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Introduction

» Controller | Stochastic model of environment = System
» Maximize reward ~» exploring the consequences of our decisions

> Very large systems ~» sparse exploration, anytime algorithms
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Introduction

» Controller | Stochastic model of environment = System
» Maximize reward ~» exploring the consequences of our decisions

> Very large systems ~» sparse exploration, anytime algorithms

» Monte Carlo tree search algorithm

» Formal guarantees
» Symbolic advice to guide the exploration

» Learn the model?
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Playing on an MDP

Markov Decision Process

N—=

1
> Path of length 2: 55 25-2» s1 25-25 s,
> Strategy: 0: S — A

[N}
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Playing on an MDP

Markov Decision Process

IN)
-

» Path of length 2: sy SNEEN s SRR S»
» Strategy: 0:S — A
» Infinite-horizon average reward:
Val(so, o) = limp_y0e HE [Reward(p)]
where p is a random variable over Paths'(sp, o)
» Val(sg) = maxg.s4 Val(sp, o)
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Example: Pac-Man as an MDP

> States: position of every agent,
what food is left

» Actions: Pac-Man moves

» Controller: Pac-Man
» Probabilistic model of ghosts

» Stochastic transitions: ghost moves
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Example: Pac-Man as an MDP

> States: position of every agent,
what food is left

» Actions: Pac-Man moves

Controller: Pac-Man
Probabilistic model of ghosts

Reward for eating food . .
» Stochastic transitions: ghost moves

» Large MDP: ~ 10%° states

vV v v VY

Large penalty for losing
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Receding horizon
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» Unfolding of the MDP
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Receding horizon
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» Unfolding of the MDP

» Finite horizon computation of the best action: total reward

» Sliding window of depth H
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Receding horizon
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Unfolding of the MDP

Finite horizon computation of the best action: total reward
Sliding window of depth H

» H big enough ~» optimal strategy
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Final rewards

dy @ an

» H not big enough ~» rewards on leaves

» Estimations for long-term behaviours
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Sparse exploration

dai @ ar

@@ 6@ @@@ 0’@ @@@

» Large unfolding ~ heuristics
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Sparse exploration

Large unfolding ~ heuristics
Uniform simulation: select actions at random to obtain a path

Average reward over a few simulations ~ estimate of VaIH(so)

vV v v v

No formal guarantees of convergence
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Monte Carlo tree search (MCTS)
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> lterative construction of a sparse tree with value estimates
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Monte Carlo tree search (MCTS)
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» lterative construction of a sparse tree with value estimates

» Selection of a new node ~» simulation
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Monte Carlo tree search (MCTS)
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> lterative construction of a sparse tree with value estimates
» Selection of a new node ~» simulation ~ update of the estimates
» MCTS converges to the optimal choice (Kocsis & Szepesvari, 2006)
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Theoretical guarantees
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Sampling an unknown distribution

S,+t

E[Reward] ESH
; S,—t

machine

» Consider a slot machine (one-armed bandit)
» hidden reward distribution

» Estimate the expected reward?
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Sampling an unknown distribution

S,+t

E[Reward] ESH
; S,—t

machine

» Consider a slot machine (one-armed bandit)
» hidden reward distribution

» Estimate the expected reward?

Chernoff-Hoeffding inequalities
Let X1, Xa, ... X, be indep. random variables in [0,1], S, = 1> X;.

> P[E[S,] > S, + t] < exp (~2n%)
> ]P)|:]E[5n] <S, - t} < exp (—2nt?).

10/28 Monte Carlo Tree Search for MDPs:,Formal Guarantees and Symbolic Advice



Multi-armed bandit and UCB algorithm

» Finite set of machines (actions), that give rewards when played
» Every machine has a hidden reward distribution

> How to find the best machine (expected reward)?

» Take samples according to a strategy, try to minimize regret
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Multi-armed bandit and UCB algorithm

Finite set of machines (actions), that give rewards when played
Every machine has a hidden reward distribution

How to find the best machine (expected reward)?

vV v v v

Take samples according to a strategy, try to minimize regret

v

UCB (Auer, Cesa-Bianchi, & Fischer, 2002) is a popular strategy

v

It offers a solution to the exploitation/exploration trade-off

» Optimal: regret is bounded logarithmically
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Upper-Confidence Bounds
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» confidence intervals around our observations
» UCB chooses the action with highest upper bound
» Optimism in the Face of Uncertainty
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Upper-Confidence Bounds

ai an as dsg
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actions

» confidence intervals around our observations
» UCB chooses the action with highest upper bound
» Optimism in the Face of Uncertainty
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The MCTS algorithm using UCB (Kocsis & Szepesvari, 2006)

ai @ an

1%
.\\ 1 9
34 Va da
y)
7
O]
V2 32 a an

@6 ©

> Every state is seen as an instance of a bandit problem

» Selecting an action ~ reward in the backwards propagation phase
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The MCTS algorithm using UCB (Kocsis & Szepesvari, 2006)
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> Every state is seen as an instance of a bandit problem

» Selecting an action ~ reward in the backwards propagation phase
» Using UCB for selection ~» the rewards change over time
>

Non-stationary bandits with Drift conditions
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Non-stationary bandits and drift conditions

» The reward distributions change after each play
» They must follow some assumptions (Drift conditions):

> The expected average reward of the first n plays of a converges
> Tail inequalities: same shape as Chernoff-Hoeffding
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Non-stationary bandits and drift conditions

v

The reward distributions change after each play

v

They must follow some assumptions (Drift conditions):

> The expected average reward of the first n plays of a converges
> Tail inequalities: same shape as Chernoff-Hoeffding

v

UCB can be extended under these assumptions

When using UCB for selecting actions in MCTS, the reward
distributions satisfy the drift conditions (Kocsis & Szepesvari, 2006)

v
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Convergence of MCTS (Kocsis & Szepesvari, 2006)
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> After a given number of iterations n, MCTS outputs the best action

» The probability of choosing a suboptimal action converges to zero

> v; converges to the real value of a; at a speed of (logn)/n
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Convergence of MCTS with simulation
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» Unlike (Kocsis & Szepesvari, 2006), MCTS is often implemented with a
simulation phase used to initialise value estimates

» This changes the reward distributions of all UCB instances
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Convergence of MCTS with simulation

dai @ an
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» Unlike (Kocsis & Szepesvari, 2006), MCTS is often implemented with a
simulation phase used to initialise value estimates

» This changes the reward distributions of all UCB instances

» We show that the convergence properties of MCTS are maintained
for all simulations: any strategy can be used to draw samples
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Recent patch to MCTS

» The proof of (Kocsis & Szepesvari, 2006) is incomplete

» random variables assumed to be independent are not
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Recent patch to MCTS

» The proof of (Kocsis & Szepesvari, 2006) is incomplete

» random variables assumed to be independent are not

» Non-Asymptotic Analysis of Monte Carlo Tree Search -
SIGMETRICS '20, by (Shah, Xie, & Xu, 2020) fixed it!

» polynomial bias: \/n instead of log(n)
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Symbolic advice
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Symbolic advice
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> An advice is a subset of Paths"(sp)

» Defined symbolically as a logical formula ¢ (reachability or safety
property, LTL formula over finite traces, regular expression .. .)

X
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Symbolic advice
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> An advice is a subset of Paths'(sp)

» Defined symbolically as a logical formula ¢ (reachability or safety
property, LTL formula over finite traces, regular expression .. .)
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Symbolic advice
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> An advice is a subset of Paths"(sp)

» Defined symbolically as a logical formula ¢ (reachability or safety
property, LTL formula over finite traces, regular expression .. .)

> ¢ defines a pruning of the unfolded MDP
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MCTS under advice
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» Select actions in the unfolding pruned by a selection advice ¢
» Simulation is restricted according to a simulation advice 1
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Safety property

» Some states are unsafe and should be avoided
» Advice 1: set of safe paths G. (x,¥)p # (x,¥)g
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Safety property

» Some states are unsafe and should be avoided
» Advice 1: set of safe paths G. (x,¥)p # (x,¥)g

» Stronger property: safety is ensured no matter what stochastic
transitions are taken

» Enforceable advice p: set of paths so that every action chosen is
compatible with a strategy that enforces safety with horizon H
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Boolean Solvers

» The safety property ¢ can be encoded as a Boolean Formula
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Boolean Solvers

» The safety property ¢ can be encoded as a Boolean Formula

QBF solver

> A first action ag is compatible with ¢ iff
Vs;da1Vsy ..., spapsia1se ... =

» Inductive way of constructing paths that satisfy the enforceable
advice ¢

» Alternation of quantifiers ~ guarantee safety for h < H
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Boolean Solvers

» The safety property ¢ can be encoded as a Boolean Formula

QBF solver

v

A first action ap is compatible with ¢ iff
Vs;da1Vsy ..., spapsia1se ... =

» Inductive way of constructing paths that satisfy the enforceable
advice ¢

» Alternation of quantifiers ~ guarantee safety for h < H

Weighted sampling

» Simulation of safe paths according to 1

» Weighted SAT sampling (Chakraborty, Fremont, Meel, Seshia, & Vardi,
2014)

22/28 Monte Carlo Tree Search for MDPs:,Formal Guarantees and Symbolic Advice



MCTS under advice

VAN
» Select actions in the unfolding pruned by a selection advice ¢

» Simulation is restricted according to a simulation advice 1
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MCTS under advice

v
» Select actions in the unfolding pruned by a selection advice ¢
» Simulation is restricted according to a simulation advice 1

» We show that the convergence properties are maintained:

> for a selection advice that satisfies some assumptions,
» for all simulation advice.
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Assumptions on the selection advice
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> be strongly enforceable: can be enforced by controller if the MDP is
seen as a game ~ does not partially prune stochastic transitions
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Assumptions on the selection advice
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> be strongly enforceable: can be enforced by controller if the MDP is
seen as a game ~ does not partially prune stochastic transitions
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Assumptions on the selection advice
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The selection advice must
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> be strongly enforceable: can be enforced by controller if the MDP is
seen as a game ~ does not partially prune stochastic transitions

> satisfy an optimality assumption: does not prune all optimal actions
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Experimental results
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Experimental results

9 x 21 maze, 4 random ghosts

Algorithm win | loss | no result after 300 steps | food

MCTS 17 59 24 67
MCTS+Selection advice 25 | 54 21 71
MCTS+Simulation advice | 71 29 0 88
MCTS+both advice 85 15 0 94
Human 44 56 0 75
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Conclusion

Contributions

v

How to inject domain knowledge in MCTS?

» symbolic advice for selection and simulation
How to preserve the convergence guarantees of MCTS?

» strongly enforceable advice with an optimality assumption
» How to implement them?

» symbolic solutions using SAT and QBF solvers

» Does it work on large MDPs?

» good results with safety advice on the Pac-Man domain
What if the MDP is not known?

> learn it?

> paper on a scheduling problem to appear in QEST '21

v

v
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Conclusion
Contributions

» How to inject domain knowledge in MCTS?
» symbolic advice for selection and simulation
» How to preserve the convergence guarantees of MCTS?
» strongly enforceable advice with an optimality assumption
» How to implement them?
» symbolic solutions using SAT and QBF solvers
» Does it work on large MDPs?
» good results with safety advice on the Pac-Man domain
» What if the MDP is not known?
> learn it?
> paper on a scheduling problem to appear in QEST '21

Current and future works

» Support prism format for MDPs, LTL advice
» Study interactions with reinforcement learning techniques (and
neural networks)
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Thank you
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