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ABSTRACT
Context: Ownership metrics measure how the workload of
software modules is shared among their developers. They
have been shown to be accurate indicators of software qual-
ity. Objective: As they have been studied only with indus-
trial software systems, we replicated the study but with Java
free/libre and open source software (FLOSS) systems. Our
goal was to generalize an “ownership law” that would state
that minor developers should be avoided. Method: We ex-
plored the relationship between ownership metrics and fault-
proneness on seven FLOSS systems, using publicly avail-
able corpora to retrieve the fault-related information. Re-
sults: On our corpus, the relationship between ownership
metrics and module faults is weak. In the best setting, less
than half of systems exhibit a significant correlation, and in
the worse setting no system at all. Moreover, fault-proneness
seems to be much more influenced by module sizes than
ownership metrics. Conclusion: Ownership results cannot
therefore be generalized to FLOSS systems. Further, we also
perform an in-depth analysis to understand the lack of cor-
relation between ownership metrics and module faults. We
show that with several settings, the distributions of mod-
ule faults and ownership metrics prevent the finding of any
correlation.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.8 [Software
Engineering]: Metrics—process metrics

General Terms
Managment, Measurement

Keywords
Process metrics, code ownership, reproduction study

1. INTRODUCTION
Software metrics have been defined with the main objective
of expressing quantitative measures that can serve as indica-

tors for software quality [3]. Although they were originally
defined to measure software artifact characteristics (such as
the number of lines of code or the number of methods, etc.),
new metrics have been recently defined to measure devel-
oper’s activity [17]. The main intuition of these metrics,
also called process metrics, is that developers habits have
a deeper impact on the software quality than the intrinsic
characteristics of software artifacts, as suggested by previous
research [14, 18].

Among process metrics, the ones measuring code ownership
are of a particular interest. They measure the level to which
developers own modules of a software system. More pre-
cisely, if a developer contributes to more than 5% of a mod-
ule, she is considered to be a major owner of that module.
In the opposite, a developer that contributes to less than 5%
is considered to be a minor owner. According to Bird et al.
ownership metrics are good indicators for software quality as
the more minor developers contribute to a software module,
the more faults it contains [2].

Such a result may therefore be used to reorganize the de-
velopment teams in order to assign major owners for each
modules of a software systems and to definitively avoid mi-
nor owners. However, prior to reorganizing development
teams, a stronger validation of ownership metrics has to be
done, which is the purpose of this paper. First, it should
be noted that the empirical validation of ownership metrics
performed by Bird et al. has been only done for industrial
software modules (the ones of Windows Vista and Windows
7 only). Further, the metric granularity used by Bird et
al., which consists in considering binaries (i.e. .dll files) as
modules, is not applicable to every language.

This paper aims to replicate the empirical study of owner-
ship metrics that has been originally performed by Bird et
al. [2]. We performed a similar study but considered Java
free/libre and open source (FLOSS) systems rather than in-
dustrial ones. Moreover we tested ownership metrics using
two granularities, which are Java packages and source code
files. Our objective was initially to make a step toward the
generalization of the“ownership law”stating that developers
should be major owners of several modules and that minor
owners should be avoided. The results we obtain unfortu-
nately do not exhibit the existence of such an ownership
law. First, we do find a correlation between ownership met-
rics and the module faults, but only on half of the systems,
at best. Moreover, when blocking for the module sizes (i.e.



eliminating the impact of size) we did not find relationships
between ownership metrics and module faults. These find-
ings seems to indicate that code metrics are better indicator
of software quality than ownership metrics on Java FLOSS
systems. Finally, all these observations show that the “own-
ership law” cannot be generalized. Further we performed a
deeper analysis of the different software systems we studied
to understand why relationships between ownership metrics
and module faults are not found everywhere. We notice that
the distribution of ownership metrics may have an impact
on these relationships.

This paper starts in section 2 with an overview of the related
works. Section 3 first presents the original ownership study
performed by Bird et al. and then explain the methodology
of our replication study. Section 4 presents the main result
of our study that is that the “ownership law” cannot be gen-
eralized to Java FLOSS systems. These results are discussed
in section 5, Finally, section 6 concludes this paper.

2. RELATED WORK
In the late 2000s, several studies have shown evidence of a
relationship between the number of developers of a software
artifact and its fault-proneness. Among them, Weyuker et
al. found that adding the number of developers who edited a
file to their prediction model provides a slight improvement
to the model’s precision [20]. Illes-Seifert and Paech found a
correlation between the number of faults identified on a file
and its number of authors [10]. Furthermore, they explored
the relationship between several process metrics and fault-
proneness, and did not found a metric were the relationship
with fault-proneness existed in all projects. However, they
found that the number of distinct authors of a file was cor-
related to the number of faults in almost every project [11].

Many studies used fault prediction models to validate the
relevance of process metrics for measuring software quality.
Moser et al. compared the predictive power of two sets of
software metrics, respectively code and process metrics, on
several Eclipse projects [16]. They found that process met-
rics are better indicators of software quality than code met-
rics. Similar results have been found by other researcher,
also using fault prediction as a quality indicators for their
metrics [14, 18].

Finally, D’Ambros et al. evaluated different sets of metrics
in a thorough study on fault prediction [5]. They compared
the process metrics introduced by Moser et al. [16] to other
metrics such as the classical source code metrics from Chi-
damber and Kemerer [3], the measure of entropy of changes
introduced by Hassan [8], the churn of source code met-
rics or the entropy of source code metrics. Among all these
measures, they found that process metrics and the churn
and entropy of source code metrics are the best performers
for fault prediction. However the authors expressed serious
threats to the external validity of their study (i.e. whether
the results are generalizable), which calls for more empirical
studies on that matter.

Although the number of developers is not always the pro-
cess metric showing the higher correlation, ownership met-
rics rely on another information which is the proportion of
contributions made by the developers. Using this informa-

tion it is possible to split developers in major and minor
contributors. The relationship between measures of code
ownership and faults have been studied by Bird et al. on
Windows Vista and Windows 7 binaries [2]. The results
of this study are that the number of minor contributors of
a binary is strongly correlated to the number of pre- and
post-release faults of Windows binaries.

3. METHODOLOGY
This section starts by presenting the original study of own-
ership metrics performed by Bird et al. [2]. Then it presents
our replication study.

3.1 Original Ownership Study
The goal of the original study of Bird et al. was to evalu-
ate if analyzing how many developers coded a system, and
in which proportions, could influence the fault-proneness of
software modules. To that extent, they performed a study
were they analyzed two commercial Microsoft systems (Win-
dows Vista and Windows 7). Their data corpus includes pre
and post-release faults, precisely linked to the faulty soft-
ware modules. They introduce several ownership metrics
that characterize the way in which a software module has
been built by its developers. These metrics are further de-
scribed in the next section.

3.1.1 Ownership Metrics
To present how the ownership metrics are measured, we need
to briefly introduce the concepts of software module and de-
veloper contribution. First of all, we consider that any soft-
ware system is composed of a finite set of software modules
(i.e. components, classes or functions) that are developed by
a finite set of developers which submit their modifications
by sending commits.

More formally, let M be the set of software modules of a
given software system, D the set of developers and C the
set of commits they send.

Each module is defined by a finite set of source code files.
When a developer modifies one of the files of a software
module by committing her work, she is contributing to that
module. The contributions made by a developer to a given
module can be measured with different metrics (e.g. by
counting the number of modified lines of codes). In their
study, Bird et al. simply measured the weight of a devel-
oper contribution by counting the number of touched files.
For instance, if Alice contributes to a module by modifying
three files first and five files later, she is contributing with a
score of 8.

More formally, let w(mi, dj , ck) ∈ N be the number of files
that belong to the software module mi and that have been
modified by the developer dj during the commit ck. For
the sake of simplicity we define wm the sum of all developer
contributions performed on a software module m, wd the
sum of all contributions performed by a developer d and
wm,d the sum of all contributions performed by a developer
d on a module m .

Based on this concept of developer contribution, the owner-
ship metrics mainly measure the ratio of contributions made



by one developer compared to the rest of the developers.
More formally, for each module m and for each developer d

such a ratio is ownm,d = w(m,d)
w(m)

.

Further, Bird et al. developed the ownership metrics by
defining four scores that are computed for each software
module:

Ownership This score is the highest value of the ratio of
contributions performed by all developers. More for-
mally, for a given software module m, its Ownership
value is max({ownm,d|d ∈ D}).

Minor This score counts how many developers have a ratio
that is lower than 5%. More formally, for a given soft-
ware module m, its Minor value is |{0 < ownm,d ≤
5%|d ∈ D}|. Such developers are considered to be
minor contributors of the software module

Major This score counts how many developers have a ratio
that is bigger than 5%. More formally, for a given
software module m, its Major value is |{ownm,d >
5%|d ∈ D}|. Such developers are considered to be
major contributors of the software module.

Total This score is simply the total number of developers
of a module m: Total = Minor + Major.

The 5% threshold used by the metrics Minor and Major has
been evaluated by Bird et al. [2] with thresholds from 2% to
10%, which produced similar results.

In addition to the Ownership metrics, Bird et al. also com-
pute several classical code metrics for each software module:

Size The number of lines of code of a module m.

Complexity Although the exact definition of the complex-
ity metric used in Bird et al. study is not given, we
choose to use the weighted method count (WMC) of a
module m for this purpose.

3.1.2 Methodology and Results
Bird et al. computed the described metrics on every bi-
nary source code files of Windows Vista and 7. Since they
also have the number of pre and post release faults for each
binary, they compute the correlation coefficients between
the metrics and the number of faults by using the non-
parametric Spearman method.

To ensure that ownership metrics have a real added-value
compared to classical code metrics such as Size, as advocated
in [6], they also performed multiple linear regression and
compare the results of a model using the classical metrics
and a model using both classical and ownership metrics to
explain the fault numbers.

Their results indicate that ownership metrics were strongly
correlated with the pre-release faults, even better than the
classical metrics. They also found that there is a real added-
value to consider the ownership metrics in addition to the
classical metrics.

3.2 Our Replication
3.2.1 Corpus

In our replication of the code ownership study, we choose
seven Java FLOSS systems, shown in Table 1. The original
systems chosen by Bird et al. were Windows Vista and 7
that are commercials and closed-source systems. We chose
Java FLOSS systems because we believe that the develop-
ment process is very different between in this kind of sys-
tems. Therefore, generalizing the results of Bird et al. on
such a corpus would be a great step toward an ownership
law. In the original study, Bird et al. used tools and informa-
tion specific to Microsoft, which provided the links between
faults and software modules. Obtaining this information is
harder on Java FLOSS systems as they do not use the same
conventions and fault tracking tools. To overcome this is-
sue, we leverage on previous empirical data that provided
publicly available corpora: the PROMISE corpus [15], and
the corpus used in the study of D’Ambros et al. [5], available
online1. Both corpora associate Java classes to their number
of faults for specific releases of the systems. Moreover, these
corpora provide code metrics including the number of lines
of code of a class and its complexity, that we need for our
study.

A noteworthy difference between our corpus and the one
of Bird et al. is that our corpus contains post-release faults
exclusively whereas the original study targeted both pre and
post-release faults [2].

3.2.2 Module Granularity
The study performed by Bird et al. considers the compiled
Window binaries as a software modules. In the Java world, it
would correspond to consider Java classes as modules, since
the Java compiler produces binaries for each Java class. A
suitable approximation to Java classes are the files in which
they are coded. However we think that it may be too fine-
grained, because typical Java classes are much smaller than
Windows binary source files. Therefore we decided to use
two definitions of module in our corpus, using two granular-
ities. Modules can either be the Java source files (called file
granularity) or the Java packages (called package granular-
ity).

3.2.3 Analyzed Time Period
Ownership metrics are computed from the modifications per-
formed by the developers of a module. Therefore, the amount
of modifications taken into account has an impact on the
metrics values. In the original study, Bird et al. consid-
ered all the modifications performed since the last release
of the software, which in that case was the previous version
of the Windows operating system. Regarding this point, we
wanted to explore what happens when we consider only the
modifications performed since the previous release, and and
when considering a wider period such as the whole history
available in the software repository. Therefore we use two
different time periods to compute ownership metrics: from
the beginning (called the whole period), and from the last
release (called the release period).

3.2.4 Correlation and Module Size
1http://bug.inf.usi.ch/

http://bug.inf.usi.ch/


Table 1: The Java FLOSS systems included in our corpus

Project Version Date Previous Version Date

Apache Ant 1.7.0 2006-12-12 1.6.5 2005-06-02
Apache Camel 1.6.0 2009-02-17 1.5.0 2008-10-31
Apache Log4J 1.2.0 2002-05-10 1.1.3 2001-06-19
Apache Lucene 2.4.0 2008-10-03 2.3.2 2008-05-06
Eclipse JDT Core 3.4 2008-06-13 3.3.2 2008-01-31
Eclipse PDE UI 3.4.1 2008-09-03 3.4 2008-06-03
Eclipse Equinox Framework 3.4.0 2008-06-06 3.3.2 2008-01-18

In the original study, Bird et al. used multiple linear re-
gression to take into account the effect of using ownership
metrics in addition to classical code metrics, following the
advice given in [6]. To that extent, they compare the amount
of variance in failures explained by a model that includes the
ownership metrics to a model that only includes a classical
code metric, such as Size. In our study, we also measures this
effect, but we use a slightly different statistical framework.
Indeed, using multiple linear regression assumes normally
distributed residuals. To avoid this difficulty, we use par-
tial correlation [13]. Partial correlation aims to compute a
correlation coefficient between two variables by taking into
account the effect of a set of controlling variables. We com-
pute it using the Spearman method, because it is a non-
parametric test, and by taking into account the effect of the
Size metric, which have been shown to have a strong ef-
fect on the fault-proneness [6]. Using partial correlation, we
are therefore able to analyze the added value of ownership
metrics compared to using only the Size metric.

3.2.5 Toolset
As the informations about bugs are available in the corpora
presented above, all that is left to extract are the contri-
butions of the developers. This information is available in
the version control system (VCS) of each system. In order
to ease the extraction of information from the VCSs, we
use an open source framework dedicated to mining software
repositories called Harmony2[7]. This framework provides
an homogeneous model for several VCSs, including Git3 and
Subversion4, which are the ones used by the systems of our
corpus. The set of Harmony analyzes performed in our study
is available online5.

4. RESULTS
As we have two factors (granularity and period) with two
possibilities for each (file and package for the first one, and
whole and last release for the second one), we launched our
experiment four times. The results are shown in four ta-
bles: Table 2, Table 3, Table 4 and Table 5. In these tables,
the Correlation part shows the Spearman correlation coef-
ficients with our metrics and the module faults. This part
is divided in two parts to show separately the coefficients
for ownership metrics and code metrics. These tables also
contain a Partial Correlation part where we show the coef-
ficients of the partial correlation between ownership metrics

2http://code.google.com/p/harmony
3http://git-scm.com
4http://subversion.apache.org/
5http://se.labri.fr/articles/ownership

and module faults, taking into account the effect of the Size
metric. They are computed using partial correlation in com-
bination with the Spearman method. For the sake of clarity,
correlation coefficients are displayed in bold if their absolute
values are above the 0.50 value, meaning that they show a
significant correlation. Also, we show in italic with a * sym-
bol, the correlation coefficients that were not statistically
significant under the 0.05 p-value.

4.1 Ownership vs Code Metrics
The results shown in the four tables indicate that the code
metrics are better correlated with the number of faults rather
than with the ownership metrics. There are only very few
cases where an ownership metric has a better correlation co-
efficient than a code metric. This is a completely different
result from the Bird et al. study where they found a bet-
ter correlation of ownership metrics. It therefore shows that
code metrics are better indicators of fault proneness than
ownership ones for Java FLOSS systems.

Among ownership metrics, the best ones are total and minor.
This is a small difference from the results of Bird et al. where
minor were performing the best. Therefore, on Java FLOSS
systems, the number of developers seems to be an equally
good indicator of fault-proneness than the number of minor
developers. Regarding the code metrics, there is almost no
difference between the size and complexity metrics.

4.2 File vs Package
The results for the package granularity (Table 2 and 4) are
far better than the ones for the file granularity (Table 3
and 5). Using the file granularity, the results contain only
one case of correlation between a metric and the number
of bugs, whereas using the package granularity there are
twenty of such cases. Therefore ownership and code met-
rics should be computed at the package granularity and not
on the file granularity for Java FLOSS systems. This con-
firms our initial intuition that Java files are too fine-grained
entities compared to Windows binaries.

4.3 Whole vs Last Release
The impact of computing ownership metrics over the last
release of a project (Table 2 and 3) or over its whole his-
tory (Table 4 and 5) is not consistent across projects. With
a package granularity, the results of four projects (JDT,
Log4J, Camel and Lucene) are only slightly different be-
tween both periods, for all the ownership metrics. With
other projects, results are contradictory. With Ant, the cor-
relation between each ownership metric and the number of
faults is stronger when considering only the last release of the

http://code.google.com/p/harmony
http://git-scm.com
http://subversion.apache.org/
http://se.labri.fr/articles/ownership


Table 2: Regular and partial correlation for the package granularity and last release period.

Correlation Partial Correlation (controlled with Size)

Ownership metrics Code metrics Ownership metrics

Project Ownership Major Minor Total Complexity Size Ownership Major Minor Total
Equinox 0.6 0.54 0.32 0.64 0.72 0.73 0.38 0.32 0.2* 0.41
JDT 0.12* -0.45 0.77 0.74 0.85 0.84 -0.02* -0.48 0.47 0.28*
PDE 0.42 0.44 0.27 0.49 0.58 0.61 0.33 0.35 0.14* 0.38
Ant -0.52 -0.5 0.67 0.67 0.63 0.56 -0.34 -0.2* 0.39 0.4
Camel 0.16* 0.1* 0.3 0.33 0.36 0.4 0.08* 0.03* 0.13* 0.19
Log4J 0.22* -0.57 0.59 0.42 0.85 0.9 0.15* -0.2* 0.31* 0.3*
Lucene 0* -0.24 0.49 0.41 0.47 0.49 -0.01* -0.17* 0.33 0.27

Table 3: Regular and partial correlation for the file granularity and last release period.

Correlation Partial Correlation (controlled with Size)

Ownership metrics Code metrics Ownership metrics

Project Ownership Major Minor Total Complexity Size Ownership Major Minor Total
Equinox 0.27 0.3 0.00 0.3 0.52 0.54 0.15 0.17 0.00 0.17
JDT 0.22 0.27 0.32 0.35 0.41 0.42 0.11 0.14 0.24 0.21
PDE 0.22 0.23 0.00 0.23 0.27 0.24 0.19 0.2 0.00 0.2
Ant -0.32 -0.11 0.4 0.39 0.49 0.43 -0.15 -0.12 0.25 0.2
Camel 0.11 0.12 0.08 0.13 0.18 0.19 0.05* 0.07 0.06* 0.07
Log4J 0.02* 0.16 0.32 0.39 0.21 0.25 0.04* 0.15 0.27 0.35
Lucene 0.13 0.14 0.16 0.16 0.15 0.17 0.1 0.11 0.14 0.13

Table 4: Regular and partial correlation for the package granularity and whole period.

Correlation Partial Correlation (controlled with Size)

Ownership metrics Code metrics Ownership metrics

Project Ownership Major Minor Total Complexity Size Ownership Major Minor Total
Equinox -0.49 -0.72 0.68 0.56 0.72 0.73 -0.17* -0.4 0.33 0.21*
JDT -0.16* -0.33 0.73 0.73 0.85 0.84 -0.04* 0.07* 0.41 0.41
PDE -0.24 -0.28 0.54 0.54 0.58 0.61 -0.12* -0.1* 0.33 0.33
Ant -0.38 -0.19* 0.44 0.44 0.63 0.56 -0.24* 0.04* -0.05* -0.04*
Camel -0.25 -0.25 0.49 0.49 0.36 0.4 -0.22 -0.06* 0.35 0.35
Log4J 0.23* -0.55 0.49 0.34* 0.85 0.9 0.02* -0.3* 0.38* 0.33*
Lucene -0.25 -0.34 0.45 0.44 0.47 0.49 -0.17* -0.11* 0.24 0.26

Table 5: Regular and partial correlation for the file granularity and whole period.

Correlation Partial Correlation (controlled with Size)

Ownership metrics Code metrics Ownership metrics

Project Ownership Major Minor Total Complexity Size Ownership Major Minor Total
Equinox -0.36 -0.41 0.45 0.45 0.52 0.54 -0.25 -0.27 0.3 0.3
JDT -0.07 -0.16 0.35 0.35 0.41 0.42 -0.01* -0.05* 0.16 0.16
PDE 0.02* -0.18 0.17 0.16 0.27 0.24 0.04* -0.1 0.09 0.09
Ant -0.13 -0.17 0.32 0.32 0.49 0.43 -0.1 -0.03* 0.11 0.11
Camel -0.1 -0.18 0.23 0.22 0.18 0.19 -0.1 -0.1 0.17 0.17
Log4J -0.24 -0.31 0.38 0.34 0.21 0.25 -0.2 -0.28 0.33 0.3
Lucene -0.12 -0.18 0.21 0.19 0.15 0.17 -0.1 -0.15 0.18 0.16



project (absolute values are at least 0.50, but at most 0.44
with the whole history). With PDE the effect is different
between metrics for Ownership and Major, the correlations
are stronger with only the last release, but with Minor and
Total it is the reverse. Finally a major effect is found with
the Equinox project and the metrics Ownership and Major,
which are both positively correlated when considering the
last release and both negatively correlated (i.e. the number
of faults diminishes when the metric values increase) when
considering the whole history of the project. Such obser-
vations are similar with the file granularity, although the
correlations are a lot weaker as discussed in the previous
paragraph.

Regarding these results, looking at the last release or at
the whole project return either the same or contradictory
results. A possible lead to solve this issue, may be to mea-
sure code ownership on both periods, last release and whole
history, and to aggregate the results.

4.4 Controlling with Size
The partial correlation controlled with the module size looks
for a relationship between ownership metrics and bugs while
keeping a constant module size. When considering package
as the module granularity (Table 2 and 4), many tests pro-
vide statistically insignificant results, due to sample sizes
that were not large enough. The statistically significant re-
sults show only a low, at most moderate, relationship be-
tween ownership metrics and module faults. With the file
granularity (Table 3 and 5), as there are more data points,
the number of statistically significant results is higher. How-
ever the correlations are weaker than with the package gran-
ularity. As a consequence, although we used a distinct sta-
tistical test, we were not able to confirm the results of Bird
et al. on Java FLOSS regarding the relationship between
ownership metrics and post-release bugs when controlling
the module size.

4.5 Threats to validity
Construct validity refers to whether or not our actual mea-
sures correspond to the conceptual ones. In our survey, two
main concepts are measured : post-release bugs and owner-
ship metrics. The count of number of bugs we refer to have
been extracted in previous research and made public, either
by Jureczko et al. [12] or D’Ambros et al. [5]. Both studies
acknowledge threats to validity related to the construction
of these corpora, particularly on the algorithms linking fault
to their fixing commits. In both cases the algorithm con-
sists in analyzing commit messages to find a fault identifier.
When it is the case the commit is tagged as a fixing com-
mit, and all the classes modified in this commit are linked
to the fault. Although this technique represents the state of
the art in the literature of linking faults to commits [21], it
suffers from a poor recall as all the fixing commits which do
not contain a reference to the fault are ignored. This fact
threatens the validity of the study as it introduces a bias in
the bugs included in the corpus [1].

Another threat related to the faults and identified by pre-
vious research is the quality of the data stored in the issue
tracker itself. According to Herzig et al. [9], many issues
classified as faults in open source projects are in fact evolu-
tion or optimization requests. To ensure this D’Ambros et

al. have performed a manual check on one of the projects of
their corpus, and found that most of the bugs were correctly
classified. However we do not know if such a verification has
been done on the corpus of Jureczko et al.

External validity refers to whether the results of a study are
can be generalized or not. A parameter which may threaten
external validity is how the subject of the study (the systems
in our case) have been selected. Our corpus is composed
of FLOSS systems only and the results may be different
with industrial systems, who may enforce strong ownership,
such as the Windows operating systems studied by Bird et
al. [2]. However, as noted by D’Ambros et al, their corpus is
composed of Eclipse systems, that have a strong industrial
background.

The second threat to external validity is linked to the pro-
gramming language and the module granularities we used.
All the systems in our corpus are programmed using Java,
and the package-level granularity is heavily linked to this
language, as it relies on one of its feature. To resolve this
issue we could include systems developed in different lan-
guages and use a language-agnostic approach to split the
project into modules (e.g. [4]). Ultimately, the only way to
test external validity is by replicating the study with differ-
ent systems and/or different settings, to determine where an
“ownership law” could apply.

Statistical conclusion validity relates to the statistical sig-
nificance (or statistical power) of the results. In the case of
correlation tests, the statistical power of the results is ex-
pressed with a p-value, representing the probability that we
find a type I error (i.e. finding a correlation when none ex-
ists). When we tested for partial correlation with a package
granularity, many of our tests did not provide statistically
significant results due to the lack of data points.

5. DISCUSSION
Bird et al. found very high correlation coefficients between
ownership metrics and module faults in industrial systems
whereas we found completely different results for Java FLOSS
systems. This is maybe due to the inherent differences be-
tween industrial and FLOSS systems.

One main difference between industrial and FLOSS systems
is regarding workload distributions. In industrial systems,
almost all developers spend 100% of their time on the system
and contribute to it for several months. In FLOSS systems
there are two kinds of developers. Few heroes contribute to
all the modules of the system for a long time whereas there
are several minor contributors who develop a single feature
or fix a bug and then stop the system development [19].

We therefore investigated on the distributions of ownership
metrics and module faults to check if they have an impact
on the correlation coefficients. Not surprisingly, we observed
that the distribution of ownership and metrics and bugs are
inequitable for FLOSS systems. Rather than investigating
the distributions for all granularities and for all periods, we
choose to focus on the Minor metric, which has the best
correlation among the ownership metrics. We analyse the
minor developers and module faults distributions using two
different settings. First we use the package modularity and
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Figure 1: Distribution of the number of minor de-
velopers in the best case

whole time period since this setting produces the best cor-
relation for the minor metric. This setting is refered to as
the best setting. Second, we use the file modularity and the
last release time period, because it produces the worse cor-
relation for the minor metric. This setting is refered to as
the worse setting.

Figures 1 and 2 show these distributions of the minor devel-
opers and the module in the best setting. Regarding the mi-
nor develeopers metric, its distribution is not so inequitable.
Unless for the Equinox project where many packages have
0 minor contributors, the number of minor contributors per
package is equitable for the other projects. In contradiction,
the distribution of the number bugs is clearly inequitable as
almost all of the projects contain many package without any
bug.

In contradiction, the Figures 3 and 4 show the distributions
of the minor developers metric and the module faults in
the worse setting. These two figures clearly show that the
distribution is inequitable. For all projects most of their files
have no minor developers and no bugs. This is clearly a bias
for measuring a correlation.

As a consequence, it appears to us that the intrinsic nature

Equinox *

Bugs

0 20 40 60 80 100 120 140

0.
0

0.
4

0.
8

JDT *

Bugs

0 20 40 60 80 100 120 140

0.
0

0.
4

0.
8

PDE *

Bugs

0 20 40 60 80 100 120 140

0.
0

0.
4

0.
8

Ant

Bugs

0 20 40 60 80 100 120 140

0.
0

0.
4

0.
8

Camel

Bugs

0 20 40 60 80 100 120 140

0.
0

0.
4

0.
8

Log4J

Bugs

0 20 40 60 80 100 120 140

0.
0

0.
4

0.
8

Lucene

0 20 40 60 80 100 120 140

0.
0

0.
4

0.
8

Figure 2: Distribution of the number of bugs in the
best case
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Figure 3: Distribution of the number of minor de-
velopers in the worst case
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Figure 4: Distribution of the number of bugs in the
worst case



of FLOSS systems is a major bias for measuring a correla-
tion between ownership metrics and module faults. In other
words, if a FLOSS systems is developed by few heroes and
if lots of other developers provide few modifications then
the ownership metrics are not good indicator for quality.
Although this has to be checked by a complete study, we
suspect that the quality of such systems is driven by the
quality of the heroes.

6. CONCLUSION
The objective of our study was to replicate the study of own-
ership metrics of Bird et al. on FLOSS systems. Such met-
rics are well known to be good quality indicators and may
be used to organize software development teams. Ownership
metrics were validated, but only on Microsoft industrial soft-
ware systems. We then choose to validate them on FLOSS
systems to check if they can be applied in such a context.

Surprisingly, the results we obtain are completely different
than the ones obtained in the original study. In particular,
we did not observe a strong correlation between ownership
metrics and module faults in the seven well known FLOSS
systems of our corpus. Further, we observed that classical
code metrics are better quality indicators. Moreover, no
relationship between ownership metrics and module faults
is found when comparing modules of similar size.

Thanks to our study, we also observed that the granular-
ity of the software module is an important factor. The file
granularity is definitively too thin. The package granularity
is better but still is not good enough to observe a large cor-
relation. We finally observed that the period of observation
has a limited bug possibly strange impact on the ownership
metrics.

Based on our observations we investigated the distributions
of the minor developer and module faults. Our observations
show that developer’s workload is inequitable in FLOSS
projects, which confirm well know results. When the work-
load is drastically inequitable, when a hero is doing almost
all the job for instance, then the ownership metrics are
clearly not suitable quality indicators.
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