Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Parameterized Synthesis for Fragments of
First-Order Logic over Data Words

Mathieu Lehaut?
with Beéatrice Bérard!, Benedikt Bollig?, Tali Sznajder!

OUniversity of Gothenburg, Gothenburg, Sweden
1Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
2CNRS, LSV & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

16/06/2021

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

The context

Distributed systems everywhere:

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

The context

Distributed systems everywhere:

£
b
£

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

The context

Distributed systems everywhere:

£
b
£

.l

0
0

0

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Introduction

The context

Distributed systems everywhere:

{
b
f

And bugs too.

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

The context

Distributed systems everywhere:

And bugs too.

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

What kind of distributed systems?

Parameterized systems
Distributed systems with number of processes not known in advance

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

What kind of distributed systems?

Parameterized systems

Distributed systems with number of processes not known in advance

Open systems

Each process interacts with uncontrollable environment
(sensors, operator inputs, environmental conditions, ...)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]

I: A specification S, a model M
O: M ES7

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]

I: A specification S, a model M
O: M ES7

— Model-checking tool ——

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]

I: A specification S, a model M
O: M ES7

— Model-checking tool ——

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]

I: A specification S, a model M
O: M ES?

— Model-checking tool ——

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]

I: A specification S, a model M
O: M ES?

— Model-checking tool ——

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]

I: A specification S, a model M
O: M ES?

— Model-checking tool

—©

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]

I: A specification S, a model M
O: M ES?

— Model-checking tool —)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model M

0: M= S?

Model-checking tool

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model M

0: M= S?

Model-checking tool

—©

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model M

0: M= S?

Model-checking tool

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

A technique of verification

Model checking [Clarke, Emerson, Sifakis]

I: A specification S, a model M
O: M ES7

— Model-checking tool ——

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

What about synthesis?

Synthesis
I: A specification S

5/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

What about synthesis?

Synthesis

I: A specification S
O: M s.t. M =S if it exists

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Introduction

What about synthesis?

Synthesis

I: A specification S
O: M sit. M =S if it exists

» But first, need to define possible executions.

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

[Executions and Specifications

Executions |: Data words

Behaviors for A = {req, ack}

@ 1 process: w = req ack req ack

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

[Executions and Specifications

Executions |: Data words

Behaviors for A = {req, ack}
@ 1 process: w = req ack req ack

o fixed number of processes: w = req; reqsack;acks

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

Executions |: Data words

Behaviors for A = {req, ack}
@ 1 process: w = req ack req ack
o fixed number of processes: w = req; reqsack;acks

@ unknown (not bounded) number of processes:
w = (req, 1)(req, 3)(ack, 1)(req, 6)(ack,6)(ack, 3)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

Executions |: Data words

Behaviors for A = {req, ack}
@ 1 process: w = req ack req ack
o fixed number of processes: w = req; reqsack;acks

@ unknown (not bounded) number of processes:
w = (req, 1)(req, 3)(ack, 1)(req, 6)(ack,6)(ack, 3)

Data words [Bojanczyk et al., 2006]
e A: finite alphabet (actions),

@ D: infinite set of data values (process identities)

Data word: (in)finite word over A x D

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

[Executions and Specifications

Executions II: System vs Environment

System actions and Environment actions
> A= Asys W Aenv

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

Executions II: System vs Environment
System actions and Environment actions
> A= Asys W Aeny
System and Environment processes
> P= (Psy57Penv,Pse)
with Py finite set of processes

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

Executions II: System vs Environment
System actions and Environment actions

> A=A W Aepy

. Y sys = Asys X (Psys U IP)se)
System and Environment processes

> P = (]Psys:Penv,]P)se)
with Py finite set of processes

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

Executions II: System vs Environment

System actions and Environment actions
> A= Asys W Aenv

. Y sys = Asys X (Psys U IP)se)
System and Environment processes Tenv = Aeny X (Peny UPse)

> P = (Psy57 IP)env,]I'Dse)
with Py finite set of processes

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

Executions II: System vs Environment

System actions and Environment actions
> A= Asys W Aenv

. Y sys = Asys X (Psys U IP)se)
System and Environment processes Tenv = Aeny X (Peny UPse)

> P = (Psy57Penv,Pse)
with Py finite set of processes

P-Execution J

Execution = word over ¥gs U ¥ ¢y

e Asys = {a,b} Aeny = {c,d}
()

7 4 T o T @ 4 b d 4
17787 14 e e 1T 6 2 1T

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

[Executions and Specifications

Executions Ill: Strategies

» Asynchronous synthesis problem

Strategy for System
f:X* =Yg U{e} J

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

Executions Ill: Strategies

» Asynchronous synthesis problem

Strategy for System
f:X* =Yg U{e}

An execution is
e f-compatible if System actions follow f

e f-fair if Environment does not always block System

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

Executions Ill: Strategies

» Asynchronous synthesis problem

Strategy for System
f:X* =Yg U{e}

An execution is
e f-compatible if System actions follow f

e f-fair if Environment does not always block System

Winning strategy

f is winning for a set S of executions if all f-compatible, f-fair
executions are in S

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

Executions Ill: Strategies

» Asynchronous synthesis problem

Strategy for System
f:X* =Yg U{e}

An execution is
e f-compatible if System actions follow f

e f-fair if Environment does not always block System

Winning strategy

f is winning for a set S of executions if all f-compatible, f-fair
executions are in S7

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

[Executions and Specifications

First order logic |: Definition

Example on words
© = Vx. (req(x) = Jy.(y > x A ack(y)))

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

[Executions and Specifications

First order logic |: Definition

Example on words

o =Vx.(req(x) = Jy.(y > x A ack(y)))
"every req is eventually followed by an ack"

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

First order logic |: Definition

Example on words

o =Vx.(req(x) = Jy.(y > x A ack(y)))
"every req is eventually followed by an ack"

@ req ack req req ack = ¢
@ req req ack req £ ¢

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

First order logic |: Definition

Example on words

o =Vx.(req(x) = Jy.(y > x A ack(y)))
"every req is eventually followed by an ack"

@ req ack req req ack = ¢
@ req req ack req [~ ¢

Syntax for FO on words

Basic formulas: a(x) | x =y | x < y | succ(x, y)
acA
Connectors and quantifiers: =, V, A, =, 3,V

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

[Executions and Specifications

First order logic |: Definition

Examples on data words

@ =Vx.(reqg(x) = Jy.(y ~ x Ny > x A ack(y)))
"every req is eventually followed by an ack on the same process"

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

First order logic |: Definition

Examples on data words

o =Vx.(req(x) = Jy.(y ~ x Ay > x A ack(y)))
"every req is eventually followed by an ack on the same process"

o (req,1)(req,3)(ack,1)(req,6)(ack,6)(ack,3) E ¢
o (reg,1)(ack,2)(req,1)(ack,2) - = ¢

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

First order logic |: Definition

Examples on data words

¢ =Vx.(req(x) = Jy.(y ~x Ay > x A ack(y)))

"every req is eventually followed by an ack on the same process"
o (req,1)(req,3)(ack,1)(req,6)(ack,6)(ack,3) E ¢
o (reg,1)(ack,2)(req,1)(ack,2) - = ¢

Syntax for FO on datawords

Basic formulas: a(x) | x =y | x < y | succ(x,y) | 0(x) | x ~ y
a€ A 0¢e{sys env,se}

Connectors and quantifiers: =, V, A, =, 3,V

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

[Executions and Specifications

First order logic II: Satisfiability

» Specification S, = {w | w | ¢}

10/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

[Executions and Specifications

First order logic II: Satisfiability

» Specification S, = {w | w | ¢}

Satisfiability
I: A first order formula ¢
O: S, # 07

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

First order logic II: Satisfiability

» Specification S, = {w | w | ¢}
Satisfiability

I: A first order formula ¢

O: S, # 07

» Decidable for words (but non-elementary) [Biichi, 60]

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

L Executions and Specifications

First order logic II: Satisfiability

» Specification S, = {w | w | ¢}
Satisfiability

I: A first order formula ¢

O: S, # 07

» Decidable for words (but non-elementary) [Biichi, 60]
» Undecidable for data words [Neven et al., 04]

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
|—The Synthesis Problem

Winning triples

» Only important point for synthesis is number of processes, not
concrete identities!

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L The Synthesis Problem

Winning triples

» Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ¢

(Nsys, Nenv, Nse) € N3 is a winning triple if there is a winning
strategy for data words limited to (nsys, Neny, Nse) processes

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L The Synthesis Problem

Winning triples
» Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ¢

(Nsys; Nenv, Nse) € N2 is a winning triple if there is a winning
strategy for data words limited to (nsys, Nenv, Nse) processes

Intersection of set of winning triples Win(y) with:

N x {0} x {0}: only System processes (satisfiability)

System Environment Mixed

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L The Synthesis Problem

Winning triples
» Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ¢

(Nsys, Nenv, Nse) € N3 is a winning triple if there is a winning
strategy for data words limited to (nsys, Nenv, Nse) processes

Intersection of set of winning triples Win(y) with:

{0} x {0} x N: each process controlled by both System and
Environment

System Environment Mixed

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L The Synthesis Problem

Winning triples
» Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ¢

(Nsys, Nenv, Nse) € N3 is a winning triple if there is a winning
strategy for data words limited to (nsys, Nenv, Nse) processes

Intersection of set of winning triples Win(y) with:

N X {keny} X {kse}: constant number of Environment and mixed
processes, but unboundedly many System processes

System Environment Mixed

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
|—The Synthesis Problem

Parameterized synthesis problem

SYNTH(F, (Neys; Nenv, Nee))

l: Alphabet A = Agys & Aepy, formula ¢ € F over A
O: Win(p) N (Nsys X Neny X Nge) # 07

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
|—The Synthesis Problem

Parameterized synthesis problem

Example 1

o1 = Vx.(req(x) = Jy.(y ~ x Ay > x A ack(y)))
o Ass = {ack},
o Aeny = {req},
® (Nsyss Nenv; Nse) = ({0}, {0}, N)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LThe Synthesis Problem

Parameterized synthesis problem

Example 1

o1 = Vx.(req(x) = Jy.(y ~ x Ay > x A ack(y)))
o Ass = {ack},
o Aeny = {req},
® (Nsyss Nenv; Nse) = ({0}, {0}, N)

» (0,0, k) is a winning triple for 1 for all k € N:

Winning strategy
f(w) = (ack, i) s.t. o =(req,i) is the first pending req of w

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
|—The Synthesis Problem

Parameterized synthesis problem

Example 2

w2 = (—3x.a(x)) & (Vy.sys(y) = Fz.z ~ y A b(2))
o Ay = {b},
o Aeny = {a},
© (Noys; Nenvs Nse) = (N, {kenv }, {kse})

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LThe Synthesis Problem

Parameterized synthesis problem

Example 2

w2 = (—3x.a(x)) & (Vy.sys(y) = Fz.z ~ y A b(2))
o Ay = {b},
o Aeny = {a},
© (Noys; Nenvs Nse) = (N, {kenv }, {kse})

» No winning triple unless kep, = kse = 0!

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Two-variable first-order logic: FO?

» FO?: restrict to two variable names

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Two-variable first-order logic: FO?

» FO?: restrict to two variable names

Examples

0 Ix,y,za(x ~ y) A=(y ~ 2) A=(x ~ 2) ¢ FO?

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Two-variable first-order logic: FO?

» FO?: restrict to two variable names
Examples
0 Ix,y,za(x ~ y) A=(y ~ 2) A=(x ~ 2) ¢ FO?
o Ix.a(x) A (By.x <yAaly) A(Bx.y < x A a(x))) € FO?

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Two-variable first-order logic: FO?

» FO?: restrict to two variable names
Examples
0 Ix,y,za(x ~ y) A=(y ~ 2) A=(x ~ 2) ¢ FO?
o Ix.a(x) A (By.x <yAaly) A(Bx.y < x A a(x))) € FO?

» Satisfiability is decidable! [Bojanczyk et al., 06]

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Results for FO?

Theorem [FoSSaCS 20]
SYNTH(FO?, ({0}, {0},N)) is undecidable J

14/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
Lro?

Results for FO?

Theorem [FoSSaCS 20]
SYNTH(FO?, ({0}, {0},N)) is undecidable

Proof

Adapt proof of [Figueira and Praveen, 18] to reduce halting
problem for D2CM:

@ Counters value encoded by number of processes with an action
from System but not Environment (and vice versa)

e FO? formula to enforce simulation of a run

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

FO[~]

» FO[~] = FO without < and succ

Ix.bcast(x) AVy.(y # x = 3z.(z ~ y A rev(z))))

15/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

FO[~]

» FO[~] = FO without < and succ

Ix.bcast(x) AVy.(y # x = 3z.(z ~ y A rev(z))) J

Some remarks

@ No way to specify an order

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

FO[~]

» FO[~] = FO without < and succ

Ix.bcast(x) AVy.(y % x = Fz.(z ~ y A rev(2)))

Some remarks
@ No way to specify an order

o Can count letters on a given class up to some bound B

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

FO[~]

» FO[~] = FO without < and succ

Ix.bcast(x) AVy.(y # x = 3z.(z ~ y A rcv(2))) J

Some remarks
@ No way to specify an order
o Can count letters on a given class up to some bound B

@ Can count such classes up to some number

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

FO[~]

» FO[~] = FO without < and succ

dx.bcast(x) AVy.(y # x = Jz.(z ~ y A rev(z2))) J

Some remarks
@ No way to specify an order
o Can count letters on a given class up to some bound B

@ Can count such classes up to some number

Roadmap
@ Establish normal form for FO[~]

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFro[~

FO[~]
» FO[~] = FO without < and succ

dx.bcast(x) AVy.(y # x = Jz.(z ~ y A rev(z2)))

Some remarks
@ No way to specify an order
o Can count letters on a given class up to some bound B

@ Can count such classes up to some number

Roadmap
@ Establish normal form for FO[~]

@ Translate to game formalism

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFro[~

FO[~]
» FO[~] = FO without < and succ

dx.bcast(x) AVy.(y # x = Jz.(z ~ y A rev(z2)))

Some remarks
@ No way to specify an order
o Can count letters on a given class up to some bound B

@ Can count such classes up to some number

Roadmap
@ Establish normal form for FO[~]
@ Translate to game formalism

© Use games to prove results

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Normal form

Normal form [FoSSaCS 20]

There is a bound B € N s.t. ¢ is equivalent to a disjunction of
conjunctions of formulas of the form

Iy (0(y) A B e(y))

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Normal form

Normal form [FoSSaCS 20]

There is a bound B € N s.t. ¢ is equivalent to a disjunction of
conjunctions of formulas of the form

Ty (0(y) A B e(y))

= "There are 1 m processes of type 6 with local state £."

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Normal form

Normal form [FoSSaCS 20]

There is a bound B € N s.t. ¢ is equivalent to a disjunction of
conjunctions of formulas of the form

Iy (0(y) A B ely))

= "There are 1 m processes of type ¢ with local state £."

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Normal form

Normal form [FoSSaCS 20]

There is a bound B € N s.t. ¢ is equivalent to a disjunction of
conjunctions of formulas of the form

FMy (0(y) A B e(y))

= "There are b1 m processes of type 6 with local state /."
» Local state of a process /: A — {0,...,B}

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Game framework for FO[~] formulas

G = (A,B,) where A= Asys W Aepy, B > 0, and § is the
acceptance condition

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Arena for Agys = {a}, Aenv = {b}, B = 2: local states

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Configuration ¢ maps local states to number of tokens (default: 0)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Goal g = set of constraints for local states (default: > 0)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Goal g = set of constraints for local states (default: > 0)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Goal g = set of constraints for local states (default: > 0)
Acceptance condition § = disjunction of goals

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: System’s turn

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: Environment's turn

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: System’s turn

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: Environment's turn

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Parameterized Vector Games

Play on G: System’s turn

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Equivalence with FO[~]

» Asynchronous — turn-based game

No way to specify an order with FO[~] J

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Equivalence with FO[~]

» Asynchronous — turn-based game

No way to specify an order with FO[~] J

(req,1)(req,2)(ack,1)(req, 3)(ack, 2)(ack, 3) J

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Equivalence with FO[~]

» Asynchronous — turn-based game

No way to specify an order with FO[~] J

(req,1)(req,2)(ack,1)(req,3)(ack,2)(ack,3) J
= (req, 1)(ack, 1)(req, 2)(ack, 2)(req, 3)(ack, 3)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

LFo[~]

Equivalence with FO[~]

» Asynchronous — turn-based game

No way to specify an order with FO[~] J
(req, 1)(req, 2)(ack, 1)(req, 3)(ack, 2)(ack, 3)
= (req, 1)(ack, 1)(req,2)(ack,2)(req,3)(ack, 3) J

» Normal form — Acceptance condition

There is a bound B € N s.t. ¢ is equivalent to a disjunction of
conjunctions of formulas of the form

FMy (0(y) A B e(y))

= "There are tx m processes of type 6 with local state £."

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Results [FoSSaCS 20]

Undecidability
SYNTH(FO[~], ({0}, {0},N)) is undecidable

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Results [FoSSaCS 20]

Undecidability
SYNTH(FO[~], ({0}, {0},N)) is undecidable J

» Proof idea: encoding 2CM configuration

DO

(s,c,c') 5 ...

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Results [FoSSaCS 20|

Positive result
SYNTH(FO[~], (N, {kenv }, {kse })) is decidable J

19/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Lro[~]

Results [FoSSaCS 20]

Positive result
SYNTH(FO[~], (N, {kenv }, {kse })) is decidable

Cutoff
k = (Ksys, kenv, kse) is a cutoff wrt (Nsys, Neny, Nse) for ¢ if either:

o for all k' >k, k' € Win(yp)
e for all k' >k, k' ¢ Win(p)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
LFo[~]

Results [FoSSaCS 20]

Positive result
SYNTH(FO[~], (N, {kenv }, {kse })) is decidable

Cutoff

k = (Ksys, kenv, kse) is a cutoff wrt (Nsys, Neny, Nse) for ¢ if either:
o forall k' >k, k' € Win(p)
o forall k' >k, k' ¢ Win(p)

» Existence of cutoff = Synthesis decidable!

Parameterized Synthesis for Fragments of First-Order Logic over Data Words
L Conclusion

Conclusion

Summary

Synthesis for FO on data words is hard, but there are interesting
decidable fragments.

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

LConcIusion

Conclusion

Summary

Synthesis for FO on data words is hard, but there are interesting
decidable fragments.

Future works
o Cases left open (FO?[~], etc.)

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

LConcIusion

Conclusion

Summary

Synthesis for FO on data words is hard, but there are interesting
decidable fragments.

Future works
o Cases left open (FO?[~], etc.)

@ Synthesis without global view

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

LConcIusion

Conclusion

Summary

Synthesis for FO on data words is hard, but there are interesting
decidable fragments.

Future works
o Cases left open (FO?[~], etc.)

@ Synthesis without global view

» Thank you for your attention! «

	Introduction
	Executions and Specifications
	The Synthesis Problem
	FO2
	FO[]
	Conclusion

