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What kind of distributed systems?

Parameterized systems

Distributed systems with number of processes not known in advance

Open systems

Each process interacts with uncontrollable environment
(sensors, operator inputs, environmental conditions, ...)
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What about synthesis?

Synthesis

I: A specification S
O: M sit. M =S if it exists

» But first, need to define possible executions.
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L Executions and Specifications

Executions |: Data words

Behaviors for A = {req, ack}
@ 1 process: w = req ack req ack
o fixed number of processes: w = req; reqsack;acks

@ unknown (not bounded) number of processes:
w = (req, 1)(req, 3)(ack, 1)(req, 6)(ack,6)(ack, 3)

Data words [Bojanczyk et al., 2006]
e A: finite alphabet (actions),

@ D: infinite set of data values (process identities)

Data word: (in)finite word over A x D
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L Executions and Specifications

Executions II: System vs Environment

System actions and Environment actions
> A= Asys W Aenv

. Y sys = Asys X (Psys U IP)se)
System and Environment processes Tenv = Aeny X (Peny UPse)

> P = (Psy57Penv,Pse)
with Py finite set of processes

P-Execution J

Execution = word over ¥gs U ¥ ¢y

e Asys = {a,b} Aeny = {c,d}
()

7 4 T o T @ 4 b d 4
17787 14 e e 1T 6 2 1T
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L Executions and Specifications

Executions Ill: Strategies

» Asynchronous synthesis problem

Strategy for System
f:X* =Yg U{e}

An execution is
e f-compatible if System actions follow f

e f-fair if Environment does not always block System

Winning strategy

f is winning for a set S of executions if all f-compatible, f-fair
executions are in S7
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L Executions and Specifications

First order logic |: Definition

Examples on data words

¢ =Vx.(req(x) = Jy.(y ~x Ay > x A ack(y)))

"every req is eventually followed by an ack on the same process"
o (req,1)(req,3)(ack,1)(req,6)(ack,6)(ack,3) E ¢
o (reg,1)(ack,2)(req,1)(ack,2) - = ¢

Syntax for FO on datawords

Basic formulas: a(x) | x =y | x < y | succ(x,y) | 0(x) | x ~ y
a€ A 0¢e{sys env,se}

Connectors and quantifiers: =, V, A, =, 3,V
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L Executions and Specifications

First order logic II: Satisfiability

» Specification S, = {w | w | ¢}
Satisfiability

I: A first order formula ¢

O: S, # 07

» Decidable for words (but non-elementary) [Biichi, 60]
» Undecidable for data words [Neven et al., 04]
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L The Synthesis Problem

Winning triples
» Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ¢

(Nsys, Nenv, Nse) € N3 is a winning triple if there is a winning
strategy for data words limited to (nsys, Nenv, Nse) processes

Intersection of set of winning triples Win(y) with:

N X {keny} X {kse}: constant number of Environment and mixed
processes, but unboundedly many System processes

System Environment Mixed
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SYNTH(F, (Neys; Nenv, Nee))

l: Alphabet A = Agys & Aepy, formula ¢ € F over A
O: Win(p) N (Nsys X Neny X Nge) # 07
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Parameterized synthesis problem

Example 1

o1 = Vx.(req(x) = Jy.(y ~ x Ay > x A ack(y)))
o Ass = {ack},
o Aeny = {req},
® (Nsyss Nenv; Nse) = ({0}, {0}, N)

» (0,0, k) is a winning triple for 1 for all k € N:

Winning strategy
f(w) = (ack, i) s.t. o =(req,i) is the first pending req of w
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w2 = (—3x.a(x)) & (Vy.sys(y) = Fz.z ~ y A b(2))
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Parameterized synthesis problem

Example 2

w2 = (—3x.a(x)) & (Vy.sys(y) = Fz.z ~ y A b(2))
o Ay = {b},
o Aeny = {a},
© (Noys; Nenvs Nse) = (N, {kenv }, {kse})

» No winning triple unless kep, = kse = 0!



Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Two-variable first-order logic: FO?

» FO?: restrict to two variable names



Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Two-variable first-order logic: FO?

» FO?: restrict to two variable names

Examples

0 Ix,y,za(x ~ y) A=(y ~ 2) A=(x ~ 2) ¢ FO?




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Two-variable first-order logic: FO?

» FO?: restrict to two variable names
Examples
0 Ix,y,za(x ~ y) A=(y ~ 2) A=(x ~ 2) ¢ FO?
o Ix.a(x) A (By.x <yAaly) A(Bx.y < x A a(x))) € FO?




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Two-variable first-order logic: FO?

» FO?: restrict to two variable names
Examples
0 Ix,y,za(x ~ y) A=(y ~ 2) A=(x ~ 2) ¢ FO?
o Ix.a(x) A (By.x <yAaly) A(Bx.y < x A a(x))) € FO?

» Satisfiability is decidable! [Bojanczyk et al., 06]
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Results for FO?

Theorem [FoSSaCS 20]
SYNTH(FO?, ({0}, {0},N)) is undecidable

Proof

Adapt proof of [Figueira and Praveen, 18] to reduce halting
problem for D2CM:

@ Counters value encoded by number of processes with an action
from System but not Environment (and vice versa)

e FO? formula to enforce simulation of a run
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FO[~]
» FO[~] = FO without < and succ

dx.bcast(x) AVy.(y # x = Jz.(z ~ y A rev(z2)))

Some remarks
@ No way to specify an order
o Can count letters on a given class up to some bound B

@ Can count such classes up to some number

Roadmap
@ Establish normal form for FO[~]
@ Translate to game formalism

© Use games to prove results
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LFo[~]

Normal form

Normal form [FoSSaCS 20]

There is a bound B € N s.t. ¢ is equivalent to a disjunction of
conjunctions of formulas of the form

FMy (0(y) A B e(y))

= "There are b1 m processes of type 6 with local state /."
» Local state of a process /: A — {0,...,B}
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Parameterized Vector Games

Game framework for FO[~] formulas

G = (A,B, ) where A= Asys W Aepy, B > 0, and § is the
acceptance condition
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Parameterized Vector Games

Arena for Agys = {a}, Aenv = {b}, B = 2: local states
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Parameterized Vector Games

Configuration ¢ maps local states to number of tokens (default: 0)
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LFo[~]

Parameterized Vector Games

Goal g = set of constraints for local states (default: > 0)
Acceptance condition § = disjunction of goals




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: System’s turn




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: Environment's turn




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: System’s turn




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: Environment's turn




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: System’s turn




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Equivalence with FO[~]

» Asynchronous — turn-based game

No way to specify an order with FO[~] J




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Equivalence with FO[~]

» Asynchronous — turn-based game

No way to specify an order with FO[~] J

(req,1)(req,2)(ack,1)(req, 3)(ack, 2)(ack, 3) J




Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Equivalence with FO[~]

» Asynchronous — turn-based game

No way to specify an order with FO[~] J

(req,1)(req,2)(ack,1)(req,3)(ack,2)(ack,3) J
= (req, 1)(ack, 1)(req, 2)(ack, 2)(req, 3)(ack, 3)




Parameterized Synthesis for Fragments of First-Order Logic over Data Words

LFo[~]

Equivalence with FO[~]

» Asynchronous — turn-based game

No way to specify an order with FO[~] J
(req, 1)(req, 2)(ack, 1)(req, 3)(ack, 2)(ack, 3)
= (req, 1)(ack, 1)(req,2)(ack,2)(req,3)(ack, 3) J

» Normal form — Acceptance condition

There is a bound B € N s.t. ¢ is equivalent to a disjunction of
conjunctions of formulas of the form

FMy (0(y) A B e(y))

= "There are tx m processes of type 6 with local state £."
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Results [FoSSaCS 20]

Undecidability
SYNTH(FO[~], ({0}, {0},N)) is undecidable J

» Proof idea: encoding 2CM configuration

DO

(s,c,c') 5 ...
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LFo[~]

Results [FoSSaCS 20]

Positive result
SYNTH(FO[~], (N, {kenv }, {kse })) is decidable

Cutoff

k = (Ksys, kenv, kse) is a cutoff wrt (Nsys, Neny, Nse) for ¢ if either:
o forall k' >k, k' € Win(p)
o forall k' >k, k' ¢ Win(p)

» Existence of cutoff = Synthesis decidable!
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Conclusion

Summary

Synthesis for FO on data words is hard, but there are interesting
decidable fragments.

Future works
o Cases left open (FO?[~], etc.)

@ Synthesis without global view

» Thank you for your attention! «
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