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One possible motivation

Star-free languages are equivalently defined by:

• Star-free regexps: E,E′ ::= ∅ | {a} | E ∪ E′ | E · E′ | Ec (complement)
e.g. (ab)∗ = (b∅c ∪∅ca ∪∅caa∅c ∪∅cbb∅c)c over the alphabet {a, b}

• φ−1(P) for some morphism φ to a finite and aperiodic monoid M ⊇ P
• counter-free automata (aperiodicity condition), first-order logic (FO), …

Definition
A monoid M is aperiodic when ∀x ∈ M, ∃n ∈ N : xn = xn+1.

Lack of compositionality: {x ∈ M | ∃n ∈ N : xn = xn+1} not a submonoid
=⇒ lack of locality: aperiodicity cannot be checked just on the generators

We characterize star-free languages (and FO transductions)
by “compositional/local” conditions on behaviors of two-way automata

Drawback: no counterpart to syntactic monoid / minimal DFA
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Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {q→1 , q←2 , q←3 }, initial state q→1

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

▷ a b a c · · · ◁

q→1 q→1 q→1 q→1q←2q←3

Directed states are an old idea1, more convenient
+ needed to define reversible 2DFAs (Dartois et al. ICALP’17)

1cf. e.g. J.-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)
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Reminder: two-way automata (2)

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

Graphical representation of transitions for each letter:

· · · a b a c · · ·

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

This two-way automaton is deterministic: outdegree ≤ 1
reversible: deterministic + indegree ≤ 1
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Reminder: two-way automata (3)

Behaviors (or crossing types) form a monoid:

a c

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3
⇝

ac

q→1

q←2

q←3

q→1

q←2

q←3

This monoid is finite, therefore 2DFA recognize regular languages
(modern account of Shepherdson’s construction (1959))

Reversible behaviors are closed under product, and
reversible 2DFA can recognize all regular languages (Dartois et al. ICALP’17)
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Combinatorial planarity

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

This drawing is planar, i.e. without crossed edges.

Formally: for each of these 4 behaviors, the cyclic order

qleft1 ≺ qleft2 ≺ qleft3 ≺ qright3 ≺ qright2 ≺ qright1 ≺ qleft1

does not contain any sub-cyclic-order x ≺ y ≺ z ≺ w ≺ x such that

• x and z are connected by an edge (either x → z or z → x)
• and y and w are also connected by an edge

−→ depends on the choice of total order q1 < q2 < q3
(More like planar combinatorial maps than planar graphs…)
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The main theorem

Theorem
Let L ⊆ Σ∗. The following are equivalent:

• L is a star-free language.
• L is recognized by some planar 2DFA.
• L is recognized by some planar reversible 2DFA.

Our example of planar 2DFA recognizes (∅cc∅c)cb(a ∪ b)c∅c

Compositionality/locality: planar behaviors are closed under product

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

⇝
q→1

q←2

q←3

q→1

q←2

q←3

Planar one-way automata = monotone transitions, not powerful enough
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A stronger theorem on transducers

Two-way deterministic transducers (2DFT) = 2DFA with output
(each transition can append a suffix to the output log)

2DFTs compute regular functions a.k.a. MSO transductions,
a well-behaved class of functions with many different characterizations
example: w 7→ w · reverse(w)

Ask for the monoid of behaviors to be aperiodic,
and you get first-order transductions (Carton & Dartois, CSL’15)

Theorem
Let f : Γ∗ ⇀ Σ∗. The following are equivalent:

• f is a first-order transduction.
• f is computed by some planar 2DFT.
• f is computed by some planar reversible 2DFT.
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Example: simulating a sequential transducer

1 2
end|bbbend|ab

a|a, c|a b|c b|bb, c|bb

a|c

Let’s look at a run on the input abca

▷ a (_ 7→ 1) b (_ 7→ 2) c (id) a (_ 7→ 1) ◁

q→1

r←1

s→

r←2

q→2

ab

bbb

acbbc

q→1

r←1

s→

r←2

q→2

a

c

acbb

q→1

r←1

s→

r←2

q→2

a

bb

ac

q→1

r←1

s→

r←2

q→2

c

bb

a

q→1

r←1

s→

r←2

q→2

a

c

ε
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Important related work

Our main inspirations: λ-calculus and category theory

• Hines, A categorical framework for finite state machines (2003)
Relates monoid of 2DFA behaviors to geometry of interaction (GoI),
a family of semantics for linear λ-calculi (as in linear logic)2

• N. & Pradic, Implicit automata in typed λ-calculi I:
Aperiodicity in a non-commutative logic (ICALP’20)

Characterizes star-free languages using a linear non-comm. λ-calculus

Connection: non-commutativity in λ-calculi ⇐⇒ planarity in GoI

Reversible planar DFA were considered by Hines in a talk
(Temperley-Lieb algebras as two-way automata, QNET3 Workshop 2006)
but he did not characterize their expressive power

(Papers on GoI are often named “The geometry of X” −→ this talk’s title)

2See also: T. Seiller, Interaction graphs: non-deterministic automata (2018)

3UK Network on Semantics of Quantum Computation
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Important related work

Our main inspirations: λ-calculus and category theory
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Conclusion

We introduced a notion of planarity of two-way transducers,
based on the graphical representation of their behavior, and showed:

Main theorem

star-free language ⇐⇒ planar 2DFA ⇐⇒ planar reversible 2DFA
FO transduction ⇐⇒ planar 2DFT ⇐⇒ planar reversible 2DFT

• Planar behaviors form an aperiodic submonoid of all behaviors
−→ unlike aperiodicity, planarity is compositional

• Expressivity established via factorization theorems
(Krohn–Rhodes + extension to FO transductions)

• Details in backup slides
• Inspiration from other areas of “logic in computer science”

• Also motivated the study of comparison-free polyregular functions,
a new transduction class→ talk in Warsaw seminar this afternoon

Thanks for your attention! Any questions?
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Aperiodicity of planar behaviors (1)

To show that planar 2DFA can recognize only star-free languages, we use:

Lemma
Let Q be a finite set of directed states. The finite monoid PQ of all possible planar
behaviors over Q is aperiodic: ∀x ∈ PQ, ∃n ∈ N : xn = xn+1.

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

⇝
q→1

q←2

q←3

q→1

q←2

q←3

The blue edge is conserved: right-right edges of y ⊆ right-right edges of xy
(right-right edges of xn)n∈N monotone, hence eventually constant

x ≤ xy for left-left edges, cf. new red edge. What about left-right edges?
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Aperiodicity of planar behaviors (2)

Left-right edges are entirely determined by degrees:

1 q→1

0 q←2

1 q←3

q→1 1

q←2 1

q←3 0

degrees of right half of y ≥ degrees of right half of xy
−→ (degrees of xn)n∈N non-increasing, hence eventually constant
Combine with previous slide: ∃n ∈ N : xn = xn+1!

More conceptual POV: Green’s relations on the monoid PQ

behavior ↗ for ≼L =⇒ right degrees ↗ and right-right edges ↘
−→L-class invariant + R-class invariant determine element of PQ

−→ PQ is H-trivial i.e. aperiodic

Next: the converse direction of the main theorem
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Expressiveness of reversible planar 2DFTs (1)

Theorem (Part of the main theorem on transducers)
Any first-order transduction can be computed by a reversible planar 2DFT.

Let’s start with aperiodic sequential functions (⊊ FO transductions)

Sequential transducers (see below) with aperiodic transition monoids

qa qb

end|bbb

a|a b|a b|bb

a|bbend|ab

7→ aabbbbab

Reminder: Krohn–Rhodes decomposition theorem
Aperiodic sequential functions are generated by aper. seq. transducers
with 2 states (like the one above) + function composition.
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Expressiveness of reversible planar 2DFTs (2): composition

Composition of reversible 2DFTs uses a wreath-product-like construction
(do you see why reversibility is needed?) preserving planarity

1→

2←

3←

1→

2←

3←

a

bc

q→

r←

q→

r←

x

y
q→

r←

q→

r←
z w

a bc

(1, q)→

(1, r)←

(2, q)←

(2, r)→

(3, q)←

(3, r)→

(1, q)→

(1, r)←

(2, q)←

(2, r)→

(3, q)←

(3, r)→

x
y

z

w
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Expressiveness of reversible planar 2DFTs (3): flip-flops

The Krohn–Rhodes decomposition involves aperiodic sequential
transducers with 2 states, such as:

1 2

a|a, c|a b|c b|bb, c|bb

a|cend|ab end|bbb

δa : _ 7→ 1 δb : _ 7→ 2 δc = id

For Q = {1, 2}, aperiodicity is equivalent to excluding q 7→ 3− q
{δa, δb, δc} is the largest aperiodic submonoid of Q → Q

Translation into reversible planar 2DFT already illustrated
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Expressiveness of reversible planar 2DFTs (5): FO transductions

We just proved that reversible planar 2DFTs are closed under composition
and can simulate two-state aperiodic sequential transducers.

By Krohn–Rhodes, we get all aper. seq. functions.

To go further, we use:

Theorem (Bojańczyk et al.4)
Any first-order transduction can be obtained as a composition of:

• aperiodic sequential functions;
• mapReverseΣ, mapDuplicateΣ : (Σ ∪ {#})∗ → (Σ ∪ {#})∗ for# /∈ Σ

For w1, . . . ,wn ∈ Σ∗, mapReverseΣ(w1# . . .#wn) = rev(w1)# · · ·#rev(wn)

mapDuplicateΣ(w1# . . .#wn) = w1w1# · · ·#wnwn

With this, we can conclude the proof of the main theorems.

4Not entirely explicit in the literature; variants can be found in:
Bojańczyk, Daviaud & Krishna, Regular and first-order list functions (2018)
Bojańczyk & Stefański, Single-use automata and transducers for infinite alphabets (2020)
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