Guessing the buffer bound for *k*-synchronizability

GT ALGA - Videoconference

Cinzia Di Giusto, Laetitia Laversa and Etienne Lozes June 17, 2021

Université Côte d'Azur - Laboratoire I3S - Sophia Antipolis, France

Distributed systems

- **Distributed System**: several machines that cooperate to achieve a common goal
- Systems are modeled as **Communicating Automata**
- **Synchronous** Communication: sending and receiving happen simultaneously
- Asynchronous Communication: receiving is separated from sending
 - FIFO Buffers in mailbox configuration

Asynchronous CA are Turing equivalent

 \Rightarrow How can we mimic synchronous communication while keeping some degrees of freedom?

- Existentially k-bounded [Lorhey et al., 2004]
- Synchronizability [Basu et al., 2016]
- k-synchronizability [Bouajjani et al., 2018]

How to model distributed systems

Graphical representation of executions

 MSCs focus on the partial order among actions

$$p$$
 : $?m_1 < !m_3$ et

 $q : !m_1 < ?m_2 < ?m_3$

Possible linearizations:

 $e_1 = [m_1 ? m_1] m_2 ? m_2] m_3 ? m_3$

 $e_2 = |m_1| |m_2| ?m_1 |m_3| ?m_2| ?m_3$ $m_{sc}(e_1) = m_{sc}(e_2)$

k-Synchronizability

k-Exchange

• k send actions followed by at most k receptions

1-exchanges 2-exchanges

• A k-exchange is an exchange

A k-synchronizable system

Receptions match the order of send actions:

```
if !m_1 < !m_2 then ?m_1 < ?m_2
```

k-synchronous MSC

- 1. There is a linearization that satisfies causal delivery
- 2. The MSC is divisible into k-exchanges

k-synchronizable system

A system is *k*-synchronizable if all its executions are *k*-synchronizable.

A k-synchronizable system

Receptions match the order of send actions:

if $!m_1 < !m_2$ then $?m_1 < ?m_2$

k-synchronous MSC

1. There is a linearization that satisfies causal delivery

2. The MSC is divisible into k-exchanges

k-synchronizable system

A system is *k*-synchronizable if all its executions are *k*-synchronizable.

A linearization that satisfies causal delivery

 $!m_3 <?m_1 \text{ and } !m_1 <!m_2$ and $?m_2 <?m_3$ $\rightarrow !m_1!m_2?m_2!m_3?m_3?m_1$

 $m_3 < m_1 \text{ and } m_1 < m_2$ and $m_2 < m_3$ $\rightarrow m_1 m_2 m_2 m_3 m_3 m_1$

A linearization that satisfies causal delivery

No constraints $\rightarrow !m_2!m_1?m_2$

!m1 < !m2 $\rightarrow !m_1!m_2?m_2$

9/32

k-synchronous MSC

- 1. There is a linearization that satisfies causal delivery
- 2. The MSC is divisible into k-exchanges

The MSC is divisible into *k*-exchanges

Not divisible in k-exchanges

Divisible in k-exchanges

State of the art

- For a given k, is this system k-synchronizable ?
 - \Rightarrow **Decidable**
 - Proven in [Bouajjani et al., 2018]
 - Adjusted and adapted to peer-to-peer systems in [Di Giusto *et al.*, 2020]
- Global idea
 - Looking for an execution not k-synchronizable
- Limitation: we need to set k

New problem !

Can we compute k such that a system is k-synchronizable ?

Yes!

 $\rightarrow\,$ Today: How to do that?

Characterization of *k*

Prime exchange and Reachable exchange

Definition : Prime exchange

An exchange μ is **prime** if there is no decomposition $\mu=\mu_1\cdots\mu_n.$

A not prime exchange 3 prime exchanges

Prime exchange and Reachable exchange

Definition : Prime exchange

An exchange μ is **prime** if there is no decomposition $\mu=\mu_1\cdots\mu_n.$

A not prime exchange 3 prime exchanges

Definition : Reachable exchange

An exchange μ is **reachable** if there are *n* exchanges $\mu_1 \cdots \mu_n$ such that $\mu_1 \cdots \mu_n \cdot \mu$ is an MSC of the system.

Characterization of *k*

Observation

A system is k-synchronizable \Rightarrow all exchanges are $\leq k$.

k corresponds to

the size of the largest prime and reachable exchange

To find k:

- Search for all exchanges
- Take the largest one
- Compute its size

How to search for all exchanges ?

- 1. Encode exchanges by words
- 2. Show that the set of reachable exchanges is a regular effective language
- 3. Show that the set of prime exchanges is a regular effective language
- 4. Find the size of the largest word in the intersection

A partial order \rightarrow a word of matched and unmatched messages

How to search for all exchanges ?

- 1. Encode exchanges by words
- 2. Show that the set of reachable exchanges is a regular effective language
- 3. Show that the set of prime exchanges is a regular effective language
- 4. Find the size of the largest word in the intersection

- We want to show that the language of reachable exchanges is regular
- 3 steps :
 - an automaton from global states
 - an automaton to verify causal delivery
 - a combination of both

An exchange

- 1. starts from a global state (in)
- 2. does only sends
- 3. transits through a middle state (mid)
- 4. does only receptions
- 5. arrives in a final state (fin)

Building: sort of product of sends from *init* to *mid* and of receptions from *mid* to *fin*

Reachable exchanges - Automaton of global states

$$in = (0, 0, 0), mid = (2, 0, 1), fin = (2, 1, 2)$$

$$\stackrel{p}{\longrightarrow} 0 \xrightarrow{!a^{p \to r}} 1 \xrightarrow{!c^{p \to q}} 2 \xrightarrow{!q} 0 \xrightarrow{?b^{r \to q}} 1 \xrightarrow{!r} 0 \xrightarrow{!b^{r \to q}} 1 \xrightarrow{?a^{p \to r}} 2$$

$$\underbrace{SR(in, mid, fin)}_{(2, 0, 2)} \xrightarrow{!c^{p \to q}} ((1, 0, 1), \underbrace{!?a^{p \to r}}_{(2, 0, 1)} ((2, 0, 1)), \underbrace{!c^{p \to q}}_{(2, 0, 1)} ((2, 0$$

 $\mathsf{Idea} \to \mathsf{store}$ who have send unmatched messages

p is not allowed to send messages to q

- 1. Language of causal delivery exchanges depends on
 - a triple of global state and
 - an initial and a final state of buffers
- 2. Concatenate them to obtain the **regular** language of reachable exchanges

How to search for all exchanges ?

- 1. Encode exchanges by words
- 2. Show that the set of reachable exchanges is a regular effective language
- 3. Show that the set of prime exchanges is a regular effective language
- 4. Find the size of the largest word in the intersection

Prime

An exchange μ is **prime** if there is no decomposition $\mu = \mu_1 \cdots \mu_n$.

How to determine if an exchange is prime ?

 \Rightarrow With its conflict graph

Conflict Graph

- It shows messages and their dependencies
- Labels express the type of dependency

(S = Send, R = Receive)

- 1 SCC \rightarrow prime exchange
- more than 1 SCC \rightarrow not prime exchange

But build all possible conflict graphs : not possible

- \Rightarrow Abstraction !
- In 4 steps :
 - 1. Add processes
 - 2. Merging nodes
 - 3. Delete useless processes
 - 4. Delete useless nodes

- Each state is an abstraction of conflict graph
- Each transition add a message
- Final states \Leftrightarrow Conflict graphs with 1 SCC
- \Rightarrow The language of prime exchanges is regular

How to search for all exchanges ?

- 1. Encode exchanges by words
- 2. Show that the set of reachable exchanges is a regular effective language
- 3. Show that the set of prime exchanges is a regular effective language
- 4. Find the size of the largest word in the intersection

Computation of *k*

Computation of *k*

We are searching for the *length of the largest prime reachable exchange*

We have seen that

- language of reachable exchanges is regular
- language of prime exchanges is regular
- $\Rightarrow\,$ Then we can find the largest prime reachable exchange

Last things:

- We need to test it
- If the system is not k-synchronizable, there is no other k' such that the system is k'-synchronizable

- Conclusion
 - We knew how to test k-synchronizability for a give k
 - Now, we can guess the k
- Future works : extend definition of k-synchronizability

Thank you!

Bibliography

- Di Giusto, Laversa & Lozes. Guessing the buffer bound for k-synchronizability. To be published in *CIAA* 2021
- Di Giusto, Laversa & Lozes. On the k-synchronizability of Systems. In *Fossacs* 2020, 157-176.
- Lohrey & Muscholl. Bounded MSC communication. Information and Computation, 2004, 189(2), 160-181.
- Basu & Bultan. On deciding synchronizability for asynchronously communicating systems. *Theoretical Computer Science*, 2016, 656, 60-75.
- Bouajjani, Enea, Ji & Qadeer. On the completeness of verifying message passing programs under bounded asynchrony. In *Cav* 2018 372-391.

\Rightarrow A system is not *k*-synchronizable iff there exists a borderline violation

Borderline violation

It is an execution that is not k-synchronizable but it can be made by removing the last reception.

Borderline violation

Borderline violation

It is an execution that is not k-synchronizable but it can be made by removing the last reception.

$$\mathbf{e} = !m_1^{p \to q} !m_2^{q \to p} ?m_2^{q \to p} ?m_1^{p \to q} \mathbf{e'} = !m_1^{p \to q} !m_2^{q \to p} ?m_2^{q \to p}$$

Is a system k-synchronizable?
(for a given k)

Construction of system with a deviated message

 \Rightarrow Borderline executions become *k*-synchronizable

Feasible execution, bad execution

A *k*-synchronizable execution *e* is **feasible** if there is an execution $e' \cdot r$ such that $deviate(e' \cdot r) = e$.

An execution is **bad** if it is not *k*-synchronizable.

A system is not *k*-synchronizable iff there is a *k*-synchronizable deviated execution that is feasible and bad.

 Identify causal delivery executions in the deviated system

 \Rightarrow We select only **feasible** executions

Causal delivery

Characterization

An MSC satisfies causal delivery iff there is no cyclic dependency $m \xrightarrow{SS} m$ in its conflict graph.

When an MSC is divisible into *k*-exchanges

Characterization

Its conflict graph does not contain any strongly connected component that:

- is of size > k
- contains an RS label

2. Recognize bad executions

Causal delivery

Example of the effect of unmatched messages

 $e = !m_3!m_1!m_2?m_3?m_2$

Counter-example of Bouajjani et al.

• The strongly connected component has size 5 while the longest cycle 4.

Extended Conflict Graphs of *k***-exchanges**

How to find the original SCC of a deviated message

