
Incremental Detection of Model Inconsistencies
based on Model Operations

Xavier Blanc1, Alix Mougenot2?, Isabelle Mounier2, and Tom Mens3??

1 INRIA Lille-Nord Europe, LIFL CNRS UMR 8022,
Université des Sciences et Technologies de Lille, France

2 MoVe - LIP6, Université Pierre et Marie Curie, France
3 Service de Génie Logiciel, Université de Mons-Hainaut, Belgium

Abstract. Due to the increasing use of models, and the inevitable model
inconsistencies that arise during model-based software development and
evolution, model inconsistency detection is gaining more and more at-
tention. Inconsistency checkers typically analyze entire models to detect
undesired structures as defined by inconsistency rules. The larger the
models become, the more time the inconsistency detection process takes.
Taking into account model evolution, one can significantly reduce this
time by providing an incremental checker. In this article we propose an
incremental inconsistency checker based on the idea of representing mod-
els as sequences of primitive construction operations. The impact of these
operations on the inconsistency rules can be computed to analyze and
reduce the number of rules that need to be re-checked during a model
increment.

1 Introduction

Model driven development uses more and more complementary models. Indeed,
large-scale industrial software systems are currently developed by hundreds of
developers working on hundreds of models of different types (e.g. SysML, UML,
Petri nets, architecture, work flow, business process) [1]. In such a context, model
inconsistency detection is gaining a lot of attention as the overlap between all
these models (that are often maintained by different persons) is a frequent source
of inconsistencies.

Detection of inconsistencies was first introduced by Finkelstein et al. [2]. They
defined the Viewpoints Framework, where each developer owns a viewpoint com-
posed only of models that are relevant to him. The framework offers facilities
to ensure consistency between viewpoints. The main insight is that model con-
sistency cannot and should not be preserved at all times between all viewpoints
[3]. The Viewpoints Framework suggests to allow for temporary model inconsis-
tencies rather than to enforce model consistency at all times.
? This work was partly funded by the french DGA.

?? This work was partly funded by Action de Recherche Concertée AUWB-
08/12-UMH19, Ministère de la Communauté française, Direction générale de
l’Enseignement non obligatoire et de la Recherche scientifique, Belgique



In all approaches that deal with detection of inconsistencies [4–9], the detec-
tion invariably consists in analysing models to detect inconsistent configurations
defined by inconsistency rules. Therefore, the larger the models, the longer the
detection process takes. Moreover, the large number of inconsistency rules and
their complexity are two other factors that make the detection process highly
time consuming. The impact of model changes should also be considered by
consistency checkers. Indeed, developers keep modifying and improving their
models, and some of these modifications may give rise to new model inconsis-
tencies. Due to the time it takes, re-checking the entire model after each such
model increment is unfeasible in practice.

This situation explains why there is an increasing focus on scalability issues
[6, 9, 10]. The challenge is to check inconsistencies on large models continuously
during their frequent evolution. As the detection of inconsistencies implies to find
structures within a model, efforts mainly target the process of the incremental
detection in its whole (what rules to check and when) and aim at not performing
a complete check of the model each time it evolves.

In this article, we propose to address this challenge by providing an incre-
mental inconsistency checker that only adds a small fixed amount of memory to
run on top of our classical inconsistency checker. Given a model that has already
been checked for inconsistency, and given a model increment (i.e., a sequence of
modifications to this model), our goal is to identify those inconsistency rules
that need to be re-checked. Section 2 explains how to detect inconsistencies and
gives a formal definition of an incremental checker. Our proposal is based on the
operation-based model construction approach presented in [9], which is briefly
revisited in section 3. Section 4 presents our incremental checker, and section 5
provides a case study to validate our approach. Section 6 presents related work
in this domain and we conclude in Section 7.

2 Detection of inconsistencies

2.1 Inconsistency rules

Detection of inconsistencies consists in analyzing models to identify unwanted
configurations defined by the inconsistency rules. If such configurations are found
in the model, then the model is said to be inconsistent. Inconsistency rules can
be compared to the negation of well-formedness rules of [11], structural rules of
[12] and syntactic rules of [13].

One can see an inconsistency check as a function that receives as input a
model and a set of inconsistency detection rules and that returns the evaluation
result of each rule. If a rule evaluates to true (i.e., the model is inconsistent),
then the model elements causing the inconsistency are also returned by the check
function.

In this paper we use two inconsistency examples that are inspired by the class
diagram part of the UML 2.1 specification [14]. Figure 1 presents a simplified
fragment of the UML 2.1 meta-model for classes [14]. It will be referred to as
CMM for Class Meta Model in the remainder of this article.



Fig. 1. CMM: A simplified fragment of the UML 2.1 meta-model

The two inconsistency rules we use are specified in the UML 2.1 specification:
OwnedElement defines that an element may not directly or indirectly own itself;
OwnedParameter defines that an operation can have at most one parameter
whose direction is ’return’.

Figure 2 shows a model instance of the CMM meta-model. This model is
used as a running example to illustrate our approach. It is composed of a package
(named ‘Azureus’) that owns two classes (named ‘Client’ and ‘Server’). The class
‘Server’ owns an operation (named ‘send’) that does not own any parameter. The
model is consistent w.r.t. our two inconsistency rules.

2.2 Incremental checking

During any model-driven software project, models are continuously modified
by developers. As each modification can impact many model elements, checks
should be performed as often as possible during the development life cycle in
order to have a good control over the model consistency. However, as the time
needed to perform a check can be very high, the challenge is to control efficiently
the consistency of the model without burdening or delaying the developer in his
other modeling activities.

One way of dealing with this problem is to provide an incremental checker.
Incremental checks take into account the modifications made to a model. Rather
than re-checking the entire model, one can analyze the impact of a set of modifi-
cations (the model increment δ) on the consistency of a model, and only re-check
those inconsistency rules whose value may potentially have changed. In this way,
the number of rules to be checked after modification may be reduced significantly,
leading to an increased performance of the algorithm when compared to checking
the inconsistency of the entire model.

Ideally, for an incremental check to be efficient, two considerations should be
made. First, an inconsistency rule should be incrementally re-checked only if the



modifications contained in the model increment change its previous evaluation.
Second, after a modification, only the part of the model that is concerned by the
modifications needs to be analyzed in order to perform the new evaluation.

Following those two considerations while building an incremental checker,
the incremental check should (1) evaluate only a subset of inconsistency rules
and (2) analyze only a subset of model elements. Currently our approach only
targets the first point and aims at filtering at a low level of granularity those
rules that need to be re-checked after some model increment. It should be noted
that our approach only needs a small fixed memory size to run on top of our
classical inconsistency checker.

3 Detection of inconsistencies based on model
construction

3.1 Operation-Based Model Construction

In [9], we propose to represent models as sequences of elementary operations
needed to construct each model element. The four elementary operations we
defined are inspired by the MOF reflective API [15]:

1. create(me,mc) creates a model element me instance of the meta-class mc.
A model element can be created if and only if it does not already exist in
the model;

2. delete(me) deletes a model element me. A model element can be deleted if
and only if it exists in the model and it is not referenced by any other model
element;

3. setProperty(me,p,Values) assigns a set of Values to the property p of the
model element me;

4. setReference(me,r,References) assigns a set References to the reference r
of the model element me.

Fig. 2. Azureus UML model

1 create(p1,Package)
2 setProperty(p1,name, {‘Azureus’})
3 create(c1,Class)
4 setProperty(c1,name, {‘Client’}))
5 create(c2,Class)
6 setProperty(c2,name,{‘Server’})
7 setReference(p1,ownedMember,{c1,c2})
8 setReference(p1,ownedElement,{c1,c2})
9 create(o1,Operation)
10 setProperty(o1,name, {‘send’})
11 setReference(c2, ownedProperty, {o1})
12 setReference(c2, ownedElement, {o1})

Fig. 3. Model construction operation sequence σc



Figure 3 is the construction sequence σc used to produce the model of Fig-
ure 2. In Figure 3, line 1 corresponds to the creation of the package; line 2
corresponds to the assignment of the name of the package; lines 3 and 5 corre-
spond to the creation of the two classes; lines 4 and 6 to the assignment of the
name of the two classes; line 7 links the two classes to the the package’s owned
members; line 8 does the same but with the owned element list of the package
(the parameter list subsets the element list); lines 9 and 10 correspond to the
creation of the operation and its name affectation; line 11 links the operation to
the class’ properties; line 12 does the same but with the element list of the class
(the property list subsets the element list). This arbitrary sequence is used in
the next sections to illustrate our incremental inconsistency checker.

3.2 Inconsistency detection rules

Our formalism allows to define any inconsistency rule as a logic formula over
the sequence of model construction operations. As syntactic shortcut, we define
the ‘last’ prefix to denote operations that are not followed by other operations
canceling their effects. For instance, a lastCreate(me, Class) operation is de-
fined as a create(me, Class) operation that is not followed by a delete(me)
operation; and a lastSetReference(me, ownedProperty, val) operation is
defined as a setReference(me, ownedProperty, val) operation for which the
value of the ownedProperty reference of me in the model corresponds to val. A
complete description of the semantics of the ‘last’ operations is provided in [9].

For the OwnedProperty inconsistency rule, the operations that can make a
model inconsistent are the ones that modify a reference to the ownedParameter
list of an operation and the ones that modify the direction of a parameter. More
formally, those operations are setReference(me,ownedParameter,θ) where θ 6=
∅ and setProperty(me,direction,val).

This inconsistency rule can be formalised as follows:
OwnedParameter(σ) = {me | ∃sr, sp1, sp2 ∈ σ·

sr = setReference(me, ownedParameter, θ)∧
sp1 = setProperty(p1, direction,′ return′)∧
sp2 = setProperty(p2, direction,′ return′)∧
p1, p2 ∈ θ ∧ p1 6= p2}

Sequence σc of Figure 3 produces a model that is consistent with rule OwnedPa-
rameter, as it contains only one operation (line 9) that has no parameter.

For the OwnedElement inconsistency rule we presented in section 2.1, the only
operation that can make a model inconsistent is the one that adds a reference
to the ownedElement list of a model element. More formally, this operation
is setReference(me, ownedElement, θ) where me is an element and θ is not
empty. Such an operation produces an inconsistent UML model if and only if
the set θ is such that a cycle appears among the ownedElement references. The
way to repair such an inconsistent model is to break the cycle by removing a
relevant reference. One can easily check that sequence σc produces a model that
is consistent with rule OwnedElement.



4 Incremental Checking based on model operations

Our incremental inconsistency checker reduces the set of inconsistency rules that
need to be re-checked. Our approach is based on analyzing the impact that op-
erations of the model increment may have on the evaluation of the inconsistency
rules. We define a partition of equivalence classes for construction operations
and use this partition to classify the inconsistency rules. Section 4.1 presents
the equivalence classes and section 4.2 explains how those classes can be used
to classify the inconsistency rules. Section 4.3 then presents an example of this
mechanism and highlights its benefits for building an incremental checker.

4.1 Partitioning of operations

To reduce the set of inconsistency rules to re-check we rely on the fact that each
rule is concerned by a limited set of possible construction operations. A re-check
will only be necessary if at least one of these operations has been used in the
model increment.

For instance, the OwnedElement inconsistency rule is impacted by setRe-
ference operations that modify the values of the ownedElement set of an ele-
ment. As a consequence, this rule should only be re-checked if the model incre-
ment changes the values of the ownedElement reference set of an element. Any
other operation in the model increment will not affect the evaluation result of
the inconsistency rule.

In order to analyze inconsistency rules and to identify the operations that
impact them, we propose a partitioning of construction operations. Given a
meta-model MM and the set OMM of all construction operations that can be
performed to build model instances of this meta-model, we propose the partition
Pimpact(OMM ) of OMM . Two construction operations o1 and o2 belong to the
same equivalence class if and only if : (i) o1 and o2 both create model element
instances of the same meta-class; or (ii) o1 and o2 both change the values of the
same reference; or (iii) o1 and o2 both change the values of the same property;
or (iv) o1 and o2 both delete a model element.

This partition is finite since a meta-model holds a finite number of meta-
classes and each of them holds a finite number of properties and references.
The partition can be automatically computed for any meta-model based on the
following guidelines:

– for each non abstract meta-class M there is an equivalence class CM that
contains all the creation operations of instances of this meta-class,

– for each property p there is an equivalence class SPp that contains all the
operations setting the property value.

– for each reference r there is an equivalence class SRr that contains all the
operations setting the reference value.

– a final equivalence class D contains all the delete actions regardless of the
metaclass of the deleted model element.

The first column of figure 4 represents the partition Pimpact(OCMM ) of the
CMM metamodel.



4.2 Impact matrix

The partition Pimpact is used to identify the operations that may impact an
inconsistency rule. From a conceptual point of view, an inconsistency rule defines
a selection of specific operations within a sequence of construction operations.
This selection can be abstracted by a set of equivalence classes of the partition.
We name this set the corresponding equivalence classes of a rule.

For example, for inconsistency rule OwnedElement, the corresponding set of
equivalence classes is the singleton {SRownedElement}. For inconsistency rule
OwnedParameter, {SRownedParameter, SPdirection} is the corresponding equiva-
lence set.

We can visualize the relation between equivalence classes and inconsistency
rules by a matrix where the equivalence classes represent the rows and the in-
consistency rules represent the columns. The matrix contains boolean values
indicating the presence of a potential impact. The impact matrix for our CMM
metamodel and the two inconsistency rules is shown in Figure 4.

ownedElement ownedParameter

CPackage false false

CClass false false

COperation false false

CParameter false false

SPName false false

SPDirection false true

SRownedElement true false

SRownedMember false false

SRownedProperty false false

SRownedParameter false true

D false false

Fig. 4. Impact matrix for the CMM meta-
model Fig. 5. Impact matrix for the UML

metamodel

This impact matrix can be used as a filter on the inconsistency rules that
need to be re-checked after each model increment. For each operation contained
in the model increment, the corresponding equivalence class is selected and the
matrix is consulted to determine which rules need be re-checked. The impact
matrix ensures that all rules whose evaluation may have changed will be re-
checked. It should be noted that our approach only needs to store the impact
matrix to run. The size of this impact matrix depends only on the number of
rules and equivalence classes.

It should also be noted that our approach is a conservative approximation.
It is possible that the impact matrix identifies rules to re-check even if their
evaluation is not changed by the increment. Nonetheless, our approach effectively



reduces the set of rules needed to be re-checked, thereby avoiding a waste of
time on performing useless computations. We will present performance results
in section 5.

4.3 Example

For the sequence σc of Figure 3 and the inconsistency rules of section 2.1,
the model is consistent. Let δ be the model increment of Figure 6 that cre-
ates two parameters and associates them with the ‘send’ operation through the
ownedParameter reference. The first and second construction operations of δ
belong to equivalence class CParameter. The third operation belongs to equiva-
lence class SRownedParameter. The fourth operation belongs to equivalence class
SRownedElement. The impact matrix informs us that the rules ownedElement
and ownedParameter have to be re-checked. Performing the re-check informs us
that the model remains consistent after having applied the increment.

1 create(pa1,Parameter)
2 create(pa2,Parameter)
3 setReference(o1,ownedParameter,{pa1,pa2})
4 setReference(o1,ownedElement,{pa1,pa2})

Fig. 6. a first model increment δ on σc

1 setProperty(pa1,direction,{’return’})
2 setProperty(pa2,direction,{’return’})

Fig. 7. a second model increment
δ′ on σc.δ

Now, consider the second increment δ′ on σc.δ in Figure 7 that changes the
direction of the parameters. Both construction operations of δ′ belong to equiva-
lence class SPDirection. The impact matrix informs us that only ownedParameter
rule needs to be re-checked. Computing the re-check only for this rule informs
us that the model is inconsistent only for ownedParameter.

Our approach is centered around an impact matrix that expresses relation-
ships between inconsistency detection rules and their equivalence classes. This
matrix may be generated automatically, but such a generation depends on the
language that is used to define the inconsistency rules. Indeed, the more expres-
sive the language used to express the rule is, the more complex the automatic
generation of the matrix will be. We will present in section 5 how we generated
the impact matrix of UML 2.1 in a semi-automated way.

5 Validation

5.1 Prototype implementation

In [9], we presented a global model inconsistency checker that has been realized
using Prolog. Inconsistency rules were translated into Prolog queries and model
construction operations were translated into Prolog facts. The global inconsis-
tency checker has been integrated into the modeling environments Eclipse EMF



and Rational Software Architect. It has been written in Java and is coupled with
SWI-Prolog. From any given model, a model construction operation sequence is
generated and added to the fact base. The Prolog engine then executes all queries
representing inconsistency rules and returns the results to the user.

The Prolog query presented below corresponds to the inconsistency rule
OwnedParameter we introduced in Section 2.1 to identify operations that own
more than one ‘return’ parameter:

ownedParameter(X) :-
lastCreate(X,Operation),
lastSetReference(X,ownedParameter,L),
lastSetProperty(Y,direction,’return’),
lastSetProperty(Z,direction,’return’), Y\=Z,
member(Y,L), member(Z,L).

When evaluating this query, Prolog returns all X such that lastCreate(X,Ope-
ration) is true in the sequence. For each identified operation X, Prolog will eval-
uate whether there are any pairs (Y,Z) of distinct return parameters owned by
the operation. If the query returns a result for X, then the model is inconsistent
since there is at least one operation in the resulting model that owns two return
parameters.

The incremental checker we propose in this paper follows the architecture of
the global inconsistency checker. It is also based on Prolog, the inconsistency
rules are Prolog queries and the model construction operation sequences are
stored in a Prolog fact base. The incremental checker differs from the global
checker by relying on the impact matrix and by working with an extensible fact
base in which new facts can be added dynamically. The incremental checker
receives as input a sequence of construction operations that corresponds to a
model increment of a sequence that is already stored in the fact base. It parses
all operations of the increment. For each of them it uses the information stored
in the impact matrix to mark all inconsistency rules that require a re-check.
Once all operations of the model increment have been parsed, it is added to the
fact base. The user is then asked whether he wants to perform an incremental
re-check or whether he prefers to continue working with a possibly partially
inconsistent model.

5.2 Case Study

The UML impact matrix We have validated our approach on the classes
package of the UML 2 meta-model. The UML 2 classes package is composed
of 55 meta-classes required to specify UML class diagrams. Those 55 meta-
classes define a partition into 177 equivalence classes (cf. Section 4.1). The classes
package defines 58 OCL constraints that we have considered as inconsistency
rules. We translated these OCL constraints into Prolog queries and then built
the impact matrix. The dimension of this matrix is 177× 58.



In order to minimize errors when building the UML 2 matrix (which is quite
big), we partially automate its construction. For that, we implemented a ma-
trix builder that inputs inconsistency rules specified in Prolog and returns the
corresponding impact matrix. It functions roughly as follows: (1) by default,
all matrix values are set to false; (2) if the parsed inconsistency rule uses a
lastSetReference or lastSetProperty construction operation, in the column
corresponding to the rule in the matrix, the equivalence class of the operation
is set to true; (3) if the rule uses a lastCreate, in the column corresponding
to the rule in the matrix, the equivalence class of create operation as well as the
equivalence class D are set to true.

Figure 5 presents a screenshot of the UML 2 impact matrix where the 58
rules represent the columns and the 177 equivalence classes represent the rows.
For the sake of visibility, a black square represents true while a white one rep-
resents false. It should be noted that the rules and the equivalence classes are
ordered according to the meta-classes defining them. For instance, in the upper
left corner of the matrix appear the rules that are defined in the Association
meta-class and the equivalence classes of corresponding construction operations
(i.e., create(Association) and setReference(endType)). The last line corre-
sponds to the delete equivalence class; that’s why it is quite black. Moreover,
as inconsistency rules defined in a meta-class often use construction operations
corresponding to the meta-class, there is a kind of diagonal of true values in
the matrix. It should be noted that the block of 4 × 7 true values in the mid-
dle of the matrix corresponds to the rules defined in the MultiplicityElement
meta-class. This meta-class defines 7 inconsistency rules that specify the correct
values of lower and upper multiplicities. Therefore, the setProperty(lower)
and setProperty(upper) appear in all theses rules. Finally, one can observe
that the matrix is very sparse. As we will explain in the next subsection, many
inconsistency rules are impacted by only a few equivalence classes.

Analysis of the impact matrix Figure 8 is derived from the impact matrix
and shows, for each rule, the number of equivalence classes that impact each
inconsistency rule. The rules are shown on the x-axis, and are ordered according
to the severity of their impact: one rule is impacted by 11 equivalence classes,
one by 7 equivalence classes, two rules are impacted by 6 equivalence classes,
74.1% of the rules are impacted by 3 to 5 equivalence classes, and 18.9% of the
inconsistency rules are impacted by 1 or 2 equivalence classes.

Figure 9 is also derived from the impact matrix and shows, for each equiva-
lence class, the number of rules that are impacted by it. 66.1% of the equivalence
classes do not affect model consistency, 22.0% of the classes impact 1 or 2 in-
consistency rules, 9.0% of the classes impact 3 to 6 rules, 2.2% impact 8 to 10
rules and only the delete operation impacts almost all inconsistency rules. The
case of the delete operation is particular. It really impacts nearly all UML OCL
constraints but can only be performed on model elements that are not referenced
by any other model element.



Fig. 8. Number of equivalence classes that
impact a rule

Fig. 9. Number of rules impacted by
each equivalence class

Analysis of the rule complexity Next to this static analysis of the impact
matrix, we have performed a complexity analysis of the inconsistency rules. In-
deed, not all rules have the same complexity. In order to measure the complexity
of a rule, we used a benchmark of the time needed to check each rule for different
sizes of model chunks.

It appears that 13 rules out of 58 (22,4%) take much more time than the
others to be checked. For a model size around three hundred thousand model el-
ements (about 1.9 million operations), each of those 13 rules takes more than one
second to be checked; all others need only a few milliseconds. The ownedParameter
and the ownedElement rules we presented in the previous section belong to those
13 time-consuming rules. A manual inspection of those 13 rules revealed that
3 have a quadratic time complexity and the others have at most a linear com-
plexity. The ownedElement rule we presented in the previous section is one of
the three quadratic rules. The second one specifies that classifiers generalization
hierarchies must be directed and acyclical, and the third one specifies that all
members of a namespace should be distinguishable within it.

Scalability analysis We stress tested our incremental checker on a real, large-
scale UML model. A huge UML class model was obtained by reverse engineering
the Azureus project, which possesses a messy architecture. The model construc-
tion sequence for this UML model contained about 1.9 million model construc-
tion operations.

We performed a static analysis of the construction operation sequence of the
Azureus class model. According to our impact matrix, each rule is impacted
on average by 42000 operations of the construction sequence. This means that,
statistically, adding a new operation will have a probability of about 3% to
require re-checking an inconsistency rule.

We also executed a runtime test of our incremental checker following the
test performed by Eyged [6]. This test consists of loading a complete model and



simulating all possible modifications that can be performed on all the model
elements. Next, for each modification, an incremental check is performed. We
have performed this runtime test on our Azureus model. As the Azureus model
is a huge model, there are 1809652 modifications that can be realized. Those
modifications have been automatically generated and for each of them an incre-
mental check has been performed. The same test has been repeated six times in
order to filter out possible noise. The result of this runtime test is that the worst
time is 50.52 seconds (almost 1 minute), the best time is less than 0.1 ms (the
time needed to look in the matrix that no rule needs to be re-checked) and the
average time is 6 seconds (cf. last column of Table 1).

In order to analyze the effect of model size on the performance of our consis-
tency checker, we have split up the Azureus model into five parts with a linearly
increasing size (the fifth part corresponding to the complete Azureus model) and
we have applied the same runtime test but with a set of modification operations
corresponding to the size of the part. Applying the runtime test to those sub-
models, it turns out that best time remains roughly the same whereas the worst
time has a curious growth. In fact, we did not observe (as we would have ex-
pected) a quadratic trend that would correspond to the time needed to check the
most time-consuming rules. The reason is that the inconsistencies are not uni-
formly distributed among parts. Our hypothesis is that the worst time depends
mainly on the ordering of the operations within the sequence. Finally, we have
observed that the average time increases linearly (cf. last column of Table 1).
This was confirmed by a linear regression model that had a very high “goodness
of fit”, since the coefficient of determination R2 = 0.994 was very close to 1.

Table 1. Timing results in milliseconds (averaged over 6 runs) for incrementally check-
ing the impact of modification operations applied to Azureus.

model size number of operations worst result best result average result

part 1 380866 38204 ≈ 0 1722

part 2 761732 38884 ≈ 0 2677

part 3 1142598 41096 ≈ 0 3725

part 4 1523464 47715 ≈ 0 5168

full model 1904331 50521 ≈ 0 5984

Without anticipating our conclusion, those timing results seem to show that,
if the inconsistency rule set contains complex rules (such as ownedElement), once
the model size becomes important (in the order of millions operations), the time
needed to perform an incremental check cannot be instantaneous and continues
to increase as the model size increases.



6 Related Work

Egyed proposed a framework dedicated to instant inconsistency detection [6].
This framework monitors the model elements that need to be analyzed during
the check of an inconsistency rule. If an inconsistency is detected, all the rel-
evant model elements are inserted in a corresponding “rule scope” in order to
keep track of them (a rule scope defines a relation between one inconsistency de-
tection rule and the set of model elements that need to be analyzed to evaluate
this rule). After a set of modifications, the framework traces the rule scopes that
are impacted by the modifications and then automatically re-checks the corre-
sponding rules. This allows to reduce the set of rules to re-check and the set
of model elements to analyze. Egyed presents very efficient performance charts
for his approach but also makes the observation that such results are due to
the rules that have been considered. Indeed, all considered rules have only one
root model element and their check only needs a bounded set of model elements
linked either directly or indirectly to the root. With such rules, the size of the rule
scope scales and the time needed to perform the check is almost instantaneous,
independently of the model size. This is confirmed by our findings, but we would
like to stress that not all inconsistency rules are of this kind. If we would apply
Egyed’s approach to the OwnedElement rule on our sample model (cf. figure 2), 4
“rule scopes” will be built (one per model element). The size of those rule scopes
will depend on the model size (the rule scope for the Azureus package will own
all elements of the model). Now, if we consider that a modification changes the
name of the send operation then three rule scopes will be impacted (the ones
of the send operation, of the Server class and of the Azureus package). Then
the complex ownedElement rule will be checked three times and the check will
require some time. To conclude, the more complex the inconsistency rules and
the bigger the models, the less efficient Egyed’s approach (or any other approach,
for that matter), becomes.

Wagner et al. also provide a framework for incremental consistency checking
in [16]. The framework monitors change events and tries to match them against
detection rules that are defined as graph grammar patterns. If a match is de-
tected then the rule is automatically re-checked. Wagner does not provide any
performance analysis and does not ensure that his approach is scalable. Indeed,
Wagner indicates that rules should not be time consuming in order to not block
the user while he is building his models.

In [17] is presented an OCL incremental checker. The authors describe how
to exploit the OCL description language to work on consistency invariant. The
approach can be compared to ours because it enables to determine for each
invariant the set of impacting OCL change events. And secondly, it describes
how to compute an optimized invariant recheck code for each impacting change.
However, OCL description language has a limited usage as it can only describe
mono-contextual inconsistencies, in the context of software architecture models it
is advocated to target multi-context/multi-paradigm inconsistencies as presented
in [18, 19].



In the database community, incremental consistency checking is an impor-
tant research topic that has been addressed by various authors over the years.
Their main goal is to preserve data integrity, and to detect whether database
updates violate integrity constraints. For example, [20] proposed a logic-based
approach, implemented in Prolog, to check integrity of deductive databases. We
acknowledge that there is a lot to learn from database research, even though the
focus for software models is different, since inconsistencies are omnipresent and
inevitable during the modeling process [3], implying that we need more flexible
techniques for managing and allowing inconsistencies.

7 Conclusion

In this paper we proposed an incremental inconsistency checker that is based on
a sequence of model construction operations. Our approach consists of analyzing
the modifications performed on a model in order to identify a subset of inconsis-
tency rules that need to be re-checked. The analysis is based on an impact matrix
that represents dependencies between construction operation equivalence classes
and inconsistency rules. Thanks to this matrix, a user can instantaneously know
if the modifications he performs may or may not impact an inconsistency rule.
With such knowledge he can then decide whether and when to execute the in-
cremental check of impacted rules. Such an incremental check typically requires
considerably less time than a full check. Moreover, our incremental checker scales
up to huge models, as the only information required for it to run is stored in the
impact matrix.

The definition of the impact matrix relies only on the meta-model and the in-
consistency rules; it does not depend on the state of the models that are checked.
Our incremental inconsistency checker can even consider several meta-models si-
multaneously in a homogenous way, since we represent models as construction
operation sequences defined independently of any meta-model.

We aim to improve our incremental checker in two ways. First, we aim to
classify inconsistency rules according to their severity and complexity. With such
a classification, users will have more information to decide whether and when to
re-check inconsistency detection rules that have been marked by our incremental
checker. As a second improvement, we can not only reduce the set of rules to
re-check but also the set of model elements to consider during the analysis. This
would enable each rule to re-check only a relevant fragment of the whole model.
Our objective is then to integrate our approach with an incremental checker such
as the one proposed in [6].

The results we obtained can also contribute towards computer-supported
collaborative work. Indeed, we have observed that many model construction op-
erations are safe regarding inconsistency rules. In other words, those operations
have no major negative impact on the model consistency, and can thus be per-
formed by any one at any time. Hence, it would make sense to define a locking
and transaction mechanism on top of construction operations instead of model
elements in order to improve support for collaborative work.



References

1. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5)
(2003) 19–25

2. Finkelstein, A.C.W., et al.: Inconsistency handling in multiperspective specifica-
tions. In: IEEE Trans. Softw. Eng. Volume 20., IEEE Press (1994) 569–578

3. Balzer, R.: Tolerating inconsistency. Proc. Int’ Conf. Software engineering (ICSE
’91) 1 (1991) 158–165

4. Fradet, P., Le Metayer, D., Peiin, M.: Consistency checking for multiple view
software architectures. In: Proc. Joint Conf. ESEC/FSE’99. Volume 41., Springer
(September 1999) 410–428

5. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair
actions. In: Proc. Int’l Conf. Software Engineering (ICSE’03), Washington, DC,
USA, IEEE Computer Society (2003) 455–464

6. Egyed, A.: Instant consistency checking for UML. In: Proceedings Int’l Conf.
Software Engineering (ICSE ’06), ACM Press (2006) 381–390

7. Mens, T., et al.: Detecting and resolving model inconsistencies using transforma-
tion dependency analysis. In: Model Driven Engineering Languages and Systems.
Volume 4199 of LNCS., Springer (October 2006) 200–214

8. Malgouyres, H., Motet, G.: A UML model consistency verification approach based
on meta-modeling formalization. In: Proc. Symp. Applied computing (SAC ’06),
New York, NY, USA, ACM (2006) 1804–1809

9. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Detecting model inconsistency
through operation-based model construction. In Robby, ed.: Proc. Int’l Conf. Soft-
ware engineering (ICSE’08). Volume 1., ACM (2008) 511–520

10. Egyed, A.: Fixing inconsistencies in UML design models. In: Proc. Int’l Conf.
Software Engineering (ICSE’07), IEEE Computer Society (2007) 292–301

11. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
Survey and open research issues. Handbook of Software Engineering and Knowl-
edge Engineering (2001) 329–380

12. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description
logics to maintain consistency between UML models. In: UML 2003 - The Unified
Modeling Language. Volume 2863 of Lecture Notes in Computer Science., Springer
(2003) 326–340

13. Elaasar, M., Brian, L.: An overview of UML consistency management. Technical
Report SCE-04-18 (August 2004)

14. OMG: Unified Modeling Language: Super Structure version 2.1 (january 2006)
15. OMG: Meta Object Facility (MOF) 2.0 Core Specification (January 2006)
16. Wagner, R., Giese, H., Nickel, U.A.: A plug-in for flexible and incremental con-

sistency management. Workshop on consistency problems in UML-based Software
Development - Satellite Workshop of MODELS (2003)

17. Cabot, J., Teniente, E.: Incremental evaluation of ocl constraints. In: Proc. Int’l
Conf. Advanced Information Systems Engineeing (CAiSE). Lecture Notes in Com-
puter Science, Springer (2006) 81–95

18. ISO/IEC 42010: Systems and software engineering architectural description.
ISO/IEC WD3 42010 and IEEE P42010/D3 (2008)

19. Boiten, E., et al.: Issues in multiparadigm viewpoint specification. In: Foundations
of Software Engineering. (1996) 162–166

20. Kowalski, R.A., Sadri, F., Soper, P.: Integrity checking in deductive databases.
In: Proc. Int’l Conf. Very Large Data Bases (VLDB), Morgan Kaufmann (1987)
61–69


