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1 SAT

1.1 CNF and DNF

Exercise 1.1
The goal of this exercise is to understand why, while tempting, SAT solvers do not put formulæ
in disjunctive normal form.

1. Give an algorithm deciding whether a propositional formula in Disjunctive Normal Form
(DNF) is satisfiable. What is its time complexity?

2. Transform the following formula in DNF: (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) (i.e., give a
formula in DNF satisfied with exactly the same valuations. What is the size of this
formula? What size would be the DNF of a similar formula with n clauses?

3. Do you think it is possible to transform any propositional formula in CNF in polynomial
time? Why?

Exercise 1.2
Most SAT solvers convert their formulæ in conjunctive normal form (CNF). We show here
that, while counter-intuitive viewing the result of last exercise, it is reasonable.

1. Transform the following formula in CNF: x⇔ (y∧ z). What is the size of this formula?

2. Same question for x⇔ (y ∨ z).

We now consider the formula φ = (¬(x1 ∧ ¬x2) ∨ (¬x2 ∨ x3)) ∧ (¬x3 ∧ (x1 ∨ x2)).

3. Represent φ as a tree.

4. For each binary node of the tree, introduce a fresh variable associated to it, and write a
formula (with ⇔) that describes its relation with its children (taking into account the
negation).

5. Using these facts, construct a formula ψ in CNF containing these new variables that is
satisfiable if and only if φ is satisfiable. Furthermore, the formula should be such that
the valuations satisfying ψ satisfy φ, and every valuation satisfying φ can be extended
into a valuation satisfying ψ. For readability, you can keep the subformula of the form
x⇔ (y ∨ z) and x⇔ (y ∧ z) in this form. What is the size of the CNF formula?

6. Can you apply this algorithm to any formula? What is the size of the CNF formula in
function of the number of literals of the original formula?



Exercise 1.3
This exercise is here to save you some time: you didn’t just earn 1 million dollars.

1. Give a polynomial algorithm deciding whether a propositional formula in CNF is valid.

2. Why can’t you use the previous exercise to decide the validity of any propositional
formula in polynomial time?

1.2 Davis, Putnam, Logemann, Loveland (DPLL) algorithm

The DPLL algorithm is the base of most modern SAT solvers. They use it with good heuristics
allowing to predict which branch have more chance to yield a result, and keep information
from the already explored branches.

In the following rules, C stands for a set of clauses, C for a clause, and ` for a literal.
We depict here the rules of transformation used in the algorithm.

C ∪ {C, `}
Unit Propagation

C ∪ {C ∨ ¬`, `}

C ∪ {`}
Split TrueC

C ∪ {`}
Pure Litteral EliminationC ∪ {C ∨ `, `}

C ∪ {¬`}
Split FalseC

The algorithm DPLL is the following:

DPLL algor i thm (C){

While (UP i s a p p l i c a b l e ){
C := UP(C)

}
While (PLE i s a p p l i c a b l e ){

C := PLE(C)
}
I f ( Fa l se in C) Then return False ;
I f (C i s empty ) Then return True ;
I f (DPLL( S p l i t True (C) ) ) return True
Else Return ( S p l i t Fa l se (C) ) ;

}

In the previous algorithm and rules (namely for split), we did not specify how to choose
the literal to split. That is the main point on which SAT solvers apply their clever heuristics.
We do not ask you to be as clever as a SAT solver here, and these heuristics are out of the
scope of this course.
Exercise 1.4

1. Apply the algorithm on the formula φ of Exercise 1.2. Represent the application as a
tree (it is easier to do).
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2. Prove the correction of the algorithm, i.e., prove that the rules do not change the
satisfiability of the formula.

3. How can you argue the algorithm always terminate? You may need to do a (simple)
assumption not written above.

2 Modelling in FO (without quantifier)

Exercise 1.5
We consider the 3-colouring problem over graphs. We consider we are equipped with a binary
predicate Edge(x,y) indicating the presence of an edge between x and y, and 3 unary predicates
for colors (Red(x), Green(x) and Blue(x)).

1. Write a formula stating that a node x has only one color.

2. Write a formula stating that two nodes x and y have the same color SameColor(x,y).
You may use it as a predicate in the rest of the exercise.

3. Write a formula stating that if there is an edge between x and y, they don’t share the
same colour.

We now consider the vertices to be integers.

4. Write a formula stating that if two different nodes x and y have the same colour, their
sum have a different colour, and they both have a edge towards it.

5. Write a formula stating that if two different nodes have the same colour, their product
have the same colour.

6. Write a formula stating that if a node is even, it has an edge towards its successor.

3


