
Uniform random generation
of huge metamodel instances

Alix Mougenot?, Alexis Darrasse, Xavier Blanc, and Michèle Soria??

UPMC Paris Universitas, LIP6, France

Abstract. The size and the number of models is drastically increasing,
preventing organizations from fully exploiting Model Driven Engineering
benefits. Regarding this problem of scalability, some approaches claim to
provide mechanisms that are adapted to numerous and huge models. The
problem is that those approaches cannot be validated as it is not possible
to obtain numerous and huge models and then to stress test them.
In this paper, we face this problem by proposing a uniform generator of
huge models. Our approach is based on the Boltzmann method, whose
two main advantages are its linear complexity which makes it possible
to generate huge models, and its uniformity, which guarantees that the
generation has no bias.

1 Introduction

The size and the number of models is drastically increasing, preventing orga-
nizations from fully exploiting MDE (Model Driven Engineering) benefits [9].
Today systems are already composed of hundreds of models whose size is quite
often close to the thousand of model elements [13]. Regarding the evolution of
system complexity [4], one can easily observe that scalability is the most critical
of today’s (and tomorrow’s) challenges.

Approaches that address scalability issues claim to propose adapted mecha-
nisms that deal with numerous and huge models. However, they lack of a com-
plete large-scale validation. Indeed, as it is very difficult to obtain numerous and
huge models, it is not possible to really stress test them.

To face this problem, one possible approach is to gather numerous and huge
models into open repositories [8]. The idea is to ask large organizations to popu-
late the repositories by providing their larger models. This approach is however
not really convincing because, as said by the authors themselves, “one of the
main challenges was to find a good quantity of models”. Indeed, only 150 models
have been stored in the Moogle repository [8], which correspond to 80 thousands
model elements, and is therefore not sufficient to realize large-scale stress test.

In this paper, we propose another approach that consists in a uniform gener-
ator of huge models. Indeed, we argue that (1) the generator should be uniform1

? This work was partly funded by the french DGA.
?? work partially supported by ANR contract GAMMA, noBLAN07-2 195422
1 By uniform we mean that for a finite class of objects C, any object of C is produced

with equal probability 1/card(C).

in order to be used to validate existing approach without introducing any bias
and that (2) the generated models should be huge (millions of model elements)
in order to measure the scalability of the approaches.

As we will detail in section 5, most of existing approaches that provide gener-
ators of models aim at generating constrained models. Their objective is to find,
if possible, models that are consistent regarding a set of constraints. Those ap-
proaches are based on constraint solvers and hence have difficulties in generating
huge models.

Our approach is based on the Boltzmann method [2] whose two main advan-
tages are its linear complexity which makes it possible to generate huge models,
and its uniformity, which guarantees that the generation has no bias.

This article is structured as follows. Section 2 presents the Boltzmann method.
Section 3 presents our contribution that is to exploit the Boltzmann method to
generate huge models. Section 4 then presents our realization, then section 5
presents works related to the problem of models generation and section 6 presents
our conclusion.

2 Boltzmann random generation of trees

Our approach is based on the random sampling of combinatorial structures,
within the frame of Boltzmann method, as introduced in [2] (see [11] for an up-
to-date review of the method’s developments and applications). The main feature
of this method is uniform generation with linear complexity, thus allowing for
generation of much larger objects than was possible before.

Most random generation methods deal with finite classes of objects, usually
objects with a given size, for example binary trees of size one thousand. In the
case of Boltzmann method, the notion of uniformity is extended to classes of
objects for which the cardinality is infinite, like binary trees of any size. The
Boltzmann method only guarantees uniformity for structures of the same size,
with the constraint that there is a finite number of elements having the same
size. For instance, the number of possible binary trees is infinite, but there is a
finite number of binary trees for a given size.

Data Structure
Specification

Parametrized
Generator

Parameters

Polynomial Equation
System

Uniform Linear
Generator

1 2

3

Fig. 1. Boltzmann Method Process Overview

Boltzmann method is generic and can be applied to data whose structure
specifications are based on a rich set of constructors, such as disjoint union,
Cartesian product, sequences, sets, cycles, etc. It relies on three steps. The
first one is the transformation of a data structure specification (1) into
a parameterized generator. The second and third step aim at computing
the right parameters for this generator. Step two is the production of a poly-
nomial equations system (2) from the data structure specification and
step three consists in working on the polynomial equations system with ana-
lytical techniques (these are the domain of analytical combinatorics, described in
[5]) in order to compute the actual parameters of the parameterized generator,
which will make the generator uniform with a linear complexity. By these means,
a generator can be automatically compiled from a data structure specification
(see figure 1).

This section is continued with a presentation of Boltzmann generation of
trees. Section 2.1 presents the notion of tree specification which will be used for
specifying the structure of the trees to be generated. Section 2.2 describes how
to automatically derive the corresponding parametrized generator. Section 2.3
then presents how to compute the actual parameter for making the generator
uniform with a linear complexity. Finally, section 2.4 explains why the uniform
generator has a linear complexity.

2.1 Tree specifications

In this paper we use the Boltzmann method to generate trees. A tree specification
in this context will be a context-free grammar with two terminals (Z and ε) and
three operators (Seq, | and ∗). Z represents one instancible element (either a leaf
or any node) whereas ε is the empty element. The unary operator (Seq) is used
to specify sequences of an arbitrary size k ≥ 0. The binary operators (|) and (∗)
are used to specify respectively union and product.

The size of a tree T , denoted by |T |, will be the number of Z it contains.
Remember that for a grammar to be admissible by the Boltzmann method, it
must only allow for a finite number of trees of a given size, therefore constructions
such as Seq(ε), which creates an infinity of zero-sized objects, are not allowed.
Figure 2 shows three classical examples of tree specifications. First, a binary tree
(T1) which is either a leaf (L1) or a node (N), with leaves being of one size unit
(Z) and nodes being of one size unit that aggregate two binary trees (Z ∗T1∗T1).
Then, one-two tree and a general tree specifications are also given as example.

2.2 General generator automatic construction

In this section we present the transformation that inputs a tree structure speci-
fication and returns a corresponding parameterized generator. A parameterized
generator is a set of procedures that correspond to each non terminal of the
tree structure specification (by convention, we name genT() the procedure that

Tree type A corresponding grammar

Binary trees T1 = L1 | N
L1 = Z
N = Z ∗ T1 ∗ T1

One-two trees T2 = L2 | U | B
L2 = Z
U = Z ∗ T2
B = Z ∗ T2 ∗ T2

General trees T3 = Z ∗ Seq(T3)

Fig. 2. Classical examples of tree specifications.

corresponds to the generation of the non terminal T). The parameterized gen-
erator can be used to generate any tree that conforms to the input structure
specification.

When there is a choice point, for union or sequence in the case of tree spec-
ifications, the generator uses its parameters to determine either which element
of the union should be generated, and or the length of the sequence to gener-
ate. Each choice point must respect a particular choice probability in order for
the global generator to be uniform. These probabilities are driven by a weight
operator, noted w, that will ensure that the generation is uniform. The actual
parameters of the generator are the weights of each non-terminal in the spec-
ification that, if set correctly, will guarantee the uniformity of the generation
and the weight of the terminal Z that, if set correctly, will ensure the linear
complexity.

The following rules are then used to build the generation procedures, in
addition to each rule we give the corresponding weight operator equation for
each construction:

– A = B : This construct means that the element A is in fact specified by
B. Any generation of A is substituted by the generation of B. w(A) is a
generator parameter, and w(A) = w(B).

– B | C: with this construction, either B or C will be generated. The weights
of the elements are used here to control the probability to generate either
one or the other. The probability of generating B is w(B)/(w(B) + w(C)),
and the probability of generating C is symmetric. A pseudo-random number
can be used to determine which element should be generated with respect to
the given probability. The corresponding weight is w(B | C) = w(B)+w(C).

– Seq(B): this construction independently generates a sequence of B. First the
number k of components in the sequence is drawn, following a geometric law
(k = geom(w(B)) = b ln(random([0,1[))

ln(w(B)) c), and then k elements of type B are
independently generated and returned as a sequence. The weight of such a
construction is w(Seq(B)) = 1

1−w(B) .

– B ∗C: this construction independently generates both an element B and an
element C, and the weight is w(B ∗ C) = w(B) · w(C).

– Z: the Z element in the tree specification corresponds to one tree size unit,
which very often corresponds to one node. Wherever there is a Z in the
specification, a terminal element is generated. The generation of terminals
is not handled by the Boltzmann method, it therefore needs to be provided.
The weight w(Z) is a special parameter of the generator given by the solver
(see details below).

– ε: ε is the empty element, thus nothing will be generated, and w(ε) = 1.

Figure 3 shows one generation algorithm for each specification given in fig-
ure 2. In this example we name Ext() the constructor of terminals which must
be provided by an external source. The explicit values of the weight will be given
in section 2.3.

For better understanding of the implementation of such generator, we detail
here the construction of the binary tree’s generator, the two other ones are given
as illustrations.

The specification of binary trees is T1 = L1 | N , L1 = Z, N = Z∗T1∗T1. This
recursive specification states that a binary tree is either a leaf (L1) or a node (N)
aggregating two binary trees. The binary tree random generator (noted genT1)
will have to respect the | specification; the probability to generate a leaf must
be w(Z)/(w(L1) +w(N)) (note that as w(L1) +w(N) = w(T1), the probability
to generate a leaf is simplified as w(Z)/w(T1)). To generate elements with the
right probability we use a pseudo-random generator for real numbers in]0, 1],
if the value produced by the pseudo-random generator is smaller than the leaf
probability (w(Z)/w(T1)) a leaf will be produced, otherwise a node is produced
using the external binary tree node constructor that inputs two binary trees
generated using recursive calls.

Remark 1. If the tree specification has more than one equation, we obtain one
generator for each non-terminal, with possible calls to the other non-terminals
generators. We thus need to specify one non-terminal as the “root” of the gram-
mar, in order to provide an entry point for the generation.

The goal of the second step of the Boltzmann method is then to compute
the actual parameters in order to make the generator uniform with a linear
complexity.

2.3 Boltzmann method

In this section we present how to calculate the weights used by the generator.
Boltzmann method applies to the generation of structured objects, using the

powerful tool of generating functions. Given a class C of objects, each object γ
having a size denoted by |γ|, we denote by C(z) its generating function, which
is the series C(z) =

∑
γ∈C z

|γ| =
∑
n cnz

n, where cn is the number of objects of

Binary trees: genT1() = if random() < w(Z)/w(T1)
then return genL1() else return genN()

genL1() = return Ext()
genN() = return Ext(GenT1(),GenT1())

One-two trees: genT2() = r := random;
if r < w(Z)/w(T2) then return genL2()
elsif r < w(U)/w(T2) then return genU()
else return genB()

genL2() = return Ext()
genU() = return Ext(genT2())
genB() = return Ext(genT2(),genT2())

General trees: genT3() = k := geom(w(T3)); res := [];
for i from 1 to k do res := genT3()::res done;
return Ext(res)

Fig. 3. The generation algorithms for the example grammars.

size n in C. In Boltzmann method each object γ is generated with probability
z|γ|/C(z).

The symbolic method [5] provides a dictionary for translating structural con-
structions into operators on generating functions: concerning tree constructions,
the dictionary reduces to:

Z → z, ε→ 1,
C = A | B → C(z) = A(z) +B(z),
C = A ∗ B → C(z) = A(z) ·B(z),
C = Seq(A) → C(z) = 1

1−A(z) .

Thus in a tree specification, each line transforms into a corresponding gen-
erating function equation (which also corresponds to the weight relations from
section 2.2), and a system of specifications transforms into a polynomial system
of equations.

For computing weights as described in section 2.2, we need to solve such
systems of equations for a given value x of variable z: the weight of element Z is
set to x, and the weight of a non-terminal C is the value of series C(z) evaluated
at z = x. The resolution is analytically coherent for 0 ≤ x ≤ ρ, where ρ is a
special value, called the singularity of the system.

Solving polynomial systems of equations is a very complex problem in general,
but systems corresponding to specifications do have a structure that can be
exploited in the computations. In our implementation we use a combinatorial
newton method that gives a very efficient solver [12], that can also be used to
calculate an approximation of the singularity ρ.

In figure 4, we show the generating functions for the previously introduced
tree specifications and the calculated weights for each of these systems for z = ρ.

In each case, using the values of these functions at z = ρ, the Boltzmann
algorithms of 2.2 derive a linear time generator with the property of uniformity :

Tree type Corresponding generating functions Weights

w(Z) = ρ = 1/2
Binary trees T1(z) = L1(z) +N(z) w(T1) = 1

L1(z) = z w(L1) = 1/2
N(z) = z · T1(z)2 w(N) = 1/2

w(Z) = ρ = 1/3
One-two trees T2(z) = L2(z) + U(z) +B(z) w(T2) = 1

L2(z) = z w(L2) = 1/3
U(z) = z · T2(z) w(U) = 1/3
B(z) = z · T2(z)2 w(B) = 1/3

w(Z) = ρ = 1/4
General trees T3(z) = z · 1

1−T3(z)
w(T3) = 1/2

Fig. 4. The generating functions and calculated weights of the example grammars.

given a size n, two trees of that size have exactly the same probability of being
generated. These generators however have the particularity that the generated
trees are not all of size n, but have a random size, with a mean value depending
on parameter z. We show in section 2.4 how to deal with this aspect, using ρ as
the value for z.

2.4 Complexity and generation of huge trees

With Boltzmann method, the size of the generated trees is random, with a
distribution that depends on the specification and a mean value that goes from
0 to infinity when parameter x goes from 0 to ρ. More precisely the probability
for the result to be of size n depends on parameter x and on the singularity ρ,
which is attached to the system of equations corresponding to the specification:
for large n, this probability is proportional to n−

3
2xnρ−n. Thus the closest is x

to the value of ρ, the biggest is the probability of generating large size trees.
As an illustration, in figure 5 we plot the probability of producing a tree of

size n in function of n, with different values of x: there are five different curves,
corresponding to x = 0.9ρ, x = 0.999ρ, x = 0.99999ρ, x = 0.9999999999ρ and
x = ρ. In the right part, the curves are plotted with both axes in logarithmic
scale, in order to show up the differences. It is quasi-impossible to obtain a tree of
size one hundred with a precision of 1/10 for x/ρ, whereas it is likely to produce
a tree of size ten million when ρ is approximated with a precision of 1/1010.

Boltzmann samplers are particularly efficient if we accept some variability
in the size of the generated structures: fixing a target size n and a margin of
error δ, generating a structure of size belonging to [(1 − δ)n, (1 + δ)n] can be
completed in mean time O(n) (whereas exact size average complexity can be up
to quadratic).

In [2], it is showed that in the case of tree sampling, linear time complexity can
be achieved by Boltzmann method by using either pointing or singular sampling.
For our implementation, we chose the second approach, consisting in taking ρ as
the value of x, and this leads to both issues of computing ρ and rejecting trees

0 5 10 15 20 25

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

size

p
ro

b
a
b
ili

ty

1e+00 1e+03 1e+06 1e+09

1
e
−

1
7

1
e
−

1
3

1
e

−
0
9

1
e
−

0
5

1
e
−

0
1

size

p
ro

b
a
b
ili

ty

Fig. 5. Probability distribution of sizes for trees generated with Boltzmann method,
with a parameter x = 0.9ρ, 0.999ρ, 0.99999ρ, 0.9999999999ρ, and ρ. The solid color
bars show the range inside which the generators have a guaranteed linear complexity,
which in practice extends to the whole colored range. In the second plot, both axes are
in logarithmic scale.

of non admissible size. Indeed in the case of singular sampling, the mean size of
the generated structures is infinite. We will never generate an infinite object, but
there is however a non-trivial probability of generating objects of sizes that we
cannot handle. The solution to this problem is simple and consists in aborting
the generating process as soon as we pass the upper bound of our target size. As
for the second point, the evaluation of ρ is non trivial and will not be detailed
in this paper; it uses a dichotomy heuristic and the Newton algorithm of [12].

3 Model generation based on meta model specification

We present in this section a scalable, uniform, random model generation process.
This process can be used to generate very big models based on their metamodel
specification. It makes use of the uniform random trees generation previously
presented. We present here how to transform a metamodel specification into a
tree specification and how to complete the generated trees to obtain the final
instance.

3.1 Running example

In figure 6 is presented a simple MOF/ECORE [10] metamodel inspired from
the classic ECLIPSE EMF[6] Library example. This metamodel will be used
throughout this paper to illustrate our approach. It contains four meta-classes:
Library, Book, Volume and Compilation where Volume and Compilation inherit
the Book abstract meta-class. This metamodel shows three containment rela-
tions, from Library to Book, fro Library to Writer and from Compilation to
Book, and one relation from book to writer.

Fig. 6. Running example metamodel diagram

3.2 From metamodels to tree specification

Metamodels and tree specifications are not equivalent. The metamodel language
is far more expressive than tree specifications. We present here how to interpret
metamodel constructions into tree specification constructions. The transforma-
tion we propose is done in three steps where each step refines the output spec-
ification tree. Note that the model transformation we define here is not total,
some elements in the metamodel will not be translated into the corresponding
tree specification. Our approach only generates the core structure of the model.

Identification of base trees The first step to build the random generator is
to identify parts of the metamodel that will correspond to the randomly gener-
ated tree. A metamodel is a directed graph that is used to specify other graphs.
We need to identify trees in the metamodel graph to be able to generate trees
that respect the metamodel specifications. The trees used by the random gen-
erator are identified thanks to the containment relationships in the metamodel.
The containment relationship offers two advantages, they allow to hierarchically
generate the model and are acyclic. For each containment relationship found
in the metamodel both source and target meta-classes are created in the tree
specification and are equal to Z, i.e. an element with one size unit. Abstract
meta-classes are created but are not equal to anything at this stage as they
should not be instantiated. Finally, each of the containment relationships adds
that source equals its value times the target. In the running example we iden-
tified three containment relationships. The result of the transformation on the

running example is this tree specification:

Library = Z ∗ Book ∗ Writer

Book = void

Writer = Z

Compilation = Z ∗ Book

Inheritance relations The second step to obtain the tree specification is to
handle inheritance relations. The inheritance relation is interpreted as a logical
or. If meta-class B inherits A, the generation of an instance of A can be replaced
by the generation of an instance of B. Therefore, are added to the specification
rules for each meta-class A that has daughter meta-class B the fact that A is
A∨B. If a new meta-class is encountered, it is equals Z. At the end of this stage
all tree specification entries must have a value, all abstract meta-classes that are
not inherited must be removed from the tree specification system as they can
not be instantiated.

In the running example, Compilation and Volume inherit Book. The resulting
tree specification is :

Library = Z ∗ Book ∗ Writer

Book = V olume | Compilation
Writer = Z

V olume = Z

Compilation = Z ∗ Book

Cardinalities The third step makes sure the cardinalities constraints are re-
spected. To respect lower and upper bound cardinalities the target is multiplied
as many times as requested in the tree specification, if the cardinality of a re-
lation A to B is x..y then A is ∨yi=xBi. If the upper-bound is * we use the
sequence concept, where Seq(B) denotes an arbitrary long B sequence, note
that a sequence may be empty. If the lower bound is 0, the empty element ε is
used.

If we apply the cardinality constraints to our tree specification, we obtain :

Library = Z ∗ Book2 ∗ Seq(Book) ∗ Writer ∗ Seq(Writer)
Book = V olume | Compilation

Writer = Z

V olume = Z

Compilation = Z ∗ Book2 ∗ Seq(Book)

Unadapted metamodels At the end of the transformation, all meta-classes in
the metamodel should have a value in the tree specification. If it is not the case,

this meta-classes are not accessible, meaning that they can not be randomly
generated in a global uniform random generation process, i.e. the metamodel is
not suited for our random generation process.

At the end of the transformation, all meta-classes should be linked directly
or indirectly with the root of the metamodel. If it is not the case, the given
metamodel has more than one root, our random generation process can be used
with any of this roots, but only a subpart of the metamodel will be generated.

3.3 Model final structure generation

The tree specification corresponding to the metamodel is used to generate the
skeleton of the instance generation as described in section 2, however the Boltz-
mann tree random generator only generates a model core. It needs a mechanism
to generate basic relations that are not containments in order to generate in-
stances of the metamodel. To our knowledge, there is no methodology to uni-
formly generate such structures and keep the overall generation process random
(Boltzmann model does not apply well to graphs). Therefore, any generation pro-
cess for the basic relations that respects the metamodel specification can be used
to complete the skeleton. For instance, in [3] is described as stage two and three
such a process. In our implementation on UML Class models we implemented a
generator that strictly satisfies the lower bound constraints.

4 Validation

In this section we present our implementation of the generator, as well as par-
ticularities of the random sampling that were verified in particle uses when gen-
erating UML 2.2 Class Models.

4.1 Implementation

We present in this section the application of the generation process to UML class
models. From the official UML 2.2 specification we extracted a simplified class
metamodel. The figure 7 presents the tree specification corresponding to this
metamodel. Note that the generation processed has been tweaked, the probabil-
ity to generate packages was reduced and the probability to generate operations,
properties, literal integers and parameters augmented. This manipulation is later
detailed in this section.

We implemented the generator as an Eclipse Plugin which is available online2.
The plugin can generate UML files containing the class model from a graphical
interface shown in figure 8.

We implemented a value generator for the names, literal values, visibility
kinds and direction kind in order to produce a valid model. The properties
value generation we implemented is constrained in order to only produce valid

2 see http://meta.lip6.fr for more details.

Fig. 7. UML 2.2 based tree specification for class models

model = package

package = 0, 01Z ∗ Seq(packageableElement)
packageableElement = package | class | association

class = Z ∗ Seq(property) ∗ Seq(operation) ∗ Seq(generalization)

generalization = Z

property = 3Z ∗ (valueSpecification | ε)
association = Z

valueSpecification = literalBoolean | literalNull | literalInteger | literalString
literalBoolean = Z

literalNull = Z

literalInteger = 2Z

literalString = Z

operation = 2Z ∗ Seq(parameter)
parameter = 3Z ∗ (valueSpecification | ε)

models. We also implemented a generator for generalization and references that
randomly chose a valid target in the generated elements. However, the generation
of constrained values is not in the scope of this paper.

Even with a linear complexity in random calls, the actual generation process
may be long for big models. Indeed, the meta-classes instantiations and prop-
erties value generation is time consuming, in order to avoid the generation of
unused elements we propose to use a simulation. When a model of a particular
size is to be generated, the current random seed is saved, the algorithm to gen-
erate a random instance is run without any instantiation, and if the simulation
is successful (the size of the model is correct), the seed is reused to generate
the actual model, otherwise the simulation is run again. This optimization does
not change the theoretical complexity of the sampling but allows to gain a huge
amount of time. In our implementation on UML Class models, there is a factor
higher than 1000 between the simulation of a valid generation and the same
calculation with all meta-classes instantiations.

We present in figure 4.1 the performances of our prototype. This chart shows
that the time to obtain a seed that will produce a valid model (valid size) is very
short and its average is linear. However our implementation based on EMF [6] is
quite slow and can not reasonably produce models above a size of 250 000 model
elements due to a huge memory consumption. Therefore we can not provide valid
building times for the size 500 000 and one million. It is important to note that
the time we provide for obtaining a valid seed is an average for one hundred
runs. As the complexity is an mean time complexity, the actual time spent to
find a valid seed can significantly vary.

Fig. 8. snapshot of the class model generator

4.2 Generating instances of a particular size

The presented theory states that the mean time to generate a model of a par-
ticular size, within a reasonable margin, is linear. The probability to obtain a
model of the right size allows us to randomly generate models and only keep the
ones with a valid size. As the complexity to generate one model of the wanted
size is linear, the complexity to generate a fixed size sampling of uniform models
with a size in [n(1− δ), n(1 + δ)] has a linear complexity too.

It has to be noted, however, that the Boltzmann sampler is very sensible to
the value of its parameter, particularly as it approaches its maximal value ρ.
Our method depends on taking a parameter equal to ρ, but as ρ can be any real

Model size Average simulation time Building time
(10% margin)

100 6.50 ms 44.6 ms
1 000 11.2 ms 154 ms
10 000 91.1 ms 1.61 s
50 000 0.501 s 9.87 s
100 000 0.934 s 26.0 s
200 000 1.79 s 52.8 s
250 000 2.48 s 63.2 s

500 000 4.32 s not applicable
1 000 000 8.86 s not applicable

Fig. 9. Prototype’s performance chart ran on a MacBook Air

number between 0 and 1, it is not possible to calculate it exactly in most cases
and we will use an approximation. The effect of this, illustrated in figure 10,
is a “ceiling” in the maximal size attainable by the generator. It is therefore
important to make a very precise approximation of ρ to be able to generate very
large objects. In figure 10 is represented the distribution of class model sizes
generated using different approximations of ρ, it appears that the proportion of
big models is affected by the accuracy of ρ’s calculation. For instance no model
of a size greater than five hundred thousand model elements could be generated
with a value of ρ correct up to the seventh digit, but with a precision of fifteen
digits, ten million model element is possible to reach in linear time.

1e+00 1e+03 1e+06 1e+09

1
e
−

1
7

1
e
−

1
3

1
e
−

0
9

1
e
−

0
5

1
e
−

0
1

size

fr
e
q
u
e
n
cy

1e+00 1e+03 1e+06 1e+09

1
e
−

1
7

1
e
−

1
3

1
e
−

0
9

1
e
−

0
5

1
e
−

0
1

size

fr
e
q
u
e
n
cy

Fig. 10. Distribution of sizes of generated class models by a Boltzmann sampler with
a parameter of 0.9ρ, 0.999ρ, 0.99999ρ and ρ (ρ calculated with a 10−15 precision). The
left plot corresponds to a grammar without coefficients, while in the right the exact
grammar of figure 7 is used. Note that both axes are in logarithmic scale.

4.3 Influencing generation output

It is in our opinion very important to be able to characterize the probability
distribution of the generated structures, as it allows us to control a possible
bias. However, the uniform distribution provided by the Boltzmann samplers
may not be the best fit to this needs. We might find, for example, that the
number of operations in classes in the random class models is not sufficient.
We thus need to add ponderations in our specification, in order to influence the
frequency of appearance of the different elements, in a way that allows us to
calculate the resulting bias.

The extension of the theory of Boltzmann sampling in this direction is work
in progress, but there are some elements that we can already use. We allow the
definition, for each non-terminal, of a coefficient with a default value of 1 that

will influence the frequency of the corresponding element. The influence of the
coefficient values to the frequencies is not trivial, as the different frequencies
depend on each other, so the good choice of coefficients is done for the moment
via trial and error. It is possible to calculate the frequencies given the values of
the coefficients, and the complexity of the generation process is not affected. In
figure 7 where the tree specification of simplified UML class diagrams is given,
the probabilities have been modified, the probability to generate packages was
reduced and the probability to generate operations, properties, literal integers
and parameters augmented in order to obtain more realistic class models.

5 Related works

Alloy which is a lightweight specification language based on first-order relational
logic [7] can be used to generated models. Indeed, its main principle is to compute
all models of a fixed size and that correspond to a particular specification. Then
Alloy is able of extracting form this set of models the ones that are consistent
regarding to a set of specified constraints. Alloy is based on a SAT solver (the
SAT problem belongs to the NP-Hard class) and therefore is not able to produce
huge models.

In [3], is presented an algorithm that can generate instances of metamodels.
It is based on a transformation of the metamodel structure into a set of graph
specification rules. This set of rules is able to generate any skeleton of metamodel
instances, and can be coupled with constraint rules in order to respect specific
needs. The random process resides in the random election of generation rules.
The outputted models can be biased as the choosing of the rule is constrained
by the graph specification rule application formalism. Plus, this approach may
not scale, the applying of each graph rule has an exponential complexity as it
needs to find the existence of a subgraph in the already generated graph which
limits the efficiency of this tool (the general problem is NP-Hard).

In [1], a formalism is presented to generate random constrained models. The
approach consists in using mutations to derive, from a given instance, random
other alike instances. The approach is effective and can handle very huge models
since the mutation process is very effective. However, this approach is biased
by definition, it needs to input one instance of the model to generate others,
therefore the outputted models will have a lot of similarities.

6 Conclusion

In this paper we presented an adaptation of the Boltzmann random sampling
theory to metamodel instance generation. The resulting generator has three in-
teresting particularities.
First it is scalable, the complexity of the generating process is linear with the
size of the generated structures. And this size is controllable.
Then it outputs uniform samplings for a given size, the probability for any struc-
ture of size n to be generated is the same.

And finally, it allows to experimentally change the form of outputted models to
meet with specific requirements.

However, metamodels usually come with a set of constraints to precise the
specification of its instances, in this paper we did not describe how to gener-
ate values for the properties of these instances, however our implementation on
class models successfully took this challenge in consideration. In the particular
purpose of generating models that satisfy important model constraints, the prop-
erty generation must be carefully controlled, and possibly a random generation
process may not be adapted. Further research in this direction must be done in
order to exploit the high performances of the random generation of metamodel
instances to constrained models.

References

1. E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L. Traon. Metamodel-based
test generation for model transformations: an algorithm and a tool. In Software
Reliability Engineering, 2006. ISSRE ’06. 17th International Symposium on, pages
85–94, 2006.

2. P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann samplers for
the random generation of combinatorial structures. Combinatorics, Probability
and Computing, 13:577–625, 2004.

3. K. Ehrig, J. Kuster, G. Taentzer, and J. Winkelmann. Generating instance mod-
els from meta models. In Formal Methods for Open Object-Based Distributed
Systems, pages 156–170, 2006.

4. P. Feiler, R. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kazman, M. Klein,
L. Northrop, D. Schmidt, K. Sullivan, et al. Ultra-large-scale systems: The software
challenge of the future. Technical report, Software Engineering Institute, Carnegie
Mellon University, ISBN 0-9786956-0-7, 2006.

5. P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009.

6. T. E. Fondation. EMF (Eclipse Modeling Framework).
http://www.eclipse.org/modeling/emf/.

7. D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, April 2006.

8. D. Lucrédio, R. P. de Mattos Fortes, and J. Whittle. Moogle: A model search
engine. In Model Driven Engineering Languages and Systems, 11th International
Conference, MoDELS 2008, Toulouse, France, September 28 - October 3, 2008.
Proceedings, pages 296–310, 2008.

9. S. J. Mellor, A. N. Clark, and T. Futagami. Guest editors’ introduction: Model-
driven development. IEEE Software, 20(5):14–18, 2003.

10. OMG. Meta Object Facility (MOF) 2.0 Core Specification, Jan. 2006.
11. C. Pivoteau. Génération aléatoire de structures combinatoires : méthode de

Boltzmann effective. PhD thesis, UPMC, 2008.
12. C. Pivoteau, B. Salvy, and M. Soria. Boltzmann oracle for combinatorial systems.

In Fifth Colloquium on Mathematics and Computer Science Algorithms, Trees,
Combinatorics and Probabilities, DMTCS Proceedings, pages 475–488, 2008.

13. B. Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19–
25, 2003.

