
Optimal Transformations of Muller Conditions

Antonio Casares

Journées annuelles GT ALGA 2021

Joint work with Thomas Colcombet (IRIF) and Nathanaël Fijalkow
(LaBRI).

To appear at ICALP 2021

Introduction

We are interested in non-terminating reactive systems:

Deterministic ω-automata.
Nondeterministic ω-automata.
Infinite duration two-players games with
ω-regular conditions.

}
Transition systems

Question

Transition system using
a complex acceptance
condition

Transition system using a
simpler acceptance
condition

Introduction

We are interested in non-terminating reactive systems:

Deterministic ω-automata. (This talk)
Nondeterministic ω-automata.
Infinite duration two-players games with
ω-regular conditions.

}
Transition systems
(In the paper)

Question

Transition system using
a complex acceptance
condition

Transition system using a
simpler acceptance
condition

Deterministic automata over infinite words

Input alphabet Σ (= {0, 1}).

Set of states Q (one of them
initial).

Transition function
δ : Q × Σ→ Q × Γ .

Output alphabet Γ (= {a, b, c}).

Acceptance condition Acc ⊆ Γω.

q0

q1

q2

q3

0: a

1: c

0: b

1: a

1: a

0: c

0: b

1: a

Input = 10101000010 · · · ∈ Σω

Output = cababbbbab · · · ∈ Γω

Output ∈ Acc ?

L(A) = {w ∈ Σω : the (unique) run produced by reading w is accepted}.

ω-regular conditions

We are interested in conditions that specify the “asymptotic behaviour” of
the system.

Given a word u ∈ Γω we write:

Inf (u) = {α ∈ Γ : α appears infinitely often in u}.

Muller conditions

Let Γ be a finite alphabet.

A Muller condition is given by a family of sets

F ⊆ 2Γ .

The words accepted by this condition are:

AccF = {u ∈ Γω : Inf (u) ∈ F}.

Parity conditions

Let Γ ⊆ N.

The parity condition is:

AccParity = {u ∈ Γω : min Inf (u) is even }.

We call the elements of Γ priorities.

Remark: We can reformulate parity conditions as Muller ones.

Example

0 : a

1 : b

1 : b

0 : c

Deterministic Muller automaton.
F1 = {{a}, {b}}.

0 : 2

1 : 1
0 : 1

1 : 2

1 : 20 : 1

Deterministic parity automaton.

L = {w ∈ {0, 1}ω : eventually w only contains 1,
or it only contains 0 after an even number of occurrences of 1}.

Muller vs parity

I Muller conditions are more general than parity ones.
I Parity conditions are easier to deal with:

Quasi-polynomial time algorithms for solving parity games.
Parity games are positionally determined.

I Every ω-regular language can be recognized by a deterministic parity
automaton, and using a parity condition is “the best we can do”.
(Strict hierarchy depending on the number of priorities).

Objective

Given a Muller automaton, transform it into a parity automaton
– as small as possible.
– using the least possible number of priorities.

The classical approach: product by an automaton

Let F ⊆ 2Γ define a Muller condition. We can find a deterministic parity
automaton P recognising the condition, i.e., for u ∈ Γω:

u ∈ L(P) ⇔ Inf (u) ∈ F .

Then, given a Muller automaton A using condition F , we can build

A×P,

a parity automaton recognizing L(A) and using the condition from P.

Muller
automaton
A

Equivalent par-
ity automaton
A × P

Product by P

The classical approach: product by an automaton

This approach is not optimal (even if we have a minimal automaton P).

: We do not take into account the structure of the input
automaton A.

Intuitively, this is due to:
A might not use the full power of the considered Muller condition.

Different parts of A make use of the condition in different ways.

Our contribution: the Alternating Cycle Decomposition

Alternating Cycle Decomposition (ACD)

A data structure (a tree) that captures the interplay between the
structure of a Muller automaton and its acceptance condition.

: We use it to define an “optimal” transformation of a Muller au-
tomaton into a parity one.

It is notably inspired by:
The Zielonka tree of a Muller condition (Zielonka 98’) and
(Dziembowski, Jurdziński, Walukiewicz 97’).

The study of the alternating chains of accepting and rejecting cycles
(Wagner 79’).

But... What is an optimal transformation?

Morphisms of deterministic automata

Definition (Morphism of automata)

Let A and B be two automata over an input alphabet Σ. A morphism is a
mapping of states

ϕ : A → B

that verifies two local conditions:
1 Preserves the initial state.

2 Preserves transitions (δA(q, x) = q′ ⇒ δB(ϕ(q), x) = ϕ(q′)).

and the following global condition:
3 A run % in A is accepting if and only if ϕ(%) is accepting.

Proposition
If there exists a morphism ϕ : A → B, then L(A) = L(B).

Example of morphism

A

B

C

0 : 2

1 : 1
0 : 1

1 : 2

1 : 20 : 1

Parity automaton.

ϕ
−→

A,B C

0 : a

1 : b

1 : b

0 : c

F1 = {{a}, {b}}.

Optimality of the ACD-transformation

Let A be a Muller automaton and PACD(A) be the parity automaton
obtained using the ACD.

Proposition (Correctness)

There is a morphism ϕ : PACD(A) → A.

Theorem (Optimality)

Let P ′ be a parity automaton such that there is a morphism of automata
ϕ : P ′ → A. Then:

1 |PACD(A)| ≤ |P ′|.
2 P ′ uses at least as many priorities as PACD(A).

Nondeterministic automata and games

Remark (Locally bijective morphisms as witnesses of
transformations)

In order to state the correctness and optimality for nondeterministic
automata and games we have to introduce the notion of locally bijective
morphism (similar to bisimulation).

:Locally bijective morphisms preserve all the desired semantic properties.

Application: Relabelling automata with simpler conditions

The ACD allows us to prove the following result:

Theorem (Relabelling with parity conditions)

Let A be a Muller automaton. The following are equivalent:
We can define a parity condition on top of A obtaining an equivalent
automaton.

For any pair of loops `1, `2 with a common state, if both are
accepting or rejecting, so is their union.

Application: Relabelling automata with simpler conditions

The ACD allows us to prove the following results:

Theorem (Rellabeling with Rabin conditions)

Let A be a Muller automaton. The following are equivalent:
We can define a Rabin condition on top of A obtaining an equivalent
automaton.

For any pair of loops `1, `2 with a common state, if both are rejecting,
so is their union.

Corollary (Boker,Kupferman,Steinitz 10’)

A deterministic Muller automaton A can be labelled with a parity condition
if and only if it can be labeled with both Rabin and Streett conditions.

Corollary (C. 21’)

Arena-independent memories for games using a given Muller condition
coincide with Rabin automata for this condition.

Application: Determinisation of Büchi automata

: The determinisation of Büchi automata is the bottleneck in LTL
synthesis.

Theorem (Piterman 06’)

Given a non-deterministic Büchi automaton B, there is a construction that
produces a deterministic parity automaton PB such that

L(PB) = L(B).

We can see this construction in two steps (Schewe 09’):

B −→ MB −→ PB

whereMB is a Muller automaton.

We can substitute the second step by the ACD-transformation:
In many cases we obtain a strictly smaller automaton.
We do not improve the worst case (already optimal).

Conclusions

: The ACD provides an optimal transformation of Muller automata into
parity automata.

: The ACD captures the structure of automata and games and the
interplay with the acceptance condition. This can be used to prove
theoretical results about these transition systems. (See latest results about
the chromatic memory requirements for Muller games on Arxiv).

Thank you!

	Definitions
	The Alternating Cycle Decomposition
	Applications
	Relabelling automata with simpler conditions
	 Determinisation of Büchi automata

