Vectorizing automata

Claire Soyez-Martin,
joint work with Gilles Grimaud, Michaél Hauspie, Charles
Paperman and Sylvain Salvati

June 16, 2021

1/15

The most simple example

5\ {c}

2/15

The most simple example
(—0
U
%\ {o}

» A naive implementation:

2/15

The most simple example
(—0
U
%\ {o}

» A naive implementation:

1|for u in w:

2 if u=—o:

3 return True
4 |return False

2/15

How hard is it to actually implement

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:
» A naive C-implementation: ~ 4GB/s

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:
» A naive C-implementation: ~ 4GB/s
» The optimized glibc variant: ~ 18GB/s

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:
» A naive C-implementation: ~ 4GB/s
» The optimized glibc variant: ~ 18GB/s

How can such a simple function be optimized that much 7

3/15

How hard is it to actually implement

It is a widely used function from glibc called memchr:
» A naive C-implementation: ~ 4GB/s
» The optimized glibc variant: ~ 18GB/s

How can such a simple function be optimized that much 7

With vectorization!

3/15

Memchr vectorized

ag "ttt g4 Bgs " T 0T Apg ottt Qpan63 * T 864n

4/15

Memchr vectorized

4/15

Memchr vectorized

By ~64B By

ag aca| [ags -0 - 2
?

ag - B)

4/15

Memchr vectorized

B;~64B B, Bn
ag "t Ap4 | (365 O A ttccc dean63 <1 864n
?
c "o c
0 -0 0

4/15

Memchr vectorized

B;~64B B, Bn
ag "t Ap4 | (365 O A ttccc dean63 <1 864n
?
G- -0 C
0 - 1 0

4/15

A more complicated example: Validating UTF-8 [L20]

,97,98,99}

{241,242,243}

1128,129,..9,190,191}

1128,129,...9,190,191}

1194,195,...1,222,223}

192,193,...3,254,255}
{128,129,...9,190,191}¢

128,129,...1,142,143)°

1128,129,...9,190,191},

{128,129,...7,158,159} {144,145,...9,190,191}°
—

{160,161,...9,190,191}

{128,129,...9,190,191 }¢

{128,129,...7,158,159}¢

{160,161,...9,190,191}°

{128,129,...9,190,191}¢

5/15

A more complicated example: Validating UTF-8 [L20]

11(0,1,10,1...,97,98,99}

{241,242,243}

1128,129,..9,190,191}

192,193,...3,254,255}
128,129,...1,142,143)° /{128,129,...9,190,191}*

{160,161,...9,190,191}°

{128,129,...9,190,191}¢

Standard implementation: 2 to 4 GB/s depending on the input

5/15

A more complicated example: Validating UTF-8 [L20]

Standard implementation: 2 to 4 GB/s depending on the input
Results of Keiser and Lemire (2020): > 12 GB/s

5/15

Summary about vectorization

» Based SIMD instructions: Single Instruction Multiple Data
» It can do computations component-wise over blocks of inputs

» In between streaming and parallel computation

6/15

How to vectorize automata execution?

7/15

Monoids!

» A finite set of items with an associative binary operation
and an neutral element

8/15

Monoids!

» A finite set of items with an associative binary operation
and an neutral element

» |t is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

8/15

Monoids!

» A finite set of items with an associative binary operation
and an neutral element

» |t is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

8/15

Monoids!

» A finite set of items with an associative binary operation
and an neutral element

» |t is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

al0—-11—-12—=0

b 0—-21—-1,2—1

8/15

Monoids!

» A finite set of items with an associative binary operation
and an neutral element

» |t is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid

al0—-11—-12—=0
b 0—-21—-1,2—1
ab: 0—+-1,1—-12—=2

8/15

Monoids!

» A finite set of items with an associative binary operation
and an neutral element

» |t is possible to associate a monoid with an automaton. For
example, by constructing its transition monoid
aal0—-11—-12—=0

b 0—-21—-1,2—1
ab: 0—+-1,1—-12—=2

The mapping &* — M is called
the transition morphism.

8/15

Monoids in parallel computation

w=a b ¢ d e

9/15

Monoids in parallel computation

w=a b ¢ d e

v

a b c d e

9/15

Monoids in parallel computation

w=a b ¢ d e

v

a b c d e

v

(ab) ¢ d e

9/15

Monoids in parallel computation

w=a b ¢ d e

v

a b c d e

v

(ab) ¢ d e

Y

(a.b.c) d e

9/15

Monoids in parallel computation

w=a b ¢ d e

v

a b c d e

v

(ab) ¢ d e
(a.b.c) d e

a.b.c.d.e

9/15

Monoids in parallel computation

w=a b c de w=a b c d e

Ml Ml

a b c d e a b c d e

v

(ab) ¢ d e

Y

(a.b.c) d e

a.b.c.d.e

9/15

Monoids in parallel computation

w=a b c de w=a b c d e

Ml Ml

a b c d e a b c d e
(ab) ¢ d e (a.b) (cd) e
(a.b.c) d e

a.b.c.d.e

9/15

Monoids in parallel computation

w=a b cde w=a b c d e

Ml Ml

a b c d e a b c d e
(ab) ¢ d e (a.b) (cd) e
Y :

]
(a.b.c) d e a.b.c.d.e

a.b.c.d.e

9/15

Are monoids computation vectorizable?

» How to execute the transition morphism on each cell of a block?

10/15

Are monoids computation vectorizable?

» How to execute the transition morphism on each cell of a block?

» How to aggregate horizontally the monoid values?

10/15

Are monoids computation vectorizable?

» How to execute the transition morphism on each cell of a block?

» How to aggregate horizontally the monoid values?

The general case seems hard, let's assume the monoids
have some extra nice properties!

10/15

DA

A (pseudo-)variety defined by the equation: Vx,y,z € M,

(xyz)“y(xyz)” = (xyz)*

where for any s € M, w is the least integer so that s is idempotent

11/15

DA

A (pseudo-)variety defined by the equation: Vx,y,z € M,

(xyz)*y(xyz)* = (xyz)*
where for any s € M, w is the least integer so that s is idempotent

An automaton is said to be in DA its transition monoid is in DA.

11/15

DA

A (pseudo-)variety defined by the equation: Vx,y,z € M,

(xyz)*y(xyz)” = (xyz)”
where for any s € M, w is the least integer so that s is idempotent
An automaton is said to be in DA its transition monoid is in DA.

An automaton in DA can be recognized by a turtle program.

11/15

Turtle programs

» A generalization of memchr

» Base instruction: go to the next/previous letter until a letter
from a set B is found

12/15

Turtle programs

» A generalization of memchr

» Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

w = dcbcbdaea

12/15

Turtle programs

» A generalization of memchr

» Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

w = dcbcbdaea

12/15

Turtle programs

» A generalization of memchr

» Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

w = dcbcbdaea

12/15

Turtle programs

» A generalization of memchr

» Base instruction: go to the next/previous letter until a letter
from a set B is found

The first a has a b somewhere before it

w = dcbcbdaea

» The program is factorized: we factorize some sub-turtle
programs which have the same instructions

12/15

Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem

13/15

Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem
Let A be an automaton in DA. Let M be the transition monoid of A.
There exists a turtle program of size linear in |M| that is equivalent to

A.
This theorem improves the state-of-the-art results (see [Kuf09]):

previous proofs construct the turtle programs by enumerating
formulas until some size depending on the size of the monoid.

13/15

Our result

Recall that an automaton is in DA if its transition monoid is in DA.

Theorem

Turtle programs are easy to execute over each block!

13/15

Conclusion

Our ongoing work:

» We are trying to vectorize efficiently automata which monoids
are in DA

14/15

Conclusion

Our ongoing work:

» We are trying to vectorize efficiently automata which monoids
are in DA

» We aim to extend our result to a broader class of automata: the

automata that recognize starfree languages (also seen as the
variety of aperiodic monoids)

14/15

Conclusion

Our ongoing work:

» We are trying to vectorize efficiently automata which monoids
are in DA

» We aim to extend our result to a broader class of automata: the
automata that recognize starfree languages (also seen as the
variety of aperiodic monoids)

» This work is strongly tied to studies on circuit complexity (see
Straubing’s book)

14/15

Bibliography

[L20]: J. Keiser and D. Lemire, Validating UTF-8 In Less Than One
Instruction Per Byte, 2020, arxiv

[Kuf09]: Manfred Kufleitner, Pascal Weil. On FO2 quantifier
alternation over words. Mathematical Foundations of Computer
Science 2009, Aug 2009, Slovakia. pp.513-524.

15/15

	Introduction
	Vectorizing automata: with monoïds
	Our contribution
	Conclusion

