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» A naive implementation:

1|for u in w:

2 if u=—o:

3 return True
4 |return False
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How hard is it to actually implement

It is a widely used function from glibc called memchr:
» A naive C-implementation: ~ 4GB/s
» The optimized glibc variant: ~ 18GB/s

How can such a simple function be optimized that much 7

With vectorization!
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Memchr vectorized
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Memchr vectorized
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A more complicated example: Validating UTF-8 [L20]
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A more complicated example: Validating UTF-8 [L20]

11(0,1,10,1...,97,98,99}

{241,242,243}

1128,129,..9,190,191}

192,193,...3,254,255}
128,129,...1,142,143)° /{128,129,...9,190,191}*

{160,161,...9,190,191}°

{128,129,...9,190,191}¢

Standard implementation: 2 to 4 GB/s depending on the input
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A more complicated example: Validating UTF-8 [L20]

Standard implementation: 2 to 4 GB/s depending on the input
Results of Keiser and Lemire (2020): > 12 GB/s
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Summary about vectorization

» Based SIMD instructions: Single Instruction Multiple Data
» It can do computations component-wise over blocks of inputs

» In between streaming and parallel computation
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How to vectorize automata execution?
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Monoids!

» A finite set of items with an associative binary operation
and an neutral element
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Monoids!

» A finite set of items with an associative binary operation
and an neutral element

» |t is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid
aal0—-11—-12—=0

b 0—-21—-1,2—1
ab: 0—+-1,1—-12—=2

The mapping &* — M is called
the transition morphism.

8/15



Monoids in parallel computation
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Monoids in parallel computation

w=a b cde w=a b c d e

Ml Ml

a b c d e a b c d e
(ab) ¢ d e (a.b) (cd) e
Y :

]
(a.b.c) d e a.b.c.d.e

a.b.c.d.e
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Are monoids computation vectorizable?

» How to execute the transition morphism on each cell of a block?
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Are monoids computation vectorizable?

» How to execute the transition morphism on each cell of a block?

» How to aggregate horizontally the monoid values?

The general case seems hard, let's assume the monoids
have some extra nice properties!
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DA

A (pseudo-)variety defined by the equation: Vx,y,z € M,

(xyz)*y(xyz)” = (xyz)”
where for any s € M, w is the least integer so that s is idempotent
An automaton is said to be in DA its transition monoid is in DA.

An automaton in DA can be recognized by a turtle program.
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Turtle programs

» A generalization of memchr

» Base instruction: go to the next/previous letter until a letter
from a set B is found
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Turtle programs

» A generalization of memchr

» Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

w = dcbcbdaea

» The program is factorized: we factorize some sub-turtle
programs which have the same instructions
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Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem
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Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem
Let A be an automaton in DA. Let M be the transition monoid of A.
There exists a turtle program of size linear in |M| that is equivalent to

A.
This theorem improves the state-of-the-art results (see [Kuf09]):

previous proofs construct the turtle programs by enumerating
formulas until some size depending on the size of the monoid.
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Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem

Turtle programs are easy to execute over each block!
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Conclusion
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» We are trying to vectorize efficiently automata which monoids
are in DA
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Conclusion

Our ongoing work:

» We are trying to vectorize efficiently automata which monoids
are in DA

» We aim to extend our result to a broader class of automata: the
automata that recognize starfree languages (also seen as the
variety of aperiodic monoids)

» This work is strongly tied to studies on circuit complexity (see
Straubing’s book)
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