
Introduction to Software Verification

Vincent Penelle
<vpenelle@u-bordeaux.fr>

LaBRI, Université de Bordeaux

September 3, 2018

— Introduction —

1 / 16



Software Verification: Why?

Software have bugs !!!
Causes of bugs

Usage errors.
Programming errors.
Design errors.
Compiler errors.
Hardware errors.

Effects of bugs
Loss of reputation (Consumer electronics).
Loss of efficiency (Software industry).
Loss of money (Banking).
Loss of devices (Spatial exploration).
Death of people (Medical industry).

2 / 16



Example: OpenSSL Heartbleed

TLS Heartbeat Protocol

This is an extension of the of the TLS (Transport Layer Security) protocol that allow
an host to ensure that the server is still alive.
The host may ask for an immediate answer from the server by giving a string and
the size of the string. The server must give the string back as a proof it is still alive.

Timeline
21 March 2014: Discovery of the bug by Neel Mehta at Google Security.
1 April 2014: Google Security notify OpenSSL dev team about it.
3 April 2014: Re-discovery of the bug by Codenomicon and re-notification.
7 April 2014: Heartbleed bug becomes public.
7 April 2014: OpenSSL 1.0.1g is released with a fix.
April 2014: Several servers are attacked Worldwide and compromised.
April 2014: Discussions on how static-analyzers can catch this kind of bug.

3 / 16



Explanation of the bug (XKCD)

Step 1: Send a string and the string
length to the server;
Step 2: The server receive the message
and reply by sending back the string;
Step 3: The client get the string back.

Step 1: Send the smallest string possible
and the maximum string length to the
server;
Step 2: The server receive the message
and reply by sending back the minimal
string and part of the process memory;
Step 3: The client get the string back
plus extra-information.

4 / 16



The Bug

struct
{

HeartbeatMessageType type;
uint16 payload_length ;
opaque payload [ HeartbeatMessage . payload_length ];
opaque padding [ padding_length ];

} HeartbeatMessage ;

The problem was that the HeartbeatMessage arrives via an SSL3_RECORD structure, a basic building block of
SSL/TLS communications. The key fields in SSL3_RECORD are given below; length is how many bytes are in the
received HeartbeatMessage and data is a pointer to that HeartbeatMessage.

struct ssl3_record_st
{

unsigned int length ; /* How many bytes available */
[...]
unsigned char *data; /* pointer to the record data */
[...]

} SSL3_RECORD ;

So, just to be clear, the SSL3 record’s data points to the start of the received HeartbeatMessage and length is
the number of bytes in the received HeartbeatMessage. Meanwhile, inside the received HeartbeatMessage,
payload_length is the number of bytes in the arbitrary payload that has to be sent back.
Whoever sends a HeartbeatMessage controls the payload_length but as we will see, this is never checked
against the parent SSL3_RECORD’s length field, allowing an attacker to overrun memory. F

5 / 16



Spotting Heartbleed bugs

Let’s be clear: it is trivial to create a static analyzer that runs fast and flags
heartbleed. I can accomplish this, for example, by flagging a taint error in every
line of code that is analyzed. The task that is truly difficult is to create a static
analysis tool that is performant and that has a high signal to noise ratio for a broad
range of analyzed programs.
This is the design point that Coverity is aiming for, and while it is an excellent tool
there is obviously no general-purpose silver bullet: halting problem arguments
guarantee the non-existence of static analysis tools that can reliably and
automatically detect even simple kinds of bugs such as divide by zero.
In practice, it’s not halting problem stuff that stops analyzers but rather
code that has a lot of indirection and a lot of data-dependent control flow. If
you want to make a program that is robustly resistant to static analysis, implement
some kind of interpreter.

John Regehr, 12 April 2014.

6 / 16



Spotting Heartbleed bugs

7 / 16



References
Diagnosis of the OpenSSL Heartbleed Bug, by Sean Cassidy, 7 April 2014.
https://www.seancassidy.me/diagnosis-of-the-openssl-heartbleed-bug.html

Attack of the week: OpenSSL Heartbleed, by Matthew Green, 8 April 2014.
http://blog.cryptographyengineering.com/2014/04/
attack-of-week-openssl-heartbleed.html

Anatomy of OpenSSL’s Heartbleed: Just four bytes trigger horror bug,
by Chris William, 9 April 2014 (The Register).
http://www.theregister.co.uk/2014/04/09/heartbleed_explained/

Heartbleed and Static Analysis, by John Regehr, 10 April 2014.
http://blog.regehr.org/archives/1125

A New Development for Coverity and Heartbleed, by John Regehr, 12 April 2014.
http://blog.regehr.org/archives/1128

On Detecting Heartbleed with Static Analysis, by Andy Chou, 13 April 2014.
http://security.coverity.com/blog/2014/Apr/
on-detecting-heartbleed-with-static-analysis.html

Finding Heartbleed with CodeSonar, by Paul Anderson, 1 May 2014.
http://www.grammatech.com/blog/finding-heartbleed-with-codesonar

How did Heartbleed remain undiscovered, and what should we do about it?, by
Michael Hicks, 1 July 2014.
http://www.pl-enthusiast.net/2014/07/01/
how-did-heartbleed-remain-undiscovered-and-what-should-we-do-about-it/

8 / 16

https://www.seancassidy.me/diagnosis-of-the-openssl-heartbleed-bug.html
http://blog.cryptographyengineering.com/2014/04/attack-of-week-openssl-heartbleed.html
http://blog.cryptographyengineering.com/2014/04/attack-of-week-openssl-heartbleed.html
http://www.theregister.co.uk/2014/04/09/heartbleed_explained/
http://blog.regehr.org/archives/1125
http://blog.regehr.org/archives/1128
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://www.grammatech.com/blog/finding-heartbleed-with-codesonar
http://www.pl-enthusiast.net/2014/07/01/how-did-heartbleed-remain-undiscovered-and-what-should-we-do-about-it/
http://www.pl-enthusiast.net/2014/07/01/how-did-heartbleed-remain-undiscovered-and-what-should-we-do-about-it/


Spotting bugs: Verification Versus Validation

Software Verification

An attempt to prove formally that the software is fulfilling a specification.

Software |= Specification

Don’t mix up “Software Verification” and “Software Validation” !

Software Verification
Perform a symbolic analysis of the
software through a formal model of the
software.
Exhaustively check the software.
Verification is performed on a model,
not on the actual software.

Software Validation
Perform multiple runs of the software
on given inputs and check results
against expected outputs.
Check one input at the time.
Validation is performed on the real
software in the real context.

9 / 16



Software Verification: How ?

Software Verifier

x = 1;
if (y <= 10)

y = 10;
else {

while (x < y) {
x = 2 * x;
y = y - 1;

}
}
x = y + 1;

Program

Requirements

Results

Bad news, this is just a dream !

10 / 16



Software Verification: How ?

Software Verifier

x = 1;
if (y <= 10)

y = 10;
else {

while (x < y) {
x = 2 * x;
y = y - 1;

}
}
x = y + 1;

Program

Requirements

Results

Bad news, this is just a dream !

10 / 16



Naive Idea: Graph of all configurations

x = 1;
if (y <= 10) {

y = 10;
}
else {

while (x < y) {
x = 2 * x;
y = y - 1;

}
}
x = y + 1;

i , [4, 1]

if , [1, 1]

th, [1, 1]

fi , [1, 10]

end , [11, 10]

x := 1

y <= 10

y := 10

x := y + 1

i , [4, 11]

if , [1, 11]

wh, [1, 11] wh, [2, 10]

wh, [4, 9]wh, [8, 8]

fi , [8, 8]

end , [9, 8]

x := 1

y > 10

while loop

x>=y

x := y + 1

11 / 16



Practical Limit: Combinatorial Explosion

The amount of available memory of computers is finite, therefore, we could
theoretically systematically explore the whole graph for checking a property:

Software Verification is decidable for finite-state systems.

But, even with bounded memory, complexity in practice is too high for finite-state
model-checking:

1 megabyte (1 000 000 bytes) of memory ≈ 102 400 000 states

1000 variables × 64 bits ≈ 1019 200 states

optimistic limit for finite-state model checkers: 10100 states

And, the complexity of verification algorithms are, most of the time, beyond NP !

12 / 16



Practical Limit: Combinatorial Explosion

The amount of available memory of computers is finite, therefore, we could
theoretically systematically explore the whole graph for checking a property:

Software Verification is decidable for finite-state systems.

But, even with bounded memory, complexity in practice is too high for finite-state
model-checking:

1 megabyte (1 000 000 bytes) of memory ≈ 102 400 000 states

1000 variables × 64 bits ≈ 1019 200 states

optimistic limit for finite-state model checkers: 10100 states

And, the complexity of verification algorithms are, most of the time, beyond NP !

12 / 16



Other naive idea: consider infinite memory

x = 1;
if (y <= 10) {

y = 10;
}
else {

while (x < y) {
x = 2 * x;
y = y - 1;

}
}
x = y + 1;

i

if

th wh1

wh2

wh3
fi

end

x := 1

y <= 10 y > 10

y := 10

x < y

x := 2 * x

x >= y

x := y + 1

y := y - 1

This is a finite presentation of an infinite graph!

13 / 16



Theoritical Limit: Undecidability

As long as we can describe them finitely, infinite graphs are not a problem (e.g.,
Turing Machines). But,

Rice’s Theorem

Any non-trivial semantic property of programs is
undecidable.

Classical Example: Termination
There exists no algorithm which can solve the halting problem on a
Turing-complete language’s program:

given a description of a program as input,
decide whether the program terminates or loops forever.

14 / 16



Summary: Finite and Infinite Graphs

Finite Graphs:

Describes exhaustively a
program (in theory)
Every problem is decidable
In practice, way too big

Infinite Graphs:

Allow to represent unboun-
ded values
Shorter description of a pro-
gram
Almost all problems are unde-
cidable

⇒ We need a compromise between expressiveness and decidability

15 / 16



Possible Compromises
Less Expressive Logics
Using constrained theories help to build smaller proofs.

Propositional logic (with finite number of propositions);
Presburger arithmetic (only addition and multiplication by a constant);
Quantifier-free arithmetic over reals (Tarski decidability theorem).

Less Expressive Models
Using constrained models to regain decidability of some properties.

(Higher-order) Pushdown Automata
Vector Addition Systems

Incomplete Methods
To ensure termination of the algorithms.

Approximate Algorithms
Always terminate;
Indefinite answer (yes/no/dontknow).

Exact Semi-Algorithms
Definite answer (yes/no);
May not terminate.

16 / 16


