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The most simple example

I A naive implementation:

1 for u in w:
2 i f u == σ :
3 return True
4 return Fa l s e
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How hard is it to actually implement

It is a widely used function from glibc called memchr:
I A naive C -implementation: ∼ 4GB/s
I The optimized glibc variant: ∼ 18GB/s

How can such a simple function be optimized that much ?

With vectorization!
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Memchr vectorized
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A more complicated example: Validating UTF-8 [L20]

Standard implementation: 2 to 4 GB/s depending on the input

Results of Keiser and Lemire (2020): ≥ 12 GB/s
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Summary about vectorization

I Based SIMD instructions: Single Instruction Multiple Data

I It can do computations component-wise over blocks of inputs

I In between streaming and parallel computation
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How to vectorize automata execution?
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Monoids!

I A finite set of items with an associative binary operation
and an neutral element

I It is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

a: 0→ 1, 1→ 1, 2→ 0

b: 0→ 2, 1→ 1, 2→ 1

ab: 0→ 1, 1→ 1, 2→ 2

The mapping Σ∗ → M is called
the transition morphism.
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Monoids in parallel computation
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Are monoids computation vectorizable?

I How to execute the transition morphism on each cell of a block?

I How to aggregate horizontally the monoid values?

The general case seems hard, let’s assume the monoids
have some extra nice properties!
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DA

A (pseudo-)variety defined by the equation: ∀x , y , z ∈ M ,

(xyz)ωy(xyz)ω = (xyz)ω

where for any s ∈ M , ω is the least integer so that sω is idempotent

An automaton is said to be in DA its transition monoid is in DA.

An automaton in DA can be recognized by a turtle program.
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Turtle programs

I A generalization of memchr

I Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

I The program is factorized: we factorize some sub-turtle
programs which have the same instructions
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Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem
Let A be an automaton in DA. Let M be the transition monoid of A.
There exists a turtle program of size linear in |M | that is equivalent to
A.
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Theorem
Let A be an automaton in DA. Let M be the transition monoid of A.
There exists a turtle program of size linear in |M | that is equivalent to
A.

This theorem improves the state-of-the-art results (see [Kuf09]):
previous proofs construct the turtle programs by enumerating
formulas until some size depending on the size of the monoid.

13/15



Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem
Let A be an automaton in DA. Let M be the transition monoid of A.
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Conclusion

Our ongoing work:

I We are trying to vectorize efficiently automata which monoids
are in DA

I We aim to extend our result to a broader class of automata: the
automata that recognize starfree languages (also seen as the
variety of aperiodic monoids)

I This work is strongly tied to studies on circuit complexity (see
Straubing’s book)
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