
Vectorizing automata

Claire Soyez-Martin,
joint work with Gilles Grimaud, Michaël Hauspie, Charles

Paperman and Sylvain Salvati

June 16, 2021

1/15

The most simple example

I A naive implementation:

1 for u in w:
2 i f u == σ :
3 return True
4 return Fa l s e

2/15

The most simple example

I A naive implementation:

1 for u in w:
2 i f u == σ :
3 return True
4 return Fa l s e

2/15

The most simple example

I A naive implementation:

1 for u in w:
2 i f u == σ :
3 return True
4 return Fa l s e

2/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:
I A naive C -implementation: ∼ 4GB/s
I The optimized glibc variant: ∼ 18GB/s

How can such a simple function be optimized that much ?

With vectorization!

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:

I A naive C -implementation: ∼ 4GB/s
I The optimized glibc variant: ∼ 18GB/s

How can such a simple function be optimized that much ?

With vectorization!

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:
I A naive C -implementation: ∼ 4GB/s

I The optimized glibc variant: ∼ 18GB/s

How can such a simple function be optimized that much ?

With vectorization!

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:
I A naive C -implementation: ∼ 4GB/s
I The optimized glibc variant: ∼ 18GB/s

How can such a simple function be optimized that much ?

With vectorization!

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:
I A naive C -implementation: ∼ 4GB/s
I The optimized glibc variant: ∼ 18GB/s

How can such a simple function be optimized that much ?

With vectorization!

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:
I A naive C -implementation: ∼ 4GB/s
I The optimized glibc variant: ∼ 18GB/s

How can such a simple function be optimized that much ?

With vectorization!

3/15

Memchr vectorized

4/15

Memchr vectorized

4/15

Memchr vectorized

4/15

Memchr vectorized

4/15

Memchr vectorized

4/15

A more complicated example: Validating UTF-8 [L20]

Standard implementation: 2 to 4 GB/s depending on the input

Results of Keiser and Lemire (2020): ≥ 12 GB/s

5/15

A more complicated example: Validating UTF-8 [L20]

Standard implementation: 2 to 4 GB/s depending on the input

Results of Keiser and Lemire (2020): ≥ 12 GB/s

5/15

A more complicated example: Validating UTF-8 [L20]

Standard implementation: 2 to 4 GB/s depending on the input

Results of Keiser and Lemire (2020): ≥ 12 GB/s

5/15

Summary about vectorization

I Based SIMD instructions: Single Instruction Multiple Data

I It can do computations component-wise over blocks of inputs

I In between streaming and parallel computation

6/15

How to vectorize automata execution?

7/15

Monoids!

I A finite set of items with an associative binary operation
and an neutral element

I It is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

a: 0→ 1, 1→ 1, 2→ 0

b: 0→ 2, 1→ 1, 2→ 1

ab: 0→ 1, 1→ 1, 2→ 2

The mapping Σ∗ → M is called
the transition morphism.

8/15

Monoids!

I A finite set of items with an associative binary operation
and an neutral element

I It is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

a: 0→ 1, 1→ 1, 2→ 0

b: 0→ 2, 1→ 1, 2→ 1

ab: 0→ 1, 1→ 1, 2→ 2

The mapping Σ∗ → M is called
the transition morphism.

8/15

Monoids!

I A finite set of items with an associative binary operation
and an neutral element

I It is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

a: 0→ 1, 1→ 1, 2→ 0

b: 0→ 2, 1→ 1, 2→ 1

ab: 0→ 1, 1→ 1, 2→ 2

The mapping Σ∗ → M is called
the transition morphism.

8/15

Monoids!

I A finite set of items with an associative binary operation
and an neutral element

I It is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

a: 0→ 1, 1→ 1, 2→ 0

b: 0→ 2, 1→ 1, 2→ 1

ab: 0→ 1, 1→ 1, 2→ 2

The mapping Σ∗ → M is called
the transition morphism.

8/15

Monoids!

I A finite set of items with an associative binary operation
and an neutral element

I It is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

a: 0→ 1, 1→ 1, 2→ 0

b: 0→ 2, 1→ 1, 2→ 1

ab: 0→ 1, 1→ 1, 2→ 2

The mapping Σ∗ → M is called
the transition morphism.

8/15

Monoids!

I A finite set of items with an associative binary operation
and an neutral element

I It is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

a: 0→ 1, 1→ 1, 2→ 0

b: 0→ 2, 1→ 1, 2→ 1

ab: 0→ 1, 1→ 1, 2→ 2

The mapping Σ∗ → M is called
the transition morphism.

8/15

Monoids in parallel computation

9/15

Monoids in parallel computation

9/15

Monoids in parallel computation

9/15

Monoids in parallel computation

9/15

Monoids in parallel computation

9/15

Monoids in parallel computation

9/15

Monoids in parallel computation

9/15

Monoids in parallel computation

9/15

Are monoids computation vectorizable?

I How to execute the transition morphism on each cell of a block?

I How to aggregate horizontally the monoid values?

The general case seems hard, let’s assume the monoids
have some extra nice properties!

10/15

Are monoids computation vectorizable?

I How to execute the transition morphism on each cell of a block?

I How to aggregate horizontally the monoid values?

The general case seems hard, let’s assume the monoids
have some extra nice properties!

10/15

Are monoids computation vectorizable?

I How to execute the transition morphism on each cell of a block?

I How to aggregate horizontally the monoid values?

The general case seems hard, let’s assume the monoids
have some extra nice properties!

10/15

DA

A (pseudo-)variety defined by the equation: ∀x , y , z ∈ M ,

(xyz)ωy(xyz)ω = (xyz)ω

where for any s ∈ M , ω is the least integer so that sω is idempotent

An automaton is said to be in DA its transition monoid is in DA.

An automaton in DA can be recognized by a turtle program.

11/15

DA

A (pseudo-)variety defined by the equation: ∀x , y , z ∈ M ,

(xyz)ωy(xyz)ω = (xyz)ω

where for any s ∈ M , ω is the least integer so that sω is idempotent

An automaton is said to be in DA its transition monoid is in DA.

An automaton in DA can be recognized by a turtle program.

11/15

DA

A (pseudo-)variety defined by the equation: ∀x , y , z ∈ M ,

(xyz)ωy(xyz)ω = (xyz)ω

where for any s ∈ M , ω is the least integer so that sω is idempotent

An automaton is said to be in DA its transition monoid is in DA.

An automaton in DA can be recognized by a turtle program.

11/15

Turtle programs

I A generalization of memchr

I Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

I The program is factorized: we factorize some sub-turtle
programs which have the same instructions

12/15

Turtle programs

I A generalization of memchr

I Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

w = dcbcbdaea

I The program is factorized: we factorize some sub-turtle
programs which have the same instructions

12/15

Turtle programs

I A generalization of memchr

I Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

w = dcbcbdaea

I The program is factorized: we factorize some sub-turtle
programs which have the same instructions

12/15

Turtle programs

I A generalization of memchr

I Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

w = dcbcbdaea

I The program is factorized: we factorize some sub-turtle
programs which have the same instructions

12/15

Turtle programs

I A generalization of memchr

I Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

w = dcbcbdaea

I The program is factorized: we factorize some sub-turtle
programs which have the same instructions

12/15

Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem
Let A be an automaton in DA. Let M be the transition monoid of A.
There exists a turtle program of size linear in |M | that is equivalent to
A.

13/15

Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem
Let A be an automaton in DA. Let M be the transition monoid of A.
There exists a turtle program of size linear in |M | that is equivalent to
A.

This theorem improves the state-of-the-art results (see [Kuf09]):
previous proofs construct the turtle programs by enumerating
formulas until some size depending on the size of the monoid.

13/15

Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem
Let A be an automaton in DA. Let M be the transition monoid of A.
There exists a turtle program of size linear in |M | that is equivalent to
A.

Turtle programs are easy to execute over each block!

13/15

Conclusion

Our ongoing work:

I We are trying to vectorize efficiently automata which monoids
are in DA

I We aim to extend our result to a broader class of automata: the
automata that recognize starfree languages (also seen as the
variety of aperiodic monoids)

I This work is strongly tied to studies on circuit complexity (see
Straubing’s book)

14/15

Conclusion

Our ongoing work:

I We are trying to vectorize efficiently automata which monoids
are in DA

I We aim to extend our result to a broader class of automata: the
automata that recognize starfree languages (also seen as the
variety of aperiodic monoids)

I This work is strongly tied to studies on circuit complexity (see
Straubing’s book)

14/15

Conclusion

Our ongoing work:

I We are trying to vectorize efficiently automata which monoids
are in DA

I We aim to extend our result to a broader class of automata: the
automata that recognize starfree languages (also seen as the
variety of aperiodic monoids)

I This work is strongly tied to studies on circuit complexity (see
Straubing’s book)

14/15

Bibliography

[L20]: J. Keiser and D. Lemire, Validating UTF-8 In Less Than One
Instruction Per Byte, 2020, arxiv

[Kuf09]: Manfred Kufleitner, Pascal Weil. On FO2 quantifier
alternation over words. Mathematical Foundations of Computer
Science 2009, Aug 2009, Slovakia. pp.513-524.

15/15

	Introduction
	Vectorizing automata: with monoïds
	Our contribution
	Conclusion

