

Dynamic Membership for Regular Languages

Antoine Amarilli¹, Louis Jachiet¹, Charles Paperman²

June 18, 2021

¹Télécom Paris

²Université de Lille

Problem: dynamic membership for regular languages

• Fix a regular language L

$$\rightarrow$$
 E.g., $L = (ab)^*$

• Read an input word w with n := |w|

$$\rightarrow$$
 E.g., $w = abbbab$

Problem: dynamic membership for regular languages

Fix a regular language L

$$\rightarrow$$
 E.g., $L = (ab)^*$

• Read an input word w with n := |w|

$$\rightarrow$$
 E.g., $\mathbf{w} = \mathbf{abbbab}$

- Preprocess it in O(n)
 - \rightarrow E.g., we have $\mathbf{w} \notin \mathbf{L}$

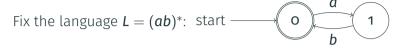
Problem: dynamic membership for regular languages

- · Fix a regular language L
 - \rightarrow E.g., $L = (ab)^*$
- Read an input word w with n := |w|
 - \rightarrow E.g., $\mathbf{w} = \mathbf{abbbab}$
- Preprocess it in O(n)
 - \rightarrow E.g., we have $\mathbf{w} \notin \mathbf{L}$
- Maintain the membership of w to L under substitution updates
 - \rightarrow E.g., replace character at position 3 with a: we now have $w \in L$

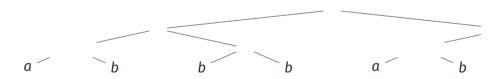
Design choices

- Model: RAM model
 - Cell size in $\Theta(\log(n))$
 - Unit-cost arithmetics
- Updates: only substitutions (so n never changes)
 - · Otherwise, already tricky to maintain the current state of the word
- Memory usage: always polynomial in n by definition of the model
 - Our upper bounds only need O(n) space
 - The lower bounds apply without this assumption
- Preprocessing:
 - The upper bounds only need O(n) preprocessing
 - The lower bounds apply without this assumption

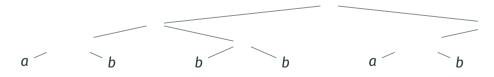
• Build a balanced binary tree on the input word w = abaabb



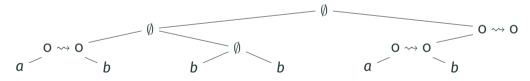
• Build a balanced binary tree on the input word w = abaabb



- Build a balanced binary tree on the input word w = abaabb
- Label each node n by the transition monoid element: all pairs $q \rightsquigarrow q'$ such that we can go from q to q' by reading the factor below n

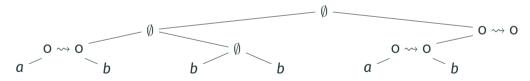


- Build a balanced binary tree on the input word w = abaabb
- Label each node n by the transition monoid element: all pairs $q \rightsquigarrow q'$ such that we can go from q to q' by reading the factor below n



Fix the language
$$L = (ab)^*$$
: start 0

- Build a balanced binary tree on the input word w = abaabb
- Label each node n by the transition monoid element: all pairs $q \rightsquigarrow q'$ such that we can go from q to q' by reading the factor below n



- The tree root describes if $w \in L$
- We can update the tree for each substitution in $O(\log n)$
- Can be improved to $O(\log n/\log \log n)$ with a log-ary tree

Can we do better than $O(\log n)$?

For our language $L = (ab)^*$ we can handle updates in O(1):

Can we do better than $O(\log n)$?

For our language $L = (ab)^*$ we can handle updates in O(1):

- Check that n is even
- · Count violations: a's at even positions and b's at odd positions
- Maintain this counter in constant time
- We have $w \in L$ iff there are no violations

Can we do better than $O(\log n)$?

For our language $L = (ab)^*$ we can handle updates in O(1):

- · Check that *n* is even
- · Count violations: a's at even positions and b's at odd positions
- Maintain this counter in constant time
- We have $\mathbf{w} \in \mathbf{L}$ iff there are no violations

Question: what is the complexity of dynamic membership, depending on the fixed regular language *L*?

Dynamic word problem for monoids

To answer the question, we study the dynamic word problem for monoids:

- Problem definition:
 - Fix a monoid M (set with associative law and neutral element)
 - Input: word w of elements of M
 - Maintain the product of the elements under substitution updates

Dynamic word problem for monoids

To answer the question, we study the dynamic word problem for monoids:

- Problem definition:
 - Fix a monoid M (set with associative law and neutral element)
 - Input: word w of elements of M
 - · Maintain the **product** of the elements under substitution updates
- This is a **special case** of dynamic membership for regular languages
 - e.g., it assumes that there is a neutral element
- This problem was studied by [Skovbjerg Frandsen et al., 1997]:
 - \rightarrow in O(1) for commutative monoids
 - \rightarrow in $O(\log \log n)$ for group-free monoids
 - \rightarrow in $\Theta(\log n/\log\log n)$ for a certain class of monoids

Our results on the dynamic word problem for monoids

ZG: in O(1) not in O(1)?

- We identify the class **ZG** satisfying $x^{\omega+1}y = yx^{\omega+1}$:
 - for any monoid in **ZG**, the problem is in O(1)
 - for any monoid not in ZG, we can reduce from a problem that we conjecture is not in O(1)

Our results on the dynamic word problem for monoids

ZG: in *O*(1)

SG: in $O(\log \log n)$ not in O(1)?

All: in $\Theta(\log n / \log \log n)$

- We identify the class **ZG** satisfying $x^{\omega+1}y = yx^{\omega+1}$:
 - for any monoid in **ZG**, the problem is in O(1)
 - for any monoid **not** in **ZG**, we can reduce from a problem that we **conjecture** is **not** in *O*(1)
- We identify the class **SG** satisfying $x^{\omega+1}yx^{\omega}=x^{\omega}yx^{\omega+1}$
 - for any monoid in **SG**, the problem is in $O(\log \log n)$
 - for any monoid not in SG, it is in $\Omega(\log n/\log\log n)$ (lower bound of Skovbjerg Frandsen et al.)

Our results on the dynamic word problem for monoids

ZG: in *O*(1)

SG: in $O(\log \log n)$ not in O(1)?

All: in $\Theta(\log n / \log \log n)$

- We identify the class **ZG** satisfying $x^{\omega+1}y = yx^{\omega+1}$:
 - for any monoid in **ZG**, the problem is in O(1)
 - for any monoid **not** in **ZG**, we can reduce from a problem that we **conjecture** is **not** in *O*(1)
- We identify the class **SG** satisfying $x^{\omega+1}yx^{\omega}=x^{\omega}yx^{\omega+1}$
 - for any monoid in **SG**, the problem is in $O(\log \log n)$
 - for any monoid not in **SG**, it is in $\Omega(\log n/\log\log n)$ (lower bound of Skovbjerg Frandsen et al.)
- The problem is always in $O(\log n / \log \log n)$

Results on the dynamic membership problem for regular languages

QLZG: in *O*(1)

QSG: in $O(\log \log n)$ not in O(1)?

All: in $\Theta(\log n / \log \log n)$

Our results extend to regular language classes called **QLZG** and **QSG**

 \rightarrow We define them in the sequel

Results on monoids

O(1) upper bound for monoids

Theorem

The dynamic word problem for commutative monoids is in O(1)

Algorithm:

- Count the number n_m of occurrences of each element m of M in w
- Maintain the counts n_m under updates
- Evaluate the product as $\prod_{m \in M} m^{n_m}$ in O(1)

O(1) upper bound for monoids

Theorem

The dynamic word problem for commutative monoids is in O(1)

Algorithm:

- Count the number n_m of occurrences of each element m of M in w
- Maintain the counts n_m under updates
- Evaluate the product as $\prod_{m \in M} m^{n_m}$ in O(1)

Lemma (Closure under monoid variety operations)

The **submonoids**, **direct products**, **quotients** of tractable monoids are also tractable

O(1) upper bound for monoids (cont'd)

Theorem

The monoids S^1 where we add an identity to a nilpotent semigroup S are in O(1)

Idea of the proof: consider e*ae*be*

O(1) upper bound for monoids (cont'd)

Theorem

The monoids S^1 where we add an identity to a nilpotent semigroup S are in O(1)

Idea of the proof: consider e*ae*be*

- Preprocessing: prepare a doubly-linked list L of the positions containing a's and b's
- Maintain the (unsorted) list when a's and b's are added/removed
- Evaluation:
 - If there are not exactly two positions in L, answer no
 - Otherwise, check that the smallest position of these two is an a and the largest is a b

O(1) upper bound for monoids (cont'd)

Theorem

The monoids S^1 where we add an identity to a nilpotent semigroup S are in O(1)

Idea of the proof: consider e*ae*be*

- Preprocessing: prepare a doubly-linked list L of the positions containing a's and b's
- Maintain the (unsorted) list when a's and b's are added/removed
- Evaluation:
 - If there are not exactly two positions in L, answer no
 - Otherwise, check that the smallest position of these two is an a and the largest is a b

This technique applies to monoids where we intuitively need to track a constant number of non-neutral elements

O(1) upper bound for monoids (end)

Call **ZG** the variety of monoids satisfying $x^{\omega+1}y = yx^{\omega+1}$ for all x, y

- \rightarrow Elements of the form $\mathbf{x}^{\omega+1}$ are those belonging to a subgroup of the monoid
- \rightarrow This includes in particular all idempotents (xx = x)
- \rightarrow The $x^{\omega+1}$ are central: they commute with all other elements

O(1) upper bound for monoids (end)

Call **ZG** the variety of monoids satisfying $x^{\omega+1}y = yx^{\omega+1}$ for all x, y

- \rightarrow Elements of the form $x^{\omega+1}$ are those belonging to a subgroup of the monoid
- \rightarrow This includes in particular all idempotents (xx = x)
- \rightarrow The $x^{\omega+1}$ are central: they commute with all other elements

Lemma

ZG is exactly the monoids obtainable from commutative monoids and monoids of the form S^1 for a nilpotent semigroup S via the monoid variety operators

Theorem

The dynamic word problem for monoids in **ZG** is in O(1)

$O(\log \log n)$ upper bound for monoids

Call **SG** the variety of monoids satisfying $x^{\omega+1}yx^{\omega} = x^{\omega}yx^{\omega+1}$ for all x,y

→ Intuition: we can swap the elements of any given subgroup of the monoid

Examples:

- All **ZG** monoids (where elements $x^{\omega+1}$ commute with everything)
- All group-free monoids (where subgroups are trivial)
- Products of ZG monoids and group-free monoids

$O(\log \log n)$ upper bound for monoids

Call **SG** the variety of monoids satisfying $x^{\omega+1}yx^{\omega} = x^{\omega}yx^{\omega+1}$ for all x,y

→ Intuition: we can swap the elements of any given subgroup of the monoid

Examples:

- All **ZG** monoids (where elements $x^{\omega+1}$ commute with everything)
- All group-free monoids (where subgroups are trivial)
- Products of ZG monoids and group-free monoids

Theorem

The dynamic word problem for monoids in **SG** is in $O(\log \log n)$

Tools: induction on \mathcal{J} -classes, Rees-Sushkevich theorem, Van Emde Boas trees

Lower bounds

All lower bounds reduce from the **prefix problem** for some language *L*:

- Maintain a word under substitution updates
- Answer queries asking if a given prefix of the current word is in L

Lower bounds

All lower bounds reduce from the **prefix problem** for some language *L*:

- Maintain a word under substitution updates
- Answer queries asking if a given prefix of the current word is in L

Specifically:

- Prefix- \mathbb{Z}_d : for $\Sigma = \{0, ..., d-1\}$, does the input prefix sum to 0 modulo d? \rightarrow Known lower bound of $\Omega(\log n/\log\log n)$
- Prefix- U_1 : for $\Sigma = \{0, 1\}$, does the queried prefix contain a o?
 - \rightarrow We conjecture that this cannot be done in O(1)

Lower bounds

All lower bounds reduce from the **prefix problem** for some language *L*:

- Maintain a word under substitution updates
- Answer queries asking if a given prefix of the current word is in L

Specifically:

- Prefix- \mathbb{Z}_d : for $\Sigma = \{0, ..., d-1\}$, does the input prefix sum to 0 modulo d? \rightarrow Known lower bound of $\Omega(\log n/\log\log n)$
- Prefix- U_1 : for $\Sigma = \{0,1\}$, does the queried prefix contain a O?
 - \rightarrow We conjecture that this cannot be done in O(1)

Theorem (Lower bounds on a monoid *M*)

- If M is not in SG, then for some $d \in \mathbb{N}$ the Prefix- \mathbb{Z}_d problem reduces to the dynamic word problem for M
- If **M** is in $SG \setminus ZG$, then Prefix-U₁ reduces to the dynamic word problem for **M**

Results on languages (via semigroups)

From monoids to semigroups

- · Semigroup: like a monoid but possibly without a neutral element
- · Dynamic word problem for semigroups: defined like for monoids

What is the difference?

- The language $\Sigma^*(ae^*a)\Sigma^*$ on $\Sigma=\{a,b,e\}$ has a neutral letter e that we intuitively need to "jump over"
- The language $\Sigma^*aa\Sigma^*$ on $\Sigma=\{a,b\}$ without e can be maintained in O(1) by counting the factors aa

Local monoids in semigroups

- · A local monoid of a semigroup S is a subset of S that has a neutral element
 - \rightarrow If S has a local monoid M then the dynamic word problem for M reduces to S
 - \rightarrow Lower bounds on M thus apply to S

Local monoids in semigroups

- A local monoid of a semigroup **S** is a subset of **S** that has a neutral element
 - \rightarrow If S has a local monoid M then the dynamic word problem for M reduces to S
 - \rightarrow Lower bounds on M thus apply to S
- · Hence, we define:
 - LSG: all local monoids are in SG
 - \rightarrow We show **LSG** = **SG** and extend our bounds to semigroups in **SG**

Local monoids in semigroups

- · A local monoid of a semigroup S is a subset of S that has a neutral element
 - \rightarrow If S has a local monoid M then the dynamic word problem for M reduces to S
 - → Lower bounds on *M* thus apply to *S*
- · Hence, we define:
 - LSG: all local monoids are in SG
 - \rightarrow We show **LSG** = **SG** and extend our bounds to semigroups in **SG**
 - LZG: all local monoids are in ZG
 - ightarrow We have **LZG** \neq **ZG** and show bounds for semigroups in **LZG**

From semigroups to languages

We now move back to dynamic membership for regular languages

- Dynamic membership for a regular language L is like the dynamic word problem for its syntactic semigroup
 - → This is like the transition monoid but without the neutral element
- Difference: not all elements of the syntactic semigroup can be achieved as one letter
- → We use instead the **stable semigroup**, which intuitively groups letters together into **blocks** of a constant size

From semigroups to languages (cont'd)

Call QLZG and QSG the languages whose stable semigroup is in ZG and SG

Theorem

Our results on **semigroups** in **SG** and **LZG** extend to **regular languages** in **QSG** and **QLZG**

From semigroups to languages (cont'd)

Call QLZG and QSG the languages whose stable semigroup is in ZG and SG

Theorem

Our results on **semigroups** in **SG** and **LZG** extend to **regular languages** in **QSG** and **QLZG**

For any regular language **L**:

- If L is in QLZG then dynamic membership is in O(1)
- If L is not in QSG \setminus QLZG then dynamic membership is in $O(\log \log n)$ and has a reduction from prefix-U₁
- If L is not in QSG then dynamic membership is in $\Theta(\log n/\log\log n)$

- Can one show a superconstant lower bound on prefix-U₁?
 - ightarrow Help welcome! but new techniques probably needed

- Can one show a superconstant lower bound on prefix-U₁?
 - → **Help welcome!** but new techniques probably needed
- What about intermediate cases between O(1) and $O(\log \log n)$
 - Yes with randomization: one language in $\Theta(\log \log n)$ and one in $O(\sqrt{\log \log n})$
 - Question: can the intermediate classes be characterized?

- Can one show a superconstant lower bound on prefix-U₁?
 - → Help welcome! but new techniques probably needed
- What about intermediate cases between O(1) and $O(\log \log n)$
 - Yes with randomization: one language in $\Theta(\log \log n)$ and one in $O(\sqrt{\log \log n})$
 - Question: can the intermediate classes be characterized?
- Meta-dichotomy: what is the complexity of finding which case occurs?
 - → Probably PSPACE-complete (depends on the representation)

- Can one show a superconstant lower bound on prefix-U₁?
 - → **Help welcome!** but new techniques probably needed
- What about intermediate cases between O(1) and $O(\log \log n)$
 - Yes with randomization: one language in $\Theta(\log \log n)$ and one in $O(\sqrt{\log \log n})$
 - · Question: can the intermediate classes be characterized?
- Meta-dichotomy: what is the complexity of finding which case occurs?
 - → Probably PSPACE-complete (depends on the representation)
- What about a dichotomy for the prefix problem or infix problem?
 - → We have such a result but inelegant characterization

- Can one show a superconstant lower bound on prefix-*U*₁?
 - → **Help welcome!** but new techniques probably needed
- What about intermediate cases between O(1) and $O(\log \log n)$
 - Yes with randomization: one language in $\Theta(\log \log n)$ and one in $O(\sqrt{\log \log n})$
 - Question: can the intermediate classes be characterized?
- Meta-dichotomy: what is the complexity of finding which case occurs?
 - → Probably PSPACE-complete (depends on the representation)
- What about a dichotomy for the prefix problem or infix problem?
 - → We have such a result but inelegant characterization
- What about languages that are non-regular?

- Can one show a superconstant lower bound on prefix-U₁?
 - → **Help welcome!** but new techniques probably needed
- What about intermediate cases between O(1) and $O(\log \log n)$
 - Yes with randomization: one language in $\Theta(\log \log n)$ and one in $O(\sqrt{\log \log n})$
 - · Question: can the intermediate classes be characterized?
- Meta-dichotomy: what is the complexity of finding which case occurs?
 - → Probably PSPACE-complete (depends on the representation)
- What about a dichotomy for the prefix problem or infix problem?
 - ightarrow We have such a result but inelegant characterization
- What about languages that are non-regular?

References i

Fredman, M. and Saks, M. (1989).

The cell probe complexity of dynamic data structures.

In STOC, pages 345-354.

Patrascu, M. (2008).

Lower bound techniques for data structures.

PhD thesis, Massachusetts Institute of Technology.

Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997). **Dynamic word problems.**

JACM, 44(2):257-271.

$O(\log \log n)$ upper bound for monoids (proof sketch)

Example :
$$\Sigma^*(ae^*a)\Sigma^*$$
 on $\Sigma = \{a, b, e\}$

- · Idea: maintain the count of factors ae*a
- Problem: to do this, we need to "jump over" the e's
- → Van Emde Boas tree data structure:
 - maintain a subset of $\{1, ..., n\}$ under insertions/deletions
 - jump to the prev/next element in $O(\log \log n)$

Full proof: induction on \mathcal{J} -classes and Rees-Sushkevich theorem

Extending SG to semigroups

We can show that, for semigroups:

Lemma

A semigroup satisfies the equation of SG iff it is in LSG

Hence, as the algorithm for **SG** works for semigroups as well as monoids:

Theorem

For any semigroup **S**:

- If S is in SG, then the dynamic word problem is in $O(\log \log n)$
- Otherwise, the dynamic word problem is $in \Theta(\log n/\log \log n)$

Case of ZG

We have $ZG \neq LZG$, but we can still show:

Theorem

For any semigroup **S**:

- If S is in LZG, then the dynamic word problem is in O(1)
- Otherwise, it has a reduction from Prefix-U₁

Case of ZG

We have $ZG \neq LZG$, but we can still show:

Theorem

For any semigroup **S**:

- If S is in LZG, then the dynamic word problem is in O(1)
- Otherwise, it has a reduction from Prefix-U₁

Proof sketch: only need to show the **upper bound**:

- We show the O(1) upper bound on the semidirect product ZG * D
 of ZG with definite semigroups
- We show an independent locality result: LZG = ZG * D
 - → Technical proof relying on finite categories and Straubing's delay theorem

Difference between the stable semigroup and syntactic semigroup

- Dynamic membership for $(aa)^*ba^*$ is in O(1): count the b's at even and odd positions
- The dynamic word problem for its syntactic semigroup has a reduction from \mathbb{Z}_2