA are actually Turing-complete,
this problem is undecidable.

3.3 Encoding the semantics in FO

The next step we need to do to be able to use SMT-solvers to solve the
aforementioned problem, is how to encode the CFA semantic in FO.

We first define the formula associated with an instruction. Such a for-
mula will rely two copies of the variables we call here Var1 and Var2, and
we will consider elements of Vari to have their name indexed by i. In later
section, we might have more copies of Var, but the formulæ defined here
will remain valid (up to renaming which we will let implicite). If a formula
is indexed by i, we mean that all variables in it are indexed by i.

The simplest formula to define is the one encoding skip, as it does not
modify any variable, nor introduce any restriction. Therefore, it is simply:

φskip =
∧

x∈Var
x1 == x2

24 CHAPTER 3. A MINIMAL PROGRAMMING LANGUAGE

The formula associated with a guard exp ⋄ exp′ does not modify any
variable, but introduces restriction (namely exp1 ⋄ exp′1, which can directly
be seen as a FO formula), so we add it to the formula :

φexp⋄exp′ =
∧

x∈Var
x1 == x2 ∧ exp1 ⋄ exp′1 ∧ sideexp1 ∧ sideexp′1

The two side formulæ are here because, as mentionned earlier, Z3 does
not handle division by zero, and it must be ensured in the formula no de-
nominator is equal to zero. sideexp is a conjunction of formula expressing
that. We let the detail in exercise, but give an example.

If exp = x/(y+3/z)+z/(3−x), sideexp = (y+3/z ̸= 0)∧(z ̸= 0)∧(3−x ̸=
0).

Finally, the formula associated with an affectation x := exp is the fol-
lowing:

φx:=exp =
∧

y∈Var\{x}

y1 == y2 ∧ x2 == exp1 ∧ sideexp1

To encode the semantics of a CFA, we can add variables to represent
states. We will consider that those variables are named Qi (same indices as
the variables), which represent that at step i, the variable is Q. The formula

representing a transition t = q
op−→ q′ is therefore simply:

φt = Q1 == q ∧Q2 == q′ ∧ φop

The step formula of the automaton is

φstep(A) =
∨
t∈∆

φt

We can finally express that a path t1, · · · , tk labels a faulty run with the
following formula:

Q0 == qi ∧Qk == qbad ∧
∧

0≤i<k

ϕti [i, i+ 1]

where ϕ[i, i + 1] means the formula ϕ where x1 is replaced with xi and x2
with xi+1. And similarly, the existence of a faulty run of size k is:

Q0 == qi ∧Qk == qbad ∧
∧

0≤i<k

ϕstep(A)[i, i+ 1]

3.4. IMPLEMENTATION 25

3.3.1 Backward Semantics

As we will see in the next chapter, it might be sometimes better to explore
a CFA backwards from the final state, and thus, we also need to encode
the backward semantic of a CFA. Fortunately, as the semantics consists in
having a different copy of each variable for every step and formulæ relying
them, it won’t require much work as the formulæ are time-independant. To
do so, in what we described earlier, we only need to inverse the role of x1
and x2 for each variable. As you may notice, this only modifies the formula
encoding the assign statement, as the other are entirely symmetrical.

3.4 Implementation

The practical session linked with this chapter consists in implementing the
semantic of operations defined at the begining of Section 3.2.2. It will con-
sist in encoding the semantic of an operation as an FO-formula linking the
values of variables in the first valuation and the second valuation. It will
rely on translating an arithmetical term into a formula, on which the only
real difficulty is that this formula has to contain a part forbidding any de-
nominator the term contain to be equal to zero (as, for technical reason, Z3
ignores division by zero). More details are given in the code to complete
and the attached documentation.

26 CHAPTER 3. A MINIMAL PROGRAMMING LANGUAGE

Chapter 4

Bounded Model-Checking

This chapter is - finally - devoted to the presentation of the verification tech-
nique that is the object of this part of the course. It first present the problem
of Bounded Model Checking (BMC), and then two different algorithms to
solve it.

This technique has been introduced in the end of the 1990’s on finite state
systems as a complete algorithm [2] (this reference is not the first one but
is a first summary on the technique), and has been quite rapidly extended
to infinite state systems (at the obvious cost of becoming incomplete) [3].

In this course, we will present the BMC for infinite state systems as CFA
are such systems.

4.1 Principle

4.1.1 The problem and its encoding in FO

Bounded Model Checking is an incomplete method as presented in the first
chapter. Informally, it simply consist in checking all runs of a CFA of length
at most a given constant k. Given that the number of such runs is finite, the
problem is obviously decidable. However, if no run of length at most k is
faulty, that is not a guarantee there is no faulty run. That would seem to be
contradictory with the soundness requirement we want for our techniques.
However, our algorithms will be able to distinguish between the case where
no run of length at least k exist (in which case, the algorithm can assure
there is no faulty run at all), and the case when at least one run of length
at least k exists (in which case, if there is no faulty run of length at most k,
we can only say that we don’t know if there is a faulty run or not).

Formally, then, the bounded model-checking problem is the following:

27

28 CHAPTER 4. BOUNDED MODEL-CHECKING

A (simple) system. Its unfolding up to 4.

p q

x ≥ y

x ≤ y

x = x+ y y = x+ y

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x+ y x ≥ y

x = x+ y x ≥ y x ≤ y y = x+ y

...

Figure 4.1: A simple CFA and its unfolding up to depth 4

Input: A CFA A, and a natural k ∈ N.

Output: Does there exist a faulty run of length at most k? If not, does
there exist a run of length at least k?

A way of seeing the problem, is to unfold the runs of the CFA up to
depth k to obtain a tree (of depth k), and for each node, test if the path
represented by it is an actual execution or not. Figure 4.1 presents a system
and its unfolding. Of course, the size of such a tree is exponential in k, so if
we were to actually build the tree, we would yield a EXPSpace procedure.
However, the algorithms we will use do not construct the tree, and can
actually limit the complexity to PSpace.

To encode it in with FO-formulae, we consider that there is a copy of Var
for each depth of the tree, and the edges of the tree are labelled with formulæ
encoding the semantics of the instruction of the transition it represents (as
described in Chapter 3). The formula of an edge starting at depth i will
relate variables from Vari and Vari+1. Thus a path will be a run if and only
if the formula labelling it is satisfiable.

4.1.2 Backward VS Forward

The more natural way to apply this approach is to start from the initial
state and unfold the system forward to check all runs of depth at most k to
see if one reaches qbad

There is however another possibility to test that which consists in start-
ing from qbad, and applying transition backward to check if there is an execu-
tion ending in qbad of length at most k which is actually a run. As discussed

4.1. PRINCIPLE 29

1 2

3 4 5 6 7

8910

f

L := 0

n == o
n ̸= o

L ̸= 0

L == 0 L := 1 o := n

skip
skip

L ̸= 1

L == 1L := 0n := n+ 1

Figure 4.2: A classical lock process

in the previous chapter, in term of translation to a formula, this approach
need no more work than the previous one to encode the process in FO.

Both approaches will find a counter-example if there is one, so one might
ask: ”why bother?”. The answer is that in the case no counter-example is
found, the response of the algorithms might differ. Indeed, it might be the
case that a program is correct and has infinite runs, but that actually no
execution of length at least 35 ends in qbad from any configuration. In that
case, the forward approach will return a non-exhaustive search, while the
backward approach will be able to deem the program correct. Of course, the
symmetrical situation being possible, it is worth having the two approach.

In summary, running the approach backward and forward will allow to
answer the question on more programs (obviously, not on all of them).

4.1.3 Example: classical lock process

The CFA presented if Figure 4.2 represents a classical lock algorithm (or
rather an abstraction of it), that counts the number of times it does some-
thing in the critical section and stops when no new data arrives. The L
variable represents the lock, while the n and o variable are the counter of
the loop (new and old), used to determine if a new data was read in the
critical section (the fact of doing something being represented by each skip
instruction starting in state 7). It is present in spa as running example.aut.

Figure 4.3 presents the forward unfolding of this CFA. Red nodes rep-
resent configurations which are not accessible (i.e., the conjunction of con-
straints on the path from the root to it is unsatisfiable). On the edges are
the constraints introduced by the transition represented. We only display

30 CHAPTER 4. BOUNDED MODEL-CHECKING

1

2

3 4

f5

6

7

2

43

8

9 f

10

2

L1 = 0

n1 = o1 n1 ̸= o1

L2 ̸= 0L2 = 0

L4 = 1

o5 = n4

⊤

n6 ̸= o6n6 = o6

⊤

L6 ̸= 1L6 = 1

L8 = 0

n9 = n8 + 1

Figure 4.3: The forward unfolding

4.2. DEPTH FIRST SEARCH ALGORITHM 31

f

4 8

2 7

6

5

71 10

6 9

L0 ̸= 0 L0 ̸= 1

n1 ̸= o1 ⊤

o2 = n3

L3 = 1

⊤

o3 = n4

L2 = 0 n2 = n3 + 1

L3 = 0

Figure 4.4: The backward unfolding

the part of the formula that is not simply the equality between a variable
at a depth and the next. Therefore, if a variable does not appear, it is not
modified (i.e., xi+1 = xi). The index of a variable is the depth of the node
it is associated to (root is at depth 0). Equalities representing affectations
are depicted in blue, for clarity.

Similarly, Figure 4.4 represents the backward unfolding of this CFA.

One can observe that it is a case in which the forward BMC will return
”unknown” as there are infinite execution of this CFA, while the backward
BMC will return correct, as it allows to prove that no execution of length
more than 3 can reach qbad.

4.2 Depth First Search Algorithm

4.2.1 The algorithm

The algorithm is presented in Algorithm 2. Given a CFA A and a bound k,
it is called as ForwardDFSBMC(A, k, ϵ, qin, 0). It basically simply performs
a DFS on the unfolding described earlier. To do so, it recursively calls itself
at each node, for each outputting transition, after having checked that the
current node is reachable and not qbad, and that the bound isn’t reached (in
which cases, the result is sent right away), and compile the result from these
calls.

32 CHAPTER 4. BOUNDED MODEL-CHECKING

4.2.2 Implementation

You will implement this algorithm, alongside its backward version (which
will simply be obtained by reversing the CFA and calling the relevant se-
mantic function).

An immediate optimisation we’ll do in the code is to reduce the number
of variables. As you have noticed, most variable are unchanged from a node
to the next. So, to reduce the number of variables in the SMT-solver, the
algorithm will in addition remember for each variable x which depth d it
was last modified and use xd for comparisons. For example, in Figure 4.3,
on the edges from node 8, instead of using the variable L6, we will use L4

as L is not modified from state 6 to state 8. The managing of these names
is already done for you in the code.

Contrary to what was given in the pseudo-code (for clarity), the path
will not be an argument of the function you code (for not having useless
argument), so the counter-example path will have to be reconstructed while
exiting the function with the result ”Counter-example found”.

4.3 Global Algorithm

To solve this problem, the global search, performed in the forward direction,
consists in defining a SMT-formula φstep(q,X, q

′, X ′) equivalent to the →A
relation, and checking successively for every i between 0 and k whether the
following formula1 is satisfiable:

ψi(q0, X0, · · · , qi, Xi)
def
= q0 = qin ∧

i∧
j=1

φstep(qj−1, Xj−1, qj , Xj) ∧ qi = qbad

This algorithm is presented in detail in Algorithm 3. The algorithm stops
as soon as ψi(q0, X0, . . . , qi, Xi) is satisfiable and, in that case, it returns the
feasible path from qin to qbad represented by a model of the formula. The
algorithm also stops after i steps if no execution of length i exists starting
from qin (and, in that case, it returns that the program contains no execution
from qin to qbad).

4.3.1 Implementation

You will implement this algorithm (alongside its backward version which,
like for the forward case is simply a detail).

1The formula ψ0 is q0 = qin ∧ q0 = qbad.

4.3. GLOBAL ALGORITHM 33

Algorithm 2: ForwardDFSBMC(A, k, τ, q, ℓ).
Input: A program automaton A, a bound k ∈ N, a path τ , a

current state q and a current depth ℓ.
Output: Whether there exists an execution of length at most k

from qin to qbad.
1 if k > ℓ then
2 return Non-exhaustive

3 if τ is not an execution then
4 return Exhaustive

5 if q = qbad then
6 return Counter-example(τ)

7 exhaustive ← ⊤
8 foreach (q, op, q′) ∈ ∆ do
9 acc ← ForwardDFSBMC(A, k, τ(q, op, q′), q′, ℓ+ 1)

10 if acc == Counter-example() then
11 return acc

12 exhaustive ← exhaustive ∧ (acc ==Exhaustive)

13 if exhaustive then
14 return Exhaustive

15 else
16 return Non-exhaustive

To reconstruct the counter-example path when there is one, you will
need to enrich the formula with more information than what is described
here.

34 CHAPTER 4. BOUNDED MODEL-CHECKING

Algorithm 3: ForwardGlobalBMC(A, k).
Input: A program automaton A and a bound k ∈ N.
Output: Whether there exists an execution of length at most k

from qin to qbad.
1 i← 0
2 while i ≤ k do

3 ψ ← q0 = qin ∧
∧i

j=1 φstep(qj−1, Xj−1, qj , Xj)

4 if ψ is not satisfiable then
5 return “no execution from qin to qbad”

6 ψ ← ψ ∧ qi = qbad
7 if ψ is satisfiable then
8 Extract from a model of ψ a feasible path π from qin to qbad
9 return “feasible path π from qin to qbad”

10 i← i+ 1

11 return “no execution of length at most k from qin to qbad”

Bibliography

[1] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Armin Biere, Marijn J. H. Heule, Hans
van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications, chapter 26,
pages 825–885. IOS Press, February 2009.

[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. Adv. Comput., 58:117–148,
2003.

[3] Tobias Schüle and Klaus Schneider. Bounded model checking of infinite
state systems. Formal Methods Syst. Des., 30(1):51–81, 2007.

35

