
Who’s my Best Guy for the Job ?
Automatic Extraction of Developer Expertise

Cédric Teyton
Univ. Bordeaux, LaBRI, UMR

5800
F-33400 Talence, France

cteyton@labri.fr

Marc Palyart
Univ. Bordeaux, LaBRI, UMR

5800
F-33400 Talence, France

mpalyart@labri.fr

Jean-Rémy Falleri
Univ. Bordeaux, LaBRI, UMR

5800
F-33400 Talence, France

falleri@labri.fr
Floréal Morandat

Univ. Bordeaux, LaBRI, UMR
5800

F-33400 Talence, France
fmorandat@labri.fr

Xavier Blanc
Univ. Bordeaux, LaBRI, UMR

5800
F-33400 Talence, France

xblanc@labri.fr

ABSTRACT
Context: Expert identification is becoming critical whether
to ease the communication between developers in case of
global software development or to better know members of
large software communities. To quickly identify who is the
best expert that will certainly best perform a development
task, both the assignment of skills to developers and the
computation of their corresponding knowledge level have to
be automated. Method: In this paper we propose XTic,
an approach that targets this objective with the intent to be
accurate and efficient. XTic proposes a language to specify
skills and levels. It then proposes an automatic process that
extracts skills and levels from source code repository and a
simple mechanism to ease the identification of experts. We
have validated XTic both on Open Source and industrial
projects to measure its accuracy and its efficiency. The results
we obtained show that its accuracy is between moderate and
strong and that it scales well with medium and large size
software projects.

1. INTRODUCTION
Expert identification is becoming critical whether to ease the
communication between developers in case of global software
development [17, 12] or to better know members of large
software communities [7, 20]. As software development is
more and more complex and requires many different exper-
tises, a particular attention is currently paid to automate the
identification of experts with the intent to quickly identify
who is the best developer to perform a given development
task.

From an abstract point of view, expert identification consists
in (1) assigning skills to developers but also (2) defining their

corresponding knowledge level. A skill is an abstract term
that can have multiple definitions. It can be very generic such
as java, test or web design. It can also be more specific such
as library skills with for example JUnit1 or JQuery2. Further,
skills can even be proper to a given project or a given team
of developers such as owner of the ’core’ components for
example. The levels of skills are values that must belong
to an ordinal scale such as high, middle, low or a five stars
level for instance. Their intent is to compare the levels of
developers for a given skill in order to rank them and to
identify the best expert.

Any approach that aims to automate the identification of
experts has then to provide a process that automatically
assigns skills to developers and compute levels. To that
extent, both the semantics of skill and level have to be clearly
defined. Moreover, the process has to be accurate as it must
identify true experts. It should also be deterministic or at
least convergent as it should always assign the same skills to
the same developers with the same levels. Moreover, it has
to be efficient with the main objective to identify experts
as fast as possible depending on the complexity of the skill
searched for and on the size of the community.

Many approaches aim to support expert identification. Some
of them target specific skills such has code ownership [13]
or bug fixing [1]. Other aim to provide an abstract data
model that can be queried on to ease the identification of
experts [17, 2]. To the best of our knowledge, none of them
propose to explicitly define the semantics of skill and level,
which is the main purpose of our approach.

Our objective is to help the ones that aim to identify software
experts. Our purpose is to support project managers who
want to assign tasks to their developers or developers who
search collaborators to help them. Our approach addresses
the three following questions:

• How to specify skills and levels?

1JUnit is a Java library used to develop Unit Tests in Java
2JQuery is a JavaScript library that eases many manipulation
of the DOM tree

• How to extract developer’s skills and levels?

• How to classify developers to better identify experts?

Regarding these three questions, our approach proposes a
DSL (Domain Specific Language) for defining the searched
skill and level. Based on this language it supports an extrac-
tion mechanism that browses software repositories (currently
only source code repositories) to automatically assign skills
to developers and to compute levels. It then proposes aggre-
gation formulae to rank developers and, on top of them, a
simple mechanism to ease the identification of experts.

Our approach has been completely implemented in a open
source tool, named XTic. We have validated XTic by re-
alizing two experiments. First, we identified experts in a
sub-part of GitHub that is composed of 16 projects and 280
developers with the intent to stress the scalability of our ap-
proach. Our experiment has shown that expert identification
can be realized for these projects in less than 3 hours. Second,
we have used our approach in an industrial use case with
the intent to validate the accuracy of our approach. It has
also shown that all the expertises expressed by our industrial
partners could been defined by our language. Further, the
experts identified by our approach strongly correspond to
experts manually identified by our industrial partner.

Our paper is organized as follows. Section 2 starts by pre-
senting the related work. Section 3 clarifies the field of expert
identification by giving some rigorous definitions. It then
deeply presents our approach. Section 4 presents the two
validations we have done. Finally section 5 discusses the
limits our approach and suggest some improvements and the
section 6 concludes.

2. RELATED WORK
Expert finding is a prolific topic in the domain of information
retrieval [10, 14] and is an important subject of the Enterprise
tracks of the Text REtrieval Conferences (TREC) since 2005
[4]. However these research approaches are based on generic
text analyses and thus cannot fully exploit the data present
in a source code repository (history, ownership).

Another example of early work is the Expertise Browser
(ExB) [17] proposed by Mockus and Hersleb. They define the
concept of experience atom (EA), a basic unit of experience,
that can be built from each delta of each files from the
VCS of the project. An EA may then be associated with
one or multiple domains (functional area, technology used,
purpose or type of the change). Finally to measure the level
of expertise in a particular domain they count the number
of EA associated with this domain. This work is close to our
mainstream idea, however there is information on how the
set of domains is built and how the domains are specified,
and finally how the experience atoms are extracted. We
argue that our DSL allows more freedom and flexibility in
the specification of the targeted skills.

Specific research approaches targeting the search of experts
in the case of a software development project has been accom-
plished. The Expertise Recommender (ER) [15] proposed by
McDonald and Ackerman was one of the first. Their tool
relies on two heuristics to identify experts. The first one

called change history considers that the revision authors are
the experts for the corresponding file. The second one called
tech support uses a support database to identify users that
already solved problems.

More recently, several research tools [5, 16, 21] were developed
to help a developer who is looking for an expert on a file she
is modifying or using. They use the touches made on the
selected files to determine the list of experts.

As we have seen, some projects rely solely on the analysis
of the source code [17] and others attempt to improve the
recommendations by looking at other forms of data. For
example Moraes et al. with the Conscius tool [18] look at
mailing lists.

Codebook [2] is a tool that builds a graph by mining the
source code repository, the work item database, the employee
directory as well as documents. It also offers a regular expres-
sions language that can be used to search the graph. Based
on this framework they have developed several applications
over the years. For example, Hoozizat [2], a web search por-
tal for finding the people who own and are responsible for a
feature, an API, a product or a service. Another example of
application is CARES [12] which is a Visual Studio extension
that exposes developers profiles who have contributed to a
given file.

Schuler et al. have defined a technique to identify experts
of Java methods by looking at the history of usage of a
particular method [19]. They argue that developers that
use a method should be considered with the same level of
expertise than developers that change and edit the method.
In their work the unit of experience considered is thus a Java
method.

At that point, it is crucial to understand that the domains of
expertise we target are not necessarily related to source code
areas. For instance, a skill can be defined as the usage of
third-party library in the software, which is often scattered in
many places of the software. Also, if one want to track who
adds or removes the Deprecated annotation on Java elements,
we clearly see this is not linked with source code areas. One
purpose of our approach is to allow to track either skills
related to the implementation of a unit of code (ex: edition
of a Java method) or usage of this unit (ex: a call to this
method).

Globally our work distinguishes itself from these approaches
by providing a way for specifying (with a DSL), extracting
(with a tool) and measuring (according to several levels) the
developers skills. To our knowledge, no existing work comes
up with these three particular features. The DSL not only
eases the work of writing down the skills, but is intended to
offer much more possibilities when specifiying the targeted
skills.

3. APPROACH
As a base hypothesis, we consider that skills can be extracted
from syntactic modifications performed by developers. For
instance, we consider that a developer is a Java expert if
and only if she has syntactically edited Java files. The main
principle of our approach is then to analyze changes made

by developers on software artifacts to extract their skills as
well as their levels. It should be noted that we deliberately
choose to focus on the analysis of software repositories as
they contain most of the activity performed by developers.
As a consequence, we support only programming skills, i.e.
skills that can be extracted from artifacts that are managed
within a source code repository.

As there are many definitions of skills and levels, we pro-
pose to define them using a domain specific language. This
language is used to define what are the syntactical changes
that a developer must perform on a software artifact to have
a corresponding skill. For instance, one may consider that
a developer must just modify a Java file to be a Java de-
veloper. However, another one may consider that such a
definition is too permissive as Java files do not only contain
Java code but also comments. She may consider that a de-
veloper must create a Java class or modify Java methods to
be truly considered as a Java developer.

Once skills and levels have been rigorously defined, our ap-
proach uses them while browsing source code repositories to
compute developers skills levels. A skill level is a quantitative
measure that is used to compare the developers, in order to
identify experts. Our extraction mechanism is incremental
and has been optimized to scale well and to quickly measure
developers skills even in large software projects. The com-
parison of skills levels are based on well known clustering
algorithms.

This section presents the three main elements of our ap-
proach: the skill definition language, the skill extraction
process and the expert identification process. It starts by
giving definitions of the main concepts. Then it presents our
language to define developers skills. Afterwards, it presents
our extraction process and finally describe how we compare
skills levels.

To better explain our approach, we introduce a toy example
of a Java project managed by a software repository. Figure 1
presents the only Java file contained in this project. This
file has been modified three times. The first version of the
file (v0) has been created by Alice. Then the version v1 has
been committed by Bob. Finally, the version v2 has been
committed by Alice again. We assume that the manager of
this project is interested in quantifying developers expertise
with regard to the JUnit test framework. We assume that
she wants to identify two kinds of JUnit expert. The first
ones (Test creators) are developers that create tests and the
second ones (Test Modifiers) are the developers that update
existing tests.

3.1 Definitions
To ease the explanation of the approach we first lay out
several definitions. Let D be the set of developers, S the set
of skills and L the set of levels. The goal of any approach
that aims to identify experts is to assign skills to developers
with a corresponding level. In other word, such an approach
computes a binding function that builds triples (d, s, l) ∈
D × S × L. Our approach computes such a binding function
by analyzing software repositories. In particular, it analyzes
all the syntactical changes that are made by developers. To
that extent, we define the concept of an atomic file change

that is the set of all the modifications performed to a file
by a developer during a commit. More formally an atomic
file change c is completely defined by the two versions of the
file before (f0) and after (f1) the commit (c = (f0, f1)). The
kind of the modification is either defined by the software
repository or can be inferred by looking at the two files. If f0
does not exist, that means that the file has been created. If
f1 does not exist, that means that the file has been deleted.
If both files exist and have the same name, it means that
the content of the file has been modified. If the names of the
two files are not the same, it means that the file has been
renamed or moved.

Finally, as a commit may target several files and as developers
commit several times in a software project, we consider that
each developer d performs a set of changes Cd. The set of
changes of each developer can be computed by browsing any
software repository. For instance, the repository of Figure 1
contains the two following sets of changes (Ca for Alice and
Cb for Bob):

Ca = {(∅,Foo.javav0), (Foo.javav1,Foo.javav2)}
Cb = {(Foo.javav1,Foo.javav2)}

Our approach then inputs the set of changes Cd of all devel-
opers d and performs an analysis to assign skills to developers
with a corresponding level. This analysis consists in matching
changes (c ∈ Cd) against syntactical patterns, which have
been defined using our domain specific language.

3.2 Skills and levels definitions by syntactical
patterns

Rather than presenting the syntax of our domain specific
language for defining skills and levels, we present in this
section its main concepts. We propose to specify a skill as
a set of syntactical patterns applying to atomic file changes.
If the modifications that a developer performs during an
atomic file change match at least one pattern of a skill, then
the skill is assigned to the developer.

A skill definition may contain several patterns. Moreover,
a developer may perform several atomic file changes. As a
consequence, several matches occur for one developer and
one skill during the analysis of a software repository. The
number of matches corresponds to the level of the skill. A
level then corresponds to the number of editing operations
performed by a developer that match a skill definition.

A syntactical pattern of a skill defines a syntactical modifi-
cation that can be done on the file target of an atomic file
change. The modification can be done on the file (create
the file, delete it or change its name) or can be done on its
content (change a line or a token). We then propose that a
syntactical pattern is a chain of four filters: a path filter, a
kind filter, a content filter and a tree modification filter.

Both the path filter and the kind filter apply to the file target
of the atomic change file. The path filter constraints the path
of the file while the kind filter applies to the kind of change

//Version v0
class Foo {
}

//Version v1
class Foo {
@Test
void testFoo () {
asser tTrue (true) ;
}
}

//Version v2
class Foo {
@Test
void testFoo () {
asser tTrue (true) ;
a s s e r tFa l s e (fa l se) ;
}
}

Figure 1: A project repository containing only the Foo.java file, modified three time. Version v0 has been committed by Alice,
then Bob has committed the version v1 and finally Alice a committed again the version v2.

that is made. The content filter and tree modification filter
apply to the content of the file. The content filter considers
that the content is a sequence of character while the tree
modification filter considers that the content is an abstract
syntax tree (AST).

These four filters are chained for the sake of efficiency. All
atomic file changes that have been filtered out by one filter
won’t be checked by the next filters. The path filter applies
first. It filters atomic file changes regarding the path of the
file. Then the kind filter applies. It filters atomic file changes
w.r.t. the kind of the change. Then the content filter applies.
It filters atomic file changes w.r.t. the content of the file that
is considered to be a sequence of characters. Finally, the tree
modification filter applies.

Path filter. The purpose of the path filter is to constrain
the paths of the files that must be modified by a developer
to have a skill. It is a regular expression that constraints the
path of the target file of an atomic file change. As an atomic
file change is completely defined by two versions of a file (f0
and f1), which may have different path in case of renaming
for instance, the path filter contains two regular expressions
(one for f0 and one for f1). In our example, the JUnit tests
are contained in Java files, the path filter is therefore the
same for both the JUnit creator and the JUnit modifier, for
both f0 and f1: "^.*.java".

Kind filter. The purpose of the kind filter is to describe
which are the kinds of modification that must be performed
by a developer to have the skill. The kinds of modification can
be: creation, modification, deletion or renaming. The kind
filter is therefore defined by a mask that specifies the allowed
kinds of modification. By default, only the creation and the
modification of files are allowed. In our example, the JUnit

creator can create, modify or rename files whereas the JUnit

modifier must only modify or rename them (and not delete or
create, as an updated file cannot be found in these cases). The
kind filter is therefore "added,modified,renamed" for the
JUnit creator and "modified,renamed" for the JUnit modifier.

Content filter. The purpose of the content filter is to de-
scribe what must be the content of the files that must be
changed by a developer to have the skill. We choose to use
regular expressions to specify this filter. As a regular expres-
sion is not really adapted to express absence of strings, a
content filter is composed of two sets of regular expressions
(the positives and negatives ones). Moreover, as the content
filter may apply to f0 and to f1, each file may have two
sets of regular expressions. In our example, for the JUnit

creator and modifier, the file must contain a reference to the
JUnit library, which can be specified by a regular expression

Listing 1: The annotated modification tree computed be-
tween the two ASTs corresponding to the first and second
modification of Figure 1

<CompilationUnit>
<TypeDeclaration>
<SimpleName l a b e l=”Foo” />
<MethodDeclaration added=”1”>
<MarkerAnnotation added=”1”>
<SimpleName l a b e l=”Test ” added=”1” />

</MarkerAnnotation>
<PrimitiveType l a b e l=”void ” added=”1” />
<SimpleName l a b e l=”testFoo ” added=”1” />
<Block added=”1”>

. . .
</Block>

</MethodDeclaration>
</TypeDeclaration>

</CompilationUnit>

defining that the org.junit string must be included in the
file. Such a regular expression is contained in the positive
set. Further, it only constraints f1 for the JUnit creator but
constraints both f0 and f1 for the JUnit modifier.

Tree modification filters. The purpose of the tree modifi-
cation filter is to describe what are the changes that must
be performed by a developer to the AST of the file to have
the skill. Before explaining the semantics of this filter, let
us explain on which structure it works. We assume that
the files f0 and f1 are in the same format, or that one of
them is empty. By same format, we mean that they can
be parsed into an abstract syntax tree (AST) by the same
parser. We build the AST of the two files and compute
an annotated modification tree using these two trees. The
annotated modification tree is constructed by applying the
longest common sub-sequence algorithm on the sequence
constructed by a depth first pre-order traversal of the nodes
of the two trees. It corresponds to the AST of the file after
modification, where the nodes that are not contained in the
longest common sub-sequence are annotated as added. List-
ing 1 shows the annotated modification tree corresponding
to the second modification of Figure 1.

The tree modification filter is an XPath expression over the
annotated modification tree. It returns a set of nodes cor-
responding to the location where a syntactical modification
indicating the skill has been observed. As a tree modification
filter may return several nodes, we increment the level of the
skill for each returned node.

For instance, for the JUnit creator skill, we look for developers
that have added a method definition with a @Test annotation.
Therefore the filter is: <tree parser=”java”>//MethodDeclaration

[MarkerAnnotation[@added]/SimpleName[@label=’Test’][@added]]</

tree>. This XPath expression selects all MethodDeclara-

tion nodes that contain a @Test annotation marked as
added. For the second skill, the filter is: <tree parser=”java”>//

MethodDeclaration[not(@added)][MarkerAnnotation[not(@added)]/SimpleName

[@label=’Test’][not(@added)]][..//∗[@added]]”</tree>. This XPath
expression selects all MethodDeclaration nodes that are not
marked as added that contain 1) a @Test annotation not
marked as added and 2) any node marked as added.

3.3 Skills and levels extraction
Our skills extraction process is a two steps process. The first
step consists in creating the required data model by browsing
a software repository. During this first step, a particular
attention has to be paid on renamed and moved files as they
can have a significant wrong impact on the results of our
approach. A renamed/moved file in most VCS (Versioning
Configuration System) is seen as a file deletion and creation,
performed in the same commit. Therefore, when applying
our skills extraction process, all the syntactical patterns
contained in the file might be assigned to the developer that
performed the renaming/moving, even if she performed no
modification at all on the file content. To avoid that, we
introduce a move/renaming detection algorithm that we run
when extracting a set of changes from a VCS. This algorithm
focuses on commits where there are both deleted D and
added files A. On these commits, we compute the normalized
compression distance of each element in D ×A. Whenever
this distance is below a threshold 0.25, and whenever it
involves two files that have no better distance with another
file, we mark the files has being moved/renamed.

The second step aims at assigning skills to developers and to
compute a level, which is a positive integer that represents
how many times a syntactical pattern has been matched.
This step is quite straightforward. It iterates on the atomic
file changes of each developer. For each atomic file change,
all the patterns that define a skill definitions are checked.
As previously explained, skill definitions are composed of
several syntactical patterns. These patterns are checked
iteratively against changes and return each one a positive
integer. These integers are finally aggregated into one integer
that corresponds to the level of the skill. By default they
are aggregated using a sum, but it is possible to provide a
custom formula.

3.4 Expert identification
To simplify the analysis of the results of the skill extractor,
we propose to apply a post-processing step. Its purpose is to
map the levels of skills into a smaller ordinal scale such as low,
medium and high. We propose to use the K-means clustering
algorithm [8] to map the developers into the clusters. This
algorithm creates clusters of values regarding their distance.
Configured to output three clusters, it then groups lower
values together, as well as higher values and medium values.
Thanks to this step, one can then ask for an expert with a
high level. This post-processing is optional as it depends on
the number of developers being analyzed. If this number is
to small, the clusters will not reflect the developer skills. In
this case, the integer value is more meaningful.

4. VALIDATION

In this section we first describe the implementation of XTic.
We then stress test our approach on several open-source
projects, to evaluate its performance. Finally, we evaluate
the accuracy of our approach in a case study conducted with
AKKA, our industrial partner.

Our validation then aims to answer to the following research
questions:

• Is XTic able to analyze a large-scale set of data? (RQ1)

• Are the results computed by XTic correct? (RQ2)

4.1 Implementation
XTic has been written in Java on top of the Harmony [9]
framework. Harmony is an infrastructure designed to ease
the development of tools that mine software repositories. It
provides an abstract model that can be used to specify analy-
sis of commits. Thanks to this model Harmony analysis such
as XTic can be run on many version control systems such as
Git, SVN, Mercurial, TFS or CVS. The XTic analysis also
relies on the Eclipse JDT parser to perform the parsing of
the Java files. The building of the clusters of developers is
done by using the implementation of the K-means clustering
provided by Weka [6].

4.2 Stress test
The purpose of this stress test is to answer the first research
question (RQ1): is XTic able to analyze a large-scale set of
data? Since this analysis depends on the syntactical patterns,
the size of the source code and the number of versions, it
is not possible to make a single experiment to provide a
definitive answer. We thus choose to apply some worst case
scenarios to a corpus of 16 Java projects. All these project
are hosted on GitHub, they are active and have more than
one developer. They vary from 140 commits with 2097 lines
of code (LoC) for nanohttpd to 1419 commits with 79236
Java LoC (crunch)3.

As described in Section 3, a syntactical pattern may contain
filters on file names, kinds of modification (creation, edition),
file contents and tree modifications. Since the two first filters
are almost free to check, this experiment focuses on the last
two. Searching for file content requires reading files, thus
the worst case is to search for an absent string in all files.
Since we are unable to figure out what is the worst case of
the tree modification filter, i.e., an XPath query, we define
three queries on Java files which have an heavy load:

• all nodes added: the XPath engine has to return plenty
of results.

• new local variable: this requires to find specific nodes
and most commits introduce variables.

• genericity usage: since genericity may be found on class
declaration or instantiation this query has to perform
disjunctions.

3More details on the corpus may be found at http://se.
labri.fr/xtic/

5 10 15

0
20

0
40

0
60

0
80

0
10

00
12

00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) Time by project (high: worst case, low: JUnit).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
20

40
60

80
10

0

Model Co. content Content Co. diff Diff xpath

(b) Breakdown % of running time (left: worst case, right: JUnit).
Figure 2: Time and breakdown of XTic worst case versus JUnit test on a Java corpus.

This worst case scenario is compared with another one that
only includes the JUnit skill definition. This definition con-
siders that a JUnit tester is a developer that performs modifi-
cation on Java files that contain the string org.junit and
where a method annotated by a JUnit has been introduced or
changed. It corresponds to the JUnit creator and modifier
patterns described in Section 3.

Experiments are performed on a Intel Core i7 Cpu M640 at
2.80Ghz with 8Go of RAM running with Ubuntu 13.04 (ker-
nel 3.8.0-24) and OpenJDK 1.7.0 25. All these scenarios, i.e.,
each part of the worst cases and JUnit, are run many times
(more than 5) on different passes to avoid IO cache effects
and only the worst times are reported. The Figure 2 is two-
fold, the left-hand side shows the whole computation time
(y-axis) for each project (x-axis) as segments. The upper end
of each segment represents the worst case scenario, while the
lower end represents the JUnit scenario. The right-hand side
of Figure 2 shows a breakdown of these running times as per-
centages. Each group of two bars represents a single project,
where the left bar shows the worst case scenario and the
right one the JUnit scenario. Breaks represents respectively
(bottom up) the time spent analyzing the VCS (Model), the
time of checking out the files in order to search for patterns
(Co. content), the time of searching effectively these patterns
(Content), the time for checking out the previous version of
a file (Co. diff) in order to build ASTs and doing the tree
differentiation (Diff), and finally the time consumed by the
XPath queries (xpath).

Conclusion. This experiment shows mainly two things. First
XTic analysis is generally fast enough, even on large scale

project, which answer our RQ1. On average, the worst case
scenario (resp. JUnit scenario) is under 7 minutes (resp. 5
minutes) with a maximum of 20 minutes (resp. 15 minutes)
for a project containing 1282 revision (with 135644 LoC in
the last version)—it is worth noting that it is not even the
biggest project neither from the number of commits nor the
number of LoC.

Moreover this experiment shows some of the design choice of
XTic. When looking only the left bars, i.e., the worst case
scenario, the time is mostly spent in doing tree differentiation
which makes sense since all possible diffs are computed. On
the more realistic example of JUnit (right bars) a simple
content filter avoids most of them, thus the biggest part of
time is spent doing the checkout of files. In any case the
matching inside the files itself is almost free compared to
other things (when carefully looking at the graphs it can be
barely seen). As a first advice learned from this experiment,
if possible, any skill definition should contain a content filter
to avoid wasting time in tree differentiation. Adding more
XPath queries is not expensive compared to the whole process
as soon as a diff is already computed. Computing many skills
in a single pass should be preferred in order to avoid redoing
tree differentiation.

When looking at the breakdowns, the project 2 seems really
singular since both bars look like the same. After manu-
ally inspecting this project, we found that 70% of the files
contains test code. Again even though JUnit rules are more
realistic, the whole computation time is thus subsumed by
tree differentiation which explains this result.

Table 1: Number of patterns and filters in the skill definitions.

#Filters

Skill #Patterns File Kind Content Tree

config 5 5 0 6 0
workflow 2 2 0 2 0

domain 2 2 0 5 0
modeling 7 7 0 0 0
graphics 3 3 0 4 0

jsf 2 2 0 1 0
plugins 4 4 0 1 0

tests 3 3 0 3 0

Total 28 28 0 22 0

4.3 Industrial case study
The purpose of this case study is to answer the second
research question (RQ2): are the results computed by XTic
correct?. To that extent we perform an experiment on an
industrial project where we compare the results of XTic
with developers skills estimated by a manager and a software
architect.

4.3.1 Setup
We first present the software project analyzed in this case
study, as well as the skills required by our industrial partner.

Project and developers. Our industrial partner AKKA
Technologies4 agreed to grant us access into a software project
repository and to provide us a list of developers skills they are
interested in. The project studied is a document management
system which development started in 2009 and contains 3
years of development activity. A total of 13 developers are
involved in this project. The software is mainly written in
Java and contains 53 Java KLOC at its latest version.

Skills definitions. We asked to our industrial partner to
define the set of developers skills they wanted to measure. A
meeting of 2 hours with 2 project managers was necessary
to come up with a set of 8 high-level skills that encompass
28 concrete skills according to our definiion. They were
described in natural language first. The 2 hours include
the time to introduce XTic capabilities to the 2 project
managers. Then, we wrote the skill definitions to integrate
them into XTic. We were able to express all the skills without
exception and any challenging problem, and 15 minutes were
needed for it. It turned out that each skill necessitate several
patterns, and only file and content filters were necessary to
write these patterns, as shown in Table 1. XTic was therefore
expressive enough to fit the requirements of our industrial
partner. The skills definitions are not freely available for the
sake of confidentiality.

Developers skills. We asked our industrial partner to de-
liver several skills evaluations indicating for each developer
d ∈ PD and each skill s ∈ S (as shown in Table 1), what is
the level l ∈ L = {low,medium,high} of the developer w.r.t.
the skill. We end up therefore with several ternary relations
that are subsets of PA × S × L. The project manager and
architect accepted to complete an independent evaluation
based on their personal knowledge. We therefore have two
evaluations Ear and Ema, which distribution in the levels are

4http://www.akka.eu/index_en.php

Table 2: Distribution of the developers in the levels for the
evaluations Ear and Ema.

#Low #Medium #High

Skill Ear Ema Ear Ema Ear Ema

config 7 7 2 3 4 3
workflow 7 9 2 2 4 2

domain 7 7 4 0 2 6
modeling 6 11 5 0 2 2
graphics 4 5 0 7 9 1

jsf 3 3 4 2 6 8
plugins 9 10 0 0 4 3

tests 3 5 4 1 37 7

total 46 57 21 15 37 32

Table 3: Distribution of the developers in the levels for the
evaluation Eag.

Skill #Low #Medium #High

config 4 1 2
workflow 6 1 1

domain 4 0 1
modeling 5 0 0
graphics 0 1 0

jsf 2 0 3
plugins 8 0 2

tests 2 0 5

total 31 3 14

shown in Table 2. As these two persons disagree on several
developers, we have also built another relation Eag computed
from Ear and Ema, where we kept only the triples (d, s, l) that
were included both in Ear and Ema. This relation contains
thus only the developers and skills on which both persons
agreed. Its distribution in the levels is shown in Table 3.

The evaluations Ear and Ema contain 13 ∗ 8 = 104 triples.
The evaluation Eag contains 48 triples. It means that the
two persons agreed only on about one developer out of two.
Table 2 indicates that the proportion of low, medium and
high developers is similar globally but can vary a lot in the
rules (in graphics for instance). Low developers are the
most common, followed closely by high developers. Medium
developers are less frequents. Table 3 indicates that the two
persons agree more frequently on the high and low developers
than on medium developers. This is probably due to the fact
that it is easier to know if a developer is high or low, but the
border between low and medium on one hand, and medium
and high on the other hand, is fuzzy and very subjective.

4.3.2 Experiment
We ran XTic on the software project repository using the
previously described skills definitions to compute an integer
score for each of the 13 developers on each of the 8 skills.
To convert the integer into a level, we used the K-means
clustering algorithm configured to produce three clusters,
as explained in Section 3. It led to an evaluation called
Ext. To be able to compare XTic on the evaluation Eag,
that contains only the developers for which the manager and
architect agreed, we computed an evaluation Ext′ containing
only the developers and skills contained in Eag.

Table 4: Agreements (#A), disagreements (#D), strong
disagreements (#SD) and Kappa between XTic (Ext), the
manager (Ema) and the architect (Eac).

Couple #A #D #SD Kappa

{Ema, Eac} 48 56 21 0.26
{Ext, Ema} 67 37 6 0.59
{Ext, Eac} 59 45 14 0.42

{Ext′ , Eag} 41 7 1 0.85

XTic

Manager Architect

7

41

26 16

30 40

21

Figure 3: Agreement distribution of the results. Our ap-
proach has 21 times disagreed with both the manager and
the architect.

4.3.3 Results
To measure the agreements among the three evaluations,
we used Cohen’s kappa coefficient [3]. This coefficient is a
value between 0 and 1, with 1 meaning a perfect agreement
and 0 no agreement. The comparison of XTic evaluation
(Ext) with the one of the manager (Ema), the one of the
architect (Eac), and between these two persons are exposed
in Table 4. In his table, strong disagreement means that a
person assigned a low level while the other assigned high level.
A detailed comparison is also shown in the Venn diagram of
Figure 3.

First of all, the agreement between the architect and the
manager is poor (Kappa of 0.26). More over they have many
strong disagreements (about 20%). This shows that evalu-
ating developers skills is complex and prone to subjectivity.
Moreover, it means that XTic results can not conform with
both the manager and the architect. The agreement between
XTic and both the manager and architect is fair (Kappa of
resp. 0.59 and 0.42), which is a satisfying point. Moreover
there are fewer strong disagreements for XTic with both the
manager and architect. The agreement with the manager
(0.59) is good, and the number of strong disagreement is very
low (only about 5%). The results therefore indicate that
XTic have a similar opinion to the manager.

Since the architect and manager significantly disagree, we
produced an evaluation Eag where we kept only the triples
(d, s, l) where the manager and architect assigned the same
skill level. The developers and skills contained in this eval-
uation have therefore a good confidence. This evaluation
contains 48 triples, which is still a fair number of developers
and skills. As shown in Table 4, the results of XTic on the
developers and skills of Eag contains 41 agreements and only
7 disagreements leading to a Kappa coefficient of 0.85 that
indicates an almost perfect agreement.

Table 5: Precision and recall of XTic for each level of the
Eag relation.

Low Medium High

Prec. Rec. Prec. Rec. Prec. Rec.
0.94 0.94 0.29 0.67 1.0 0.71

To have a more precise view of the results of XTic, we
computed the precision and recall of XTic with regard to
each level of skill, as shown in Table 5. We can see that
the recall and precision for the low and high levels range
from good to perfect. On the contrary, the precision on
the medium class is poor, while the recall is just fair. This
confirms that a human is more prone to assign either a low
or high level, while a medium evaluation is more likely to
be given by XTic. A medium level remains fuzzy from a
human point of view.

4.3.4 Discussion on discrepancies
Since a manual analysis of each case of disagreement would
have taken too much time, we presented to our industrial
partner only the strong disagreements of the manager, the
architect and XTic during a meeting where both the architect
and the manager were present. They were asked to reach
an agreement on each case. With regard to the cases of
strong disagreements between the architect and the manager,
it turned out that in every case, the manager were right.
The reason that was because the manager is closer to the
developers and therefore knows better the work they do every
day and the skill they have. On the contrary, the architect
assign tasks to the developers, but does not ensure that
they perform it in person. Therefore they have a biased
vision of the developers skills. This conclusion was very
interesting for our industrial partner since knowing whom
of the architects and the managers has a better vision of
the developers skills was kind of an internal debate. With
regard to XTic, it remains therefore only 6 cases of strong
disagreements unexplained with the manager. After having
analyzed these cases, it turned out that the manager was
right, but he confirmed that these particular skills were
not used on the project we analyzed, the developers being
assigned to other coding tasks.

5. LIMITS AND IMPROVEMENTS
The previous section shows that XTic has a good accuracy
and a good efficiency. While it offers some new supports to
the field of expert identification, it still suffers from some
limits. In this section we highlight these limits and explain
how we can handle them.

First of all, XTic is based on a syntactical analysis of source
code. The diff technique it uses currently does not support
refactoring operations such as method renames or moves.
These operations are therefore considered to be delete and
add operations. They have then a strong impact on the skill
and level extraction as a developer that just rename or move a
method will be considered to be an expert of all the skills that
are related to the content of the method. To overcome this
limitation, we think about using more efficient diff techniques
such as Change Distilling for instance[11]. Furthermore,
the parser used by XTic currently cannot handle files that
contain more than one programming language since they are

complex to parse. Such files are for instance HTML files that
contain both HTML and JavaScript code. To handle them,
we need to define specific parsers and diff techniques.

Secondly, XTic support expert identification by analyzing all
the commits performed by developers on a software repository.
Therefore it does not reflect the real knowledge level of a
developer but more her working level. As a consequence,
XTic will not identify as experts developers that do not
make a lot of work. For instance, newcomers will always
be identified as non expert even if they do have a strong
knowledge. This limit comes from the base hypothesis of
XTic that states that an expert is a developer who committed
in her field of expertise. However, we can overcome it by
performing analysis according to a time window (some weeks
or some months) with the objective to normalize production
of newcomers with the one of older developers.

In this paper, the DSL proposed by XTic was designed to
uniformly specify a large range of skills. In practice, XTic
is intended to help project managers and developers who
are willing to track a defined set of skills. However, this
early paper does not give any clue on how much this DSL
can be appropriated by a person who does not know XTic.
Indeed, in the experiments we were the persons who wrote
down the skills, and we rather focused on the results that
are produced. In a future work, we will have to evaluate how
people appropriate our DSL so that they can use it without
our intervention.

Finally, the language proposed by XTic to define skills and
levels can be improved. Currently it does not allow for
conjunction of skill patterns. However, we think that there
exists skills that are spread over more than one file per
commit. For instance, in a Java context we can define a
library update skill, which consists in modifying the JUnit

JAR file and in the same time editing the test files adequately.
Moreover even though the expressiveness of our language
remains tedious to validate, we observed that we managed to
specify a various range of skills. In that direction, additional
requirements and feedback from both industrial partners
and open source communities would help us to improve our
language, and better understand their needs. We also believe
that other data sources than Version Control Systems contain
skills that have an interest, for instance issue trackers systems.
Our tool and the language could be extended to satisfy such
new requirements.

6. CONCLUSION
The identification of expert is one of the current challenges
of software engineering. In this paper we propose to address
this challenge by analyzing source code changes that are
managed by a software repository.

Our approach, named XTic, proposes a domain specific
language to specify skills and levels. It then automatically
extracts developers expertise by browsing software reposi-
tories and by matching skills and levels definitions to the
work committed by the developers. Finally, it provides some
simple support to rank developers and hence to ease the
identification of expert.

Our approach is based on the hypothesis that a developer

has to commit work in her field of expertise to be considered
as an expert. Our approach is then more like Thomas the
Apostle as it needs to observe commits and does not rely on
any other claim.

We have validated our approach by stress testing its imple-
mentation to show its efficiency and by checking its accuracy.
Our validation shows that it is quite efficient and that its
accuracy is between moderate to strong. Without being a
silver bullet, XTic provides a support for those who want to
identify experts in an automated manner.

As a further work, we first think about overcoming some
of the limits of XTic. In particular, we are working on
improving the parsers we rely on and on adding time windows
in the extracting process. We also think about integrating
XTic with other approaches that are also based on syntactical
analysis but that targets software artefacts other than source
code, such as mails or bug reports for instance.

7. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix

this bug? In Proceedings of the 28th international
conference on Software engineering, ICSE ’06, page
361–370, New York, NY, USA, 2006. ACM.

[2] A. Begel, K. Y. Phang, and T. Zimmermann. Codebook:
Discovering and Exploiting Relationships in Software
Repositories. 2010.

[3] J. Cohen. A coefficient of agreement for nominal scales.
Educational and Psychological Measurement,
20(1):37–46, Apr. 1960.

[4] N. Craswell, I. Soboroff, and A. P. Vries. Overview of
the TREC 2005 enterprise track. 2005.

[5] D. Cubranic, G. Murphy, J. Singer, and K. Booth.
Hipikat: a project memory for software development.
Software Engineering, IEEE Transactions on,
31(6):446–465, 2005.

[6] R. De War and D. Neal. WEKA machine learning
project: Cow culling. Technical report, The University
of Waikato, Computer Science Department, Hamilton,
New Zealand, 1994.

[7] G. Demartini. Finding experts using wikipedia. In
Proceedings of the Workshop on Finding Experts on the
Web with Semantics (FEWS2007) at
ISWC/ASWC2007, Busan, South Korea, page 33–41,
2007.

[8] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification (2nd Edition). Wiley-Interscience, 2000.

[9] J.-R. Falleri, C. Teyton, M. Foucault, M. Palyart,
F. Morandat, and X. Blanc. The harmony platform.
Technical report, Univ. Bordeaux, LaBRI, UMR 5800,
Sept. 2013.

[10] H. Fang and C. Zhai. Probabilistic models for expert
finding. In Proceedings of the 29th European conference
on IR research, ECIR’07, page 418–430, Berlin,
Heidelberg, 2007. Springer-Verlag.

[11] B. Fluri, M. Würsch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Software Eng.,
33(11):725–743, 2007.

[12] A. Guzzi and A. Begel. Facilitating communication
between engineers with CARES. In Proceedings of the

2012 International Conference on Software Engineering,
ICSE 2012, page 1367–1370, Piscataway, NJ, USA,
2012. IEEE Press.

[13] H. Kagdi, M. Hammad, and J. Maletic. Who can help
me with this source code change? In Software
Maintenance, 2008. ICSM 2008. IEEE International
Conference on, pages 157–166, 2008.

[14] C. Macdonald, D. Hannah, and I. Ounis. High quality
expertise evidence for expert search. In Proceedings of
the IR research, 30th European conference on Advances
in information retrieval, ECIR’08, page 283–295, Berlin,
Heidelberg, 2008. Springer-Verlag.

[15] D. W. McDonald and M. S. Ackerman. Expertise
recommender: a flexible recommendation system and
architecture. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work,
CSCW ’00, page 231–240, New York, NY, USA, 2000.
ACM.

[16] S. Minto and G. Murphy. Recommending emergent
teams. In Fourth International Workshop on Mining
Software Repositories, 2007. ICSE Workshops MSR ’07,
pages 5–5, 2007.

[17] A. Mockus and J. D. Herbsleb. Expertise browser: A
quantitative approach to identifying expertise. In In
proceedings of International Conference on Software

Engineering (ICSE 2002), page 503–512, 2002.

[18] A. Moraes, E. Silva, C. da Trindade, Y. Barbosa, and
S. Meira. Recommending experts using communication
history. In Proceedings of the 2nd International
Workshop on Recommendation Systems for Software
Engineering, RSSE ’10, page 41–45, New York, NY,
USA, 2010. ACM.

[19] D. Schuler and T. Zimmermann. Mining usage
expertise from version archives. In Proceedings of the
2008 international working conference on Mining
software repositories, MSR ’08, page 121–124, New
York, NY, USA, 2008. ACM.

[20] R. Sindhgatta. Identifying domain expertise of
developers from source code. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’08, page 981–989,
New York, NY, USA, 2008. ACM.

[21] Y. Ye, K. Nakakoji, and Y. Yamamoto. Reducing the
cost of communication and coordination in distributed
software development. In B. Meyer and M. Joseph,
editors, Software Engineering Approaches for Offshore
and Outsourced Development, number 4716 in Lecture
Notes in Computer Science, pages 152–169. Springer
Berlin Heidelberg, Jan. 2007.

