U N I K A S S E L V E R S I T 'A' T

On the join of varieties of monoids with LI GT ALGA

Nathan GROSSHANS

Universität Kassel, Fachbereich Elektrotechnik/Informatik

18 June 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Two fundamental problems in automata theory

Characterisation

Class of regular languages $\stackrel{?}{\longleftrightarrow}$ Class of finite objects

Decidability

Class of regular languages $\stackrel{?}{\longleftrightarrow}$ Algorithm for testing membership

First problem often linked to and motivated by the second problem.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Two fundamental problems in automata theory

Characterisation

Class of regular languages $\stackrel{?}{\longleftrightarrow}$ Class of finite objects

Decidability

Class of regular languages $\stackrel{?}{\longleftrightarrow}$ Algorithm for testing membership

First problem often linked to and motivated by the second problem.

Obvious approach

For class of regular languages, look at all minimal finite automata

- try to find characterising properties;
- ask whether they can be checked by an algorithm.

A fruitful approach: the algebraic approach

Replace automaton $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ by monoid morphism $\varphi \colon \Sigma^* \to M$ with $\mathcal{L}(\mathcal{A}) = \varphi^{-1}(P)$ for some $P \subseteq M. \rightsquigarrow \mathcal{L}(\mathcal{A})$ is recognised by φ .

Miminal recognising morphism

• To each $L \subseteq \Sigma^*$, we can associate its syntactic congruence: $\forall u, v \in \Sigma^*$, $u \sim_L v$ whenever $\forall x, y \in \Sigma^*$, $xuy \in L \Leftrightarrow xvy \in L$.

• Σ^*/\sim_L is the syntactic monoid and

$$\eta_L \colon \Sigma^* \to \Sigma^* / \sim_L \\ u \mapsto [u]_{\sim_L}$$

the syntactic morphism.

Minimal under some notion of division.

Fundamental result

Language is regular iff its syntactic monoid is finite.

Characterisation

Class of regular languages $\stackrel{?}{\longleftrightarrow}$ Class of finite syntactic monoids

Example of decidable characterisations

► Star-free languages ↔ → Finite aperiodic syntactic monoids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ Disjoint unions of right-unambiguous monomials: $A_0^*a_1A_1^*\cdots a_kA_k^*$ where $k \in \mathbb{N}$, $a_1, \ldots, a_k \in \Sigma$, $A_0, A_1, \ldots, A_k \subseteq \Sigma$ and $a_i \notin A_{i-1}$ for all $i \in [k]$ \longleftrightarrow Finite \Re -trivial syntactic monoids

Characterisation

Class of regular languages \leftrightarrow Class of finite syntactic monoids

Example of decidable characterisations

- ► Star-free languages ↔ → Finite aperiodic syntactic monoids
- ▶ Disjoint unions of right-unambiguous monomials: $A_0^*a_1A_1^*\cdots a_kA_k^*$ where $k \in \mathbb{N}$, $a_1, \ldots, a_k \in \Sigma$, $A_0, A_1, \ldots, A_k \subseteq \Sigma$ and $a_i \notin A_{i-1}$ for all $i \in [k]$ \longleftrightarrow Finite \Re -trivial syntactic monoids

General situation

Identities

What is an identity?

- Need profinite topology to define it formally.
- Informally and sufficiently for our examples, an equality of words u = v made up using letters of some alphabet and ω powers.
- ► M verifies u = v whenever for any substitution of the letters in u and v by elements of M, interpreting m^ω as the idempotent power of m in M, we have equality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples of identities

- $x^{\omega} = x^{\omega+1} \rightsquigarrow$ Finite aperiodic monoids
- $xy = yx \rightsquigarrow$ Finite commutative monoids
- $x^{\omega} = 1 \rightsquigarrow$ Finite groups

Examples of characterisations

First example

The join

Definition

 ${\bf V}$ and ${\bf W}$ varieties of monoids/semigroups, ${\bf V} \lor {\bf W}$ is smallest variety of monoids/semigroups containing ${\bf V}$ and ${\bf W}.$

The languages in $\mathcal{L}(\mathbf{V} \lor \mathbf{W})$

▶ Parallel composition of automata for $\mathcal{L}(\mathbf{V})$ and $\mathcal{L}(\mathbf{W})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Boolean closure of $\mathcal{L}(\mathbf{V}) \cup \mathcal{L}(\mathbf{W})$.

The join

Definition

 ${\bf V}$ and ${\bf W}$ varieties of monoids/semigroups, ${\bf V} \lor {\bf W}$ is smallest variety of monoids/semigroups containing ${\bf V}$ and ${\bf W}.$

The languages in $\mathcal{L}(\mathbf{V} \lor \mathbf{W})$

- ▶ Parallel composition of automata for $\mathcal{L}(\mathbf{V})$ and $\mathcal{L}(\mathbf{W})$.
- Boolean closure of $\mathcal{L}(\mathbf{V}) \cup \mathcal{L}(\mathbf{W})$.

Challenges

▶ Does not furnish decidable characterisation of $\mathcal{L}(\mathbf{V} \lor \mathbf{W})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Finding set of identities defining $\mathbf{V} \lor \mathbf{W}$ is difficult.

Finite locally trivial semigroups

The variety \mathbf{LI}

- Defined by $x^{\omega}yx^{\omega} = x^{\omega}$.
- $\mathcal{L}(\mathbf{LI})$ contains all languages of the form $U\Sigma^*V \cup W$ with $U, V, W \subseteq \Sigma^*$ finite.

$\mathbf{V} \lor \mathbf{L} \mathbf{I}$ for \mathbf{V} variety of finite monoids

- $\blacktriangleright \ \mathcal{L}(\mathbf{V} \lor \mathbf{LI}): \text{ automata for } \mathcal{L}(\mathbf{V}) \text{ with ability to check, in parallel, bounded-length prefixes and suffixes.}$
- Has been studied quite a lot, relying heavily on profinite topology (Azevedo'1990, Zeitoun'1995, Costa'2001).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Finite locally trivial semigroups

The variety \mathbf{LI}

- Defined by $x^{\omega}yx^{\omega} = x^{\omega}$.
- $\mathcal{L}(\mathbf{LI})$ contains all languages of the form $U\Sigma^*V \cup W$ with $U, V, W \subseteq \Sigma^*$ finite.

$\mathbf{V} \lor \mathbf{L} \mathbf{I}$ for \mathbf{V} variety of finite monoids

- $\blacktriangleright \ \mathcal{L}(\mathbf{V} \lor \mathbf{LI}): \text{ automata for } \mathcal{L}(\mathbf{V}) \text{ with ability to check, in parallel, bounded-length prefixes and suffixes.}$
- Has been studied quite a lot, relying heavily on profinite topology (Azevedo'1990, Zeitoun'1995, Costa'2001).

My contribution

General method to find a set of identities defining $\mathbf{V} \lor \mathbf{LI}$ when one has one for \mathbf{V} and \mathbf{V} verifies some criterion.

→→ Simple method drawing on algebraic and language-theoretic techniques.

Stamp

Surjective morphism $\varphi \colon \Sigma^* \to M$ with M finite.

Stability index (Chaubard-Pin-Straubing'2006)

For stamp $\varphi \colon \Sigma^* \to M$, smallest $s \in \mathbb{N}_{>0}$ such that $\varphi(\Sigma^{2s}) = \varphi(\Sigma^s)$.

Essentially-V stamps (G.-McKenzie-Segoufin'2021)

Stamp $\varphi \colon \Sigma^* \to M$ with stability index s is essentially-V whenever there exists a stamp $\mu \colon \Sigma^* \to N$ with $N \in \mathbf{V}$ such that for all $u, v \in \Sigma^*$, we have

$$\mu(u) = \mu(v) \Rightarrow \begin{pmatrix} \varphi(xuy) = \varphi(xvy) & \forall x, y \in \Sigma^s \end{pmatrix} \,.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We will denote by \mathbf{EV} the class of all essentially- \mathbf{V} stamps.

Intuitively, a stamp is essentially- \mathbf{V} when it behaves like a stamp into a monoid of \mathbf{V} as soon as a sufficiently long beginning and ending of the input word has been fixed.

Intuitively, a stamp is essentially- \mathbf{V} when it behaves like a stamp into a monoid of \mathbf{V} as soon as a sufficiently long beginning and ending of the input word has been fixed.

Trivial examples

• Let $\varphi \colon \{a,b\}^* \to M$ be syntactic morphism of $a(a+b)^*$. It has stability index 1 because $\varphi(aw) = \varphi(bw)$ for all $w \in \{a,b\}^*$. Thus $\mu \colon \{a,b\}^* \to \{1\}$ verifies that for all $u, v \in \Sigma^*$, we have

$$\mu(u) = \mu(v) \Rightarrow \begin{pmatrix} \varphi(xuy) = \varphi(xvy) & \forall x, y \in \Sigma^s \end{pmatrix}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\varphi \in \mathbf{EI}$ (I: trivial monoids).

▶ In general, the syntactic morphism of $x\Sigma^*y$ for $x, y \in \Sigma^*$ belongs to EI.

One more sophisticated example

Let $\varphi \colon \{a,b\}^* \to M$ be syntactic morphism of $a(a+b)^*b(a+b)^*a$. It has stability index 3 because

$$\varphi(xwy) = \begin{cases} \varphi(xby) & \text{if } w \in (a+b)^*b(a+b)^* \\ \varphi(xay) & \text{otherwise} \end{cases}$$

for all $x, y \in \{a, b\}$ and $w \in \{a, b\}^+$. Thus the syntactic morphism $\mu \colon \{a, b\}^* \to N$ of $(a + b)^* b(a + b)^*$ verifies that for all $u, v \in \Sigma^*$, we have

$$\mu(u) = \mu(v) \Rightarrow \begin{pmatrix} \varphi(xuy) = \varphi(xvy) & \forall x, y \in \Sigma^s \end{pmatrix}.$$

Proposition

Let V be a variety of finite monoids. A language over Σ has its syntactic morphism in **EV** iff it is a Boolean combination of languages of the form xLy for $L \subseteq \Sigma^*$ in $\mathcal{L}(\mathbf{V})$ and $x, y \in \Sigma^*$.

ж

Essentially-V stamps and $\mathbf{V} \lor \mathbf{L} \mathbf{I}$

Let V be a variety of finite monoids. The class of finite semigroups $\varphi(\Sigma^+)$ for $\varphi \colon \Sigma^* \to M$ stamp in **EV** is a variety of finite semigroups. \rightsquigarrow We identify it with **EV**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma $\mathbf{V} \lor \mathbf{LI} \subseteq \mathbf{EV}.$

Essentially- $\mathbf V$ stamps and $\mathbf V \vee \mathbf L \mathbf I$

Let V be a variety of finite monoids. The class of finite semigroups $\varphi(\Sigma^+)$ for $\varphi \colon \Sigma^* \to M$ stamp in **EV** is a variety of finite semigroups. \rightsquigarrow We identify it with **EV**.

Lemma $<math>V \lor LI \subseteq EV.$

Definition

V verifies criterion (A) whenever for any $L \subseteq \Sigma^*$ in $\mathcal{L}(\mathbf{V})$ and $x, y \in \Sigma^*$, we have $xLy \in \mathcal{L}(\mathbf{V} \vee \mathbf{LI})$.

Lemma $\mathbf{EV} \subseteq \mathbf{V} \lor \mathbf{LI}$ iff \mathbf{V} verifies criterion (A).

Characterisation and decidability of $\mathbf{E}\mathbf{V}$

Decidability

For any variety of finite monoids ${\bf V},$ if ${\bf V}$ is decidable, then so is ${\bf E}{\bf V}.$

Proposition

Let V be a variety of finite monoids and let E be a set of identities that defines it. Then **EV** is defined by

$$\{x^{\omega}yuzt^{\omega}=x^{\omega}yvzt^{\omega}\mid u=v\in E,\,x,y,z,t \text{ with not in }uv\}$$
 .

Remark

Rediscovery of Costa'2001 who

- for set E of identities, defines U(E) to be above set;
- ▶ gives cancellation property for variety of finite semigroups V so that U(E) defines V ∨ LI for E defining V.

Method for getting set of identities for $\mathbf{V} \vee \mathbf{L} \mathbf{I}$

The method

For a variety of finite monoids ${\bf V}$

- 1. show that \mathbf{V} verifies criterion (A);
- 2. from a set of identities E defining $\mathbf V,$ deduce that

$$\{x^{\omega}yuzt^{\omega}=x^{\omega}yvzt^{\omega}\mid u=v\in E, \text{ with } x,y,z,t \text{ not in } uv\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

defines $\mathbf{V} \lor \mathbf{LI}$.

Method for getting set of identities for $\mathbf{V} \vee \mathbf{L} \mathbf{I}$

The method

For a variety of finite monoids ${\bf V}$

- 1. show that \mathbf{V} verifies criterion (A);
- 2. from a set of identities E defining \mathbf{V} , deduce that

$$\{x^{\omega}yuzt^{\omega}=x^{\omega}yvzt^{\omega}\mid u=v\in E, \text{ with } x,y,z,t \text{ not in } uv\}$$

defines $\mathbf{V} \vee \mathbf{LI}$.

Problems

- Are there any varieties verifying criterion (A)?
- ▶ To characterise $\mathbf{V} \lor \mathbf{LI}$, I need to prove that some languages belong to $\mathcal{L}(\mathbf{V} \lor \mathbf{LI})$. Did I really made progress in view of my prior knowledge that $\mathcal{L}(\mathbf{V} \lor \mathbf{LI})$ is the Boolean closure of $\mathcal{L}(\mathbf{V}) \cup \mathcal{L}(\mathbf{LI})$?

Applications

Why it works

Lemma

Let V be a variety of finite monoids. If for any $L \subseteq \Sigma^*$ in $\mathcal{L}(V)$ and $x, y \in \Sigma^*$, there exists some $K \subseteq \Sigma^*$ in $\mathcal{L}(V)$ such that $L = x^{-1}Ky^{-1}$, then V verifies criterion (A).

Proof idea.

Because then for any $L \subseteq \Sigma^*$ in $\mathcal{L}(\mathbf{V})$ and $x, y \in \Sigma^*$, we have $xLy = K \cap x\Sigma^*y$ for some $K \subseteq \Sigma^*$ in $\mathcal{L}(\mathbf{V})$.

Remarks

- This quotient-expressibility condition for V does only depend on L(V).
- ▶ It can be weakened to get equivalence with criterion (A).

Applications

First application

Theorem $\mathbf{H} \lor \mathbf{LI} = \mathbf{EH}$ for any variety of finite groups \mathbf{H} .

Proof.

Let H be a variety of finite groups. Let $L \subseteq \Sigma^*$ in $\mathcal{L}(\mathbf{H})$ and $x, y \in \Sigma^*$. Take $\eta \colon \Sigma^* \to M$ syntactic morphism of L. We have

$$L = x^{-1} \eta^{-1} \big(\eta(x) \eta(L) \eta(y) \big) y^{-1}$$

because for all $w \in \Sigma^*$ and $w' \in L$, it holds that

$$\eta(xwy) = \eta(x)\eta(w')\eta(y) \Longrightarrow \eta(w) = \eta(w')$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Applications

Second application

Theorem $\mathbf{R} \vee \mathbf{LI} = \mathbf{ER}$, so it is defined by $x^{\omega}y(ab)^{\omega}azt^{\omega} = x^{\omega}y(ab)^{\omega}zt^{\omega}$.

Proof idea.

Take $A_0^*a_1A_1^*\cdots a_kA_k^*$ right-unambiguous monomial and $x, y \in \Sigma^*$. Observe that y can be uniquely written as y = zt where $z \in A_k^*$ and $t \in \{\varepsilon\} \cup (\Sigma \setminus A_k)\Sigma^*$. We have

$$A_0^* a_1 A_1^* \cdots a_k A_k^* = x^{-1} \Big(x A_0^* a_1 A_1^* \cdots a_k A_k^* t \cap \bigcap_{v \in A_k^{<|z|}} (x A_0^* a_1 A_1^* \cdots a_k v t)^{\complement} \Big) y^{-1}$$

using the convention that $xA_0^*a_1A_1^*\cdots a_kvt = xvt$ for all $v \in A_k^{<|z|}$ when k = 0.

A D N A 目 N A E N A E N A B N A C N

Conclusion

Contribution

- General method to give set of identities defining V V LI; new proofs of such characterisations.
- Simple method using algebraic and language-theoretic techniques, reducing profinite topology to the minimum.
- But ad hoc.

Open questions

- What are the varieties of finite monoids verifying criterion (A)?
- Is the strong quotient-expressibility condition I presented necessary for verifying criterion (A)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you for listening.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで