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Word transductions

Definition

A transduction is a binary relation on words:

asubsetof X° x [* ><.
input alphabet _1

output alphabet

T

compute \

aaaabbb

aababbca origin information

[Bojariczyk 2014]
bbbaaaa
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Origin graphs

input edge

G’
<— origin edge
o‘@ E—®

output edge

origin: a mapping from output positions into input positions
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What is the origin semantic

of a transducer?

featuring SST and MSOT
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Streaming String Transducers (SST)

a 1-way automaton A
a finite set R of registers including a distinguished output register

eg, R={X,Y}
a labelling of transitions by copyless register updates

X+ X-a X<+—a-Y X<+ b
€& {Y<—a '{Y<—b-a-X' Y<—X-a-Y'{

register X: D register Y: D
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Definition (Origin semantics for streaming string transducers)

the position of the input head

origin of an output position:
& put p when the letter was created.
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string-to-string MSO-transduction |Courcelle 1991

Copy (finitely many copies of the input);
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string-to-string MSO-transduction |Courcelle 1991]

Copy (finitely many copies of the input);
MSO-Interpretation

a formula for restricting the universe;
a formula for each predicate of the output vocabulary.

Definition (origin semantics of MSO-transduction)

the input vertex

origin of an output position: of which it is a copy.

6/18



string-to-origin graph MSO-transduction

Copy (finitely many copies of the input);
MSO-Interpretation

a formula for restricting the universe;
a formula for each predicate of the output vocabulary.
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string-to-origin graph MSO-transduction

Copy (finitely many copies of the input);
MSO-Interpretation

a formula for restricting the universe;
a formula for each predicate of the output vocabulary.
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What do we get from origin information?
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Origin semantics is thinner grained

Examples
unary ldentity unary Reverse
@-0-@-0-® @--@-0-@

OOROZOX0) OROROROR0
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Origin semantics is thinner grained

Examples

unary ldentity unary Reverse

O 002000

Subword

O-E-O-0--0-® OaOa 0200805 O,
G 7 00
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This is still true with origin information. [Bojaficzyk 2014]

also true for closure under composition, decidability of equivalence. . .

<N S\S‘

== SST: Streaming String Transducer
=1 MSOT: MSO-transduction

== 2FT : 2-way finite transducer
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MSO satisfiability on origin graphs

Theorem: The following is decidable :

Input

an NSsT A

an MsO formula ¢ over the corresponding origin vocabulary
Question

Is ¢ true in some origin graph in the origin semantics of A?

binary predicates —, —, —

origin vocabulary: and labelling in X UT;

Example

“the origin mapping is bijective and letter-preserving.”

“the output may be split in two parts
such that the origin mapping is order-preserving on each part.”

10/18



MSO satisfiability on origin graphs

Theorem: The following is decidable :
Input

an NSsT A

an MsO formula ¢ over the corresponding origin vocabulary
Question

Is ¢ true in some origin graph in the origin semantics of A?
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MSO satisfiability on origin graphs

Theorem: The following is decidable :

Input

an NSsT A

an MsO formula ¢ over the corresponding origin vocabulary
Question

Is ¢ true in some origin graph in the origin semantics of A?

Proof: Let A and ¢ be fixed.
there is a string-to-origin graph MSO-transduction p equivalent

to A
we consider G = {G origin graph | ¢ is true over G}

by Backward Translation Theorem [Courcelle91],
p~1(G) is regular and can be tested for emptiness. []
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Which properties of origin graphs
characterise

regular sets of origin graphs?



Which sets of origin graphs are generated by transducers?

Theorem:
A set of origin graphs is realised by an unambiguous SST
if and only if it is

mso-definable:
an MSO sentence using —s, —s, — and labelling in X U T;

functional:
for each input word, there exists at most one origin graph;

bounded degree:
each input position is the origin of at most m output positions;

bounded crossing: NEXT SLIDE.

12/18



Crossing

crossing of an input position
number of maximal factors of the output
that originate in the input prefix ended by the position
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Which sets of origin graphs are generated by transducers?

Theorem:
A set of origin graphs is realised by an unambiguous SST
if and only if it is
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functional:
for each input word, there exists at most one origin graph;

bounded degree:
each input position is the origin of at most m output positions;

crossing bounded: PREVIOUS SLIDE
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Sketch of the proof —-

unambiguous = functional
NSST = bounded degree
k-register = crossing bounded by k

NSST = string-to-origin graph MsO-transduction
Proposition: we can inverse this MSO-transduction
=— MSO-definable

Note: False when e-transitions are allowed.
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Start with an MSO-definable set of origin graphs G

with crossing bounded by k

we define a finite set of (partial) operations Q4 on k-BLOGs

the folding of a word w over Qf is the k-BLOG ay(w)

obtained from the empty graph by applying the operations.
ay can be realised by an MSO-transduction.
there exists a regular language L C Q} such that

g € G <= g = ax(w) for some w € L

from an automaton recognising L,
we build a NSST with e-transitions realising G

= if bounded degree = elimination of e-transition
= if functional == disambiguation 16/18



Equivalence

Corollary: The following is decidable:

Input
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Whether they have the same origin semantics.
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Equivalence

Corollary: The following is decidable:

Input
Two NsST, A and B.
Question
Whether they have the same origin semantics.

Proof: We show that we can check whether AN B is empty.

The origin semantics of B is MSO-definable by a formula ¢,

We can check whether —¢ is true in some origin graph in the
origin semantics of A.
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i Thank you for your attention.
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