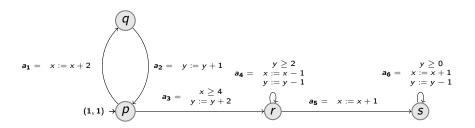
# The Context-Freeness Problem is coNP-complete for Flat Counter Systems

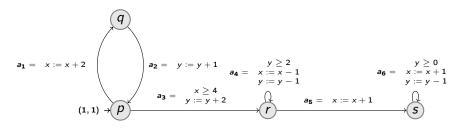
Jérôme Leroux, Vincent Penelle, Grégoire Sutre

ATVA, November 5th, 2014

## Introduction



## Introduction



$$L = \textit{Pref} \left( \left\{ \left( a_1 a_2 \right)^n a_3 a_4^m a_5 a_6^p \mid n \geq 2, m \leq 2n+1, p \leq n-m+3 \right\} \right)$$

## Introduction

$$a_{1} = x := x + 2$$

$$a_{2} = y := y + 1 \qquad y \ge 2$$

$$a_{4} = x := x - 1 \qquad a_{6} = x := x + 1$$

$$y \ge 0$$

$$a_{5} = x := x + 1 \qquad y := y - 1$$

$$a_{7} = x \ge 4$$

$$y := y + 2 \qquad a_{7} = x := x + 1$$

$$x \ge 4$$

$$y := y + 2 \qquad x \ge 4$$

$$y := y + 2 \qquad x \ge 4$$

$$y := y + 2 \qquad x \ge 4$$

$$y := y + 2 \qquad x \ge 4$$

$$y := y + 2 \qquad x \ge 4$$

$$y := y + 2 \qquad x \ge 4$$

$$L = \textit{Pref} \big( \{ (a_1 a_2)^n a_3 a_4^m a_5 a_6^p \mid n \geq 2, m \leq 2n+1, p \leq n-m+3 \} \big)$$

$$L \subseteq \sigma_1^* \sigma_2^* \sigma_3^* \sigma_4^* \sigma_5^*$$



## Table of Contents

- 1 From Context-Free Languages To Semilinear Sets
- 2 The Stratifiability Problem for Integral Polyhedra is coNP-complete
- 3 Application to Flat Counter Systems
- 4 Conclusion

## Table of Contents

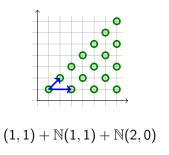
- 1 From Context-Free Languages To Semilinear Sets
- 2 The Stratifiability Problem for Integral Polyhedra is coNP-complete
- 3 Application to Flat Counter Systems
- Conclusion

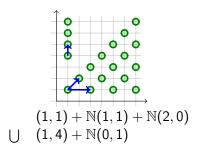
## Semilinear Sets

# Definition (Ginsburg & Spanier '66)

Linear set :  $\boldsymbol{b} + \mathbb{N}\boldsymbol{p}_1 + \cdots + \mathbb{N}\boldsymbol{p}_m$  with  $\boldsymbol{b}, \boldsymbol{p}_1, \ldots, \boldsymbol{p}_m \in \mathbb{N}^d$ .

Semilinear set: finite union of linear sets.





## Stratified Sets

## **Definition**

A set of vectors **P** is stratified if:

- Each  $p \in P$  has at most two non-0 components
- ullet The supports of the vectors of  ${m P}$  satisfy a nested condition

## Stratified Sets

## Definition

A set of vectors **P** is stratified if:

- Each  $p \in P$  has at most two non-0 components
- ullet The supports of the vectors of  $oldsymbol{P}$  satisfy a nested condition

$$\{(a_1,0,a_3,0),(0,b_2,0,b_4)\}$$
 is not stratified



## Stratified Sets

#### Definition

A set of vectors **P** is stratified if:

- Each  $p \in P$  has at most two non-0 components
- ullet The supports of the vectors of  $oldsymbol{P}$  satisfy a nested condition

$$\{(a_1,0,a_3,0),(b_1,0,0,b_4),(0,0,c_3,c_4)\}$$
 is stratified



## Definition

A semilinear set is stratifiable if and only if it is the union of linear sets whith a stratified set of periods

$$((1,1,1)+\mathbb{N}(1,1,1))\cup((2,3,2)+\mathbb{N}(1,0,1)+\mathbb{N}(0,1,0))$$

#### Definition

A semilinear set is stratifiable if and only if it is the union of linear sets whith a stratified set of periods

$$((1,1,1) + \mathbb{N}(1,1,1)) \cup ((2,3,2) + \mathbb{N}(1,0,1) + \mathbb{N}(0,1,0))$$
  
=  $(1,1,1) \cup (2,2,2) \cup ((2,3,2) + \mathbb{N}(1,0,1) + \mathbb{N}(0,1,0))$ 

#### Definition

A semilinear set is stratifiable if and only if it is the union of linear sets whith a stratified set of periods

$$\begin{aligned} & ((1,1,1) + \mathbb{N}(1,1,1)) \cup ((2,3,2) + \mathbb{N}(1,0,1) + \mathbb{N}(0,1,0)) \\ & = (1,1,1) \cup (2,2,2) \cup ((2,3,2) + \mathbb{N}(1,0,1) + \mathbb{N}(0,1,0)) \end{aligned}$$

# Theorem (Ginsburg, 1966)

A language  $L \subseteq \sigma_1^* \cdots \sigma_d^*$  is context-free if and only if

$$\{(n_1,\cdots,n_d)\mid \sigma_1^{n_1}\cdots\sigma_d^{n_d}\in L\}$$

is a stratifiable semilinear set.

#### Definition

A semilinear set is stratifiable if and only if it is the union of linear sets whith a stratified set of periods

$$\begin{aligned} & ((1,1,1) + \mathbb{N}(1,1,1)) \cup ((2,3,2) + \mathbb{N}(1,0,1) + \mathbb{N}(0,1,0)) \\ & = (1,1,1) \cup (2,2,2) \cup ((2,3,2) + \mathbb{N}(1,0,1) + \mathbb{N}(0,1,0)) \end{aligned}$$

# Theorem (Ginsburg, 1966)

A language  $L \subseteq \sigma_1^* \cdots \sigma_d^*$  is context-free if and only if

$$\{(n_1,\cdots,n_d)\mid \sigma_1^{n_1}\cdots\sigma_d^{n_d}\in L\}$$

is a stratifiable semilinear set.

The stratifiability problem for semilinear sets is still open

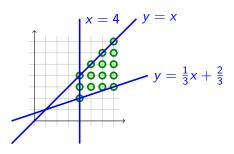


## Table of Contents

- 1 From Context-Free Languages To Semilinear Sets
- 2 The Stratifiability Problem for Integral Polyhedra is coNP-complete
- 3 Application to Flat Counter Systems
- 4 Conclusion

# Integral Polyhedra

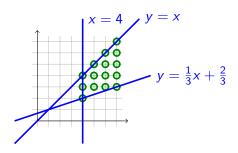
An integral polyhedron is a set of the form  $\{x \in \mathbb{N}^d \mid Ax \geq b\}$  where  $A \in \mathbb{Z}^{n \times d}$  and  $b \in \mathbb{Z}^n$ 



$$A = \begin{pmatrix} 1 & -1 \\ -1 & 3 \\ 1 & 0 \end{pmatrix}, b = (0, 2, 4)$$

# Integral Polyhedra

An integral polyhedron is a set of the form  $\{x \in \mathbb{N}^d \mid Ax \geq b\}$  where  $A \in \mathbb{Z}^{n \times d}$  and  $b \in \mathbb{Z}^n$ 



$$(4,2) + \mathbb{N}(1,1) + \mathbb{N}(3,1)$$

$$\cup$$
 (4,3) +  $\mathbb{N}(1,1)$  +  $\mathbb{N}(3,1)$ 

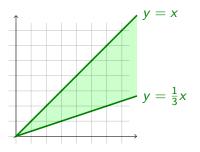
$$\cup$$
 (4,4) +  $\mathbb{N}(1,1)$  +  $\mathbb{N}(3,1)$ 

$$\cup$$
 (6,3) +  $\mathbb{N}(1,1)$  +  $\mathbb{N}(3,1)$ 



## Cones

ullet A cone is a set of the form  $\{x\in\mathbb{Q}^d_{\geq 0}\mid Ax\geq 0\}$ 



$$\mathbf{A} = \left(\begin{array}{cc} 1 & -1 \\ -1 & 3 \\ -1 & 0 \end{array}\right)$$



# Cones

- A cone is a set of the form  $\{x \in \mathbb{Q}^d_{\geq 0} \mid Ax \geq 0\}$
- $\pmb{X}$  is a cone iff  $\pmb{X}=\mathbb{Q}_{\geq 0}\pmb{p}_1+\cdots+\mathbb{Q}_{\geq 0}\pmb{p}_m$ , with  $\pmb{p}_1,\cdots,\pmb{p}_m\in\mathbb{N}^d$



$$\mathbb{Q}_{\geq 0}(3,1) + \mathbb{Q}_{\geq 0}(1,1)$$



# Characterisation of Stratifiability of Integral Polyhedra

#### Definition

A cone X is nested if every  $x \in X$  can be decomposed into:

$$x = x_1 + \cdots + x_m$$

where  $\{x_1, \ldots, x_m\} \subseteq X$  is stratified.

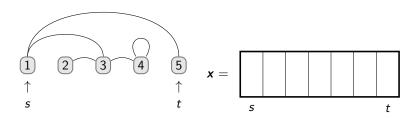
## **Theorem**

$$\{x \in \mathbb{N}^d \mid Ax \geq b\}$$
 is stratifiable  $\iff$  it is empty or  $\{x \in \mathbb{Q}^d_{\geq 0} \mid Ax \geq 0\}$  is nested



## Characterisation of nestedness

Is  $x \in X$  nested?

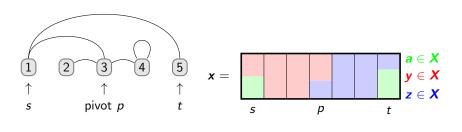


## **Theorem**

A cone is nested if and only if it contains no irreducible vector

## Characterisation of nestedness

Is  $x \in X$  nested?



$$x = a + y + z$$
$$a, y, z \in X$$

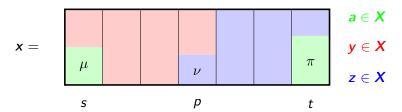
## **Theorem**

A cone is nested if and only if it contains no irreducible vector



# CoNP-complete

x is reducible if and only if  $\bigvee_{s,p,t} \exists \mu \exists \nu \exists \pi, \psi_{s,p,t}(\mu,\nu,\pi,x)$ 



## Theorem

The cone nestedness is solvable in coNP

# Corollary

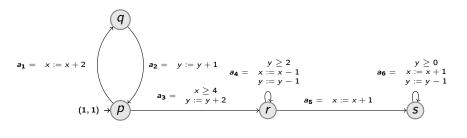
The stratifiability problem for integral polyhedra is coNP-complete



## Table of Contents

- 1 From Context-Free Languages To Semilinear Sets
- 2 The Stratifiability Problem for Integral Polyhedra is coNP-complete
- 3 Application to Flat Counter Systems
- 4 Conclusion

# Flat Counter System



$$L = Pref(\{(a_1a_2)^n a_3 a_4^m a_5 a_6^p \mid n \ge 2, m \le 2n+1, p \le n-r+3\})$$

# Flat Counter System

$$a_{1} = x := x + 2$$

$$a_{2} = y := y + 1 \qquad y \ge 2 \qquad y \ge 0$$

$$a_{4} = x := x - 1 \qquad a_{6} = x := x + 1$$

$$y := y - 1 \qquad y := y - 1$$

$$a_{3} = x \ge 4 \qquad y := y + 2$$

$$a_{5} = x := x + 1$$

$$x \ge 4 \qquad y := y - 1$$

$$L = Pref(\{(a_1a_2)^n a_3 a_4^m a_5 a_6^p \mid n \ge 2, m \le 2n + 1, p \le n - r + 3\})$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & -1 \end{pmatrix}, \boldsymbol{b} = (2, -1, -3)$$



# The Context-Freeness Problem for Flat Counter System

Input: A flat counter system S

 $\underline{\mathsf{Output}} \colon \mathsf{Whether} \ \mathsf{the} \ \mathsf{trace} \ \mathsf{of} \ \mathcal{S} \ \mathsf{is} \ \mathsf{context-free} \ \mathsf{or} \ \mathsf{not}$ 

## Theorem

The context-freeness problem for flat counter systems is coNP-complete

# The Context-Freeness Problem for Flat Counter System

Input: A flat counter system  $\mathcal{S}$ 

Output: Whether the trace of S is context-free or not

## **Theorem**

The context-freeness problem for flat counter systems is coNP-complete

## Table of Contents

- 1 From Context-Free Languages To Semilinear Sets
- 2 The Stratifiability Problem for Integral Polyhedra is coNP-complete
- 3 Application to Flat Counter Systems
- 4 Conclusion

## Conclusion

- We solved the stratifiability problem for integral polyhedra and have shown it to be coNP-complete
- It can be used to solve the context-freeness problem for flat counter systems
- This generalises our result over VAS

|                 | Flat          | General                         |
|-----------------|---------------|---------------------------------|
| VAS             | coNP-complete | EXPSpace-complete <sup>12</sup> |
| Counter Systems | coNP-complete | undecidable                     |

The general stratifiability problem is still open



<sup>&</sup>lt;sup>1</sup>Leroux, Penelle and Sutre in LICS 2013

<sup>&</sup>lt;sup>2</sup>Leroux, Praveen and Sutre in CONCUR 2013