

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 17-38, 2005.
 Springer-Verlag Berlin Heidelberg 2005

UML4SPM: A UML2.0-Based Metamodel for Software
Process Modelling1

Reda Bendraou1, Marie-Pierre Gervais1,2, and Xavier Blanc1

1 Laboratoire d'Informatique de Paris 6 (LIP6), 2 University Paris X
LIP6 - 8 rue du Capitaine Scott - F75015 PARIS

{Reda.Bendraou, Marie-Pierre.Gervais, Xavier.Blanc}@lip6.fr

Abstract. In the context of Model Driven Development, models play a central
role. Since models can nowadays be executed, they are used not only for
description but also for production [32][30][24]. In the field of software process
modelling, the current version of the OMG SPEM standard (ver1.1) has not yet
reached the level required for the specification of executable models. The
purpose of SPEM1.1 was limited at providing process descriptions to be read
by humans and to be supported by tools, but not to be executed. Therefore, the
OMG issued a new RFP in order to improve SPEM1.1 [35]. Since we intend to
participate in the next major revision of SPEM, namely SPEM2.0, in this work,
we: 1) compare SPEM1.1 both with primary process model elements (i.e.
Activity, Product, Role,…) and with basic requirements that any Process
Modelling Language should support (i.e. expressiveness, understandability,
executability,…); 2) identify its major limitations and advantages and 3)
propose a new UML2.0-based metamodel for software process modelling
named: UML4SPM. It extends a subset of UML2.0 concepts - with no impact
on the standard - in order to fit software process modelling.

Key words: MDD, Software Process Modelling, Process Modelling
Languages, SP Metamodel.

1 Introduction

The Model Driven Development (MDD) vision comes with a set of recommendations
in order to manage the complexity of software development. The main one is to
promote an approach where extensive models are created before source code is
written. A primary example of MDD is the OMG’s (Object Management Group)
Model Driven Architecture (MDA) approach [23]. The MDA promotes model
engineering rather than object engineering in order to ease code production in a cost-
effective manner. It pushes beyond the original bounds of the Unified Modelling
Language (UML) by providing open specifications that support the formal modelling
of most aspects of the software life cycle. Currently, MDA provides a growing family
of standards that now includes the UML v2.0 (UML 2.0 Superstructure adopted,
UML2.0 Infrastructure in finalization) [37], the Meta Object Facility (MOF v1.4, v2.0

1 This work is supported in part by the IST European project "ModelWare" (contract no 511731).

http://www.agilemodeling.com/essays/mda.htm
http://www.agilemodeling.com/essays/mda.htm

18 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

in finalization) [26] and the Software Process Engineering Metamodel (SPEM v1.1,
RFP for SPEM2.0) [34] [35] which is devoted to software development process
specifications.
As software development process is the backbone of the software development
lifecycle, software development processes and software engineering standards have
gained more and more importance in the software industry. Actually, it has been
wildly accepted that, the quality of any software product cannot be ensured simply by
inspecting the product itself or by performing the traditional verification and
validation approach (V&V) [2] [11], but relates to both, the production process that is
carried out and to actors involved in this production process [27]. Therefore, software
companies recognized the need of capturing processes they follow for building
software, good practices and their know-how in a standard way. The term Software
Process Modelling is used to describe the production of models of defined software
development processes. A Process Model is an abstract description of an actual or
proposed process. It represents selected process elements that are considered
important to the purpose of the model and can be executed by a human or a machine
[6]. Process models are described with Process Modelling Languages (PMLs). A
Process Modelling Language (PML) is defined in terms of a notation, a syntax and
semantics, often suitable for computational processing. Process modelling is a very
diverse and complex area. Requirements for PMLs in order to support modelling and
executing of software processes are both functional (e.g. expressiveness, abstraction,
executability…) and non functional (e.g., commercial support) [5].
In this paper, we focus on PML and more precisely, on SPEM. Thus, as a first step of
this work, we present primary requirements identified in [7] [16] that any PML should
support which are: Formality, Expressiveness, Understandability, Abstraction,
Executability, Modularization, Analyzability, Reflection, and Multiple conceptual
perspectives. Then, we evaluate these requirements in respect with SPEM1.1. This
helped us to identify its major limitations and advantages.
As a second stage, we show how to improve the current metamodel of SPEM1.1. This
is done by: 1) introducing basic concepts (e.g. Activity, Product, Role…) that
process modelling languages should provide as defined in [4] [10] [21]; 2) Discussing
how a subset of UML2.0 concepts and those we introduce provide these process
model elements and how they can be used for modelling software processes.

The paper is organized as follows: Section 2 introduces basic concepts in the field of
software engineering and lists requirements that should be supported by PMLs.
Section 3 gives a brief description of the main concepts of SPEM1.1 and presents its
limitations according to requirements highlighted in Section 2. In Section 4, we
present our metamodel for software process engineering, named: UML4SPEM. It
extends a subset of UML2.0 concepts by adding some features and elements related to
software development processes in an MDA context. Then, we compare our
metamodel to primary process model elements and to PMLs requirements. We then
show how it overcomes major SPEM1.1 limitations. Execution of process models is
out of the scope of this paper. Section 5 presents related work and Section 6
introduces perspectives of this work.

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 19

2 Software Engineering

In this section, we give a brief reminder of basic concepts in the area of Software
Engineering. Then, we present primary elements of Process Models as well as
requirements that PMLs should support.

2.1 Definitions

As introduced by Humphrey [15], "Software Engineering refers to the disciplined
application of engineering, scientific, and mathematical principles and methods to the
economical production of quality software". Here, the term quality refers to the
degree to which a product meets its user's needs. While "The Software Engineering
Process is the total set of software engineering activities needed to transform user’s
requirements into software". This process may include, as appropriate activities of:
requirement specifications, design, implementation, verification, installation,
operational support, and documentation. Process Models (PMs) are precisely seen as
a "representation of a networked sequence of these activities, objects,
transformations, and events that embody strategies for accomplishing software
evolution" [14]. Advantage of process models is that they are built in some known
modelling language, namely: Process Modelling Languages (PMLs). This allows the
process model to be validated against a known set of rules and makes it easier to edit
and to maintain. This also facilitates collaborative work between different teams and
subcontractors (offshore). A PML should offer a sufficient set of concepts i.e., a
vocabulary that covers the real-word software production process. In the following we
introduce them.

2.2 Primary Process Model Elements

In [4] [5] [10] and [21] a set of software process model elements has been identified.
They establish that any PLM should be able to express six primary process elements2.
We give here an essential summary of each element:
• Activity: A concurrent process step, operating on artifacts and coupled to a
human or a production tool. It can be at different levels i.e., activities can be
decomposed.
• Product: Software artifact inputs or outputs of activities.
• Role: Defines rights and responsibilities of the human involved in the software
activity.
• Human: Human are process agents who may be organized in teams. It has skills
and authority and can fulfil a set of roles.
• Tool: Relates to any tool used by the software process, may be batch (i.e.
compilers, links, parsers…) or interactive (i.e. textual editors, graphical CASE
tools…).
• Evolution Support: Support for static or dynamic variability of the process
model. This means that most previous lifecycle phases must be repeatable "on the fly"
(during process execution). As a consequence of this, the PML must offer at least
support for the evolution of the process model. This support has to be ensured

2 For brevity reasons, we prefer redirect the reader into papers referenced above

20 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

technically (i.e. reflection or interpretation) and conceptually (by a defined
metamodel) [7].

As a process model consists of a set of these process elements together with
additional constraints controlling how they may be interrelated, a PML has to provide
language features to model these basic elements as well as their interrelationships.
This is considered as the first requirement of a PML i.e., Expressiveness (cf.
definition below).

2.3 Basic PMLs Requirements

PMLs have to support some well-known requirements which are very similar to those
of programming languages [28]. In [7] and [16] essential ones are introduced in the
context of PMLs. They are:
• Formality: The syntax and semantics of a PML may be defined formally, i.e.
precisely, or informally, i.e. intuitively. Formal PMLs support, for example, reasoning
about developed models, analyzing of the precisely defined properties of a model, or
transforming models in a consistent manner.
• Understandability: It dependents on the possible process model's users. Users
with a computer science background will find easier to understand a model written in
a PML that resembles a programming language. Those with other backgrounds may
prefer graphic representations based on familiar metaphors.
• Expressiveness: Indicates whether all aspects of a process model may be directly
modelled by language features of the PML or have, for example, to be expressed by
means of additional comments.
• Abstraction and Modularization: The PML may offer modelling-in-the-large
concepts, such as Abstraction and Modularization, to structure a process model into
sub-models connected by certain relationships. Abstraction concepts may support the
definition of more general, abstract
sub-models which are customized within a concrete process model. In addition, a
PML may offer the possibility of distinguishing between generic and specific process
models.
• Executability: The PML may support the definition of operational models. These
are executable.
• Analyzability: The PML may support the definition of descriptive models, e.g.
predicate logic expressions. Such models are easily analyzable.
• Reflection: The PML may directly support the evolution of process models. In
this case there are parameterization, dynamic binding, persistency and versioning
issues to be addressed.
• Multiple conceptual perspectives/views: The PML may support the definition
of views of certain perspectives of a process model. This implies mechanisms to
integrate different views of a process model into an overall process model.
PMLs can be evaluated according to these requirements. However, some desired
requirements are in conflict and so it is not possible to address all of them within one
PML [1] [29]. Thus, fundamentally different PMLs and notations may be needed to
cover such diversity in scope.

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 21

In the next section, we evaluate if the SPEM1.1 standard deals with these
requirements as well as with primary process model elements.

3 SPEM 1.1

3.1 SPEM1.1 Presentation

SPEM introduces common concepts and modelling structure to construct models of
software development processes [34]. SPEM1.1 uses some basic modelling concepts
from UML1.4 to describe rules, constraints, vocabulary, and notation to be used in
defining process models [38]. Thus SPEM1.1 meta-model is defined as an extension
of a subset of UML1.4, expressed in the SPEM_Foundation package. The
SPEM_Extensions package which extends the SPEM_Foundation package, adds the
constructs and semantics required for software process engineering. It owns five
packages; each package addresses a specific concern of the software process
definition.
The building block of the SPEM metamodel is the Process Structure package (figure
1). It defines the main structural elements from which a process description may be
constructed. In the following, we compare them with primary process model
elements.

3.2 Comparison of SPEM1.1 with Primary Process Model Elements

• Activity: In SPEM1.1, an Activity is the main subclass of WorkDefinition. It
describes a piece of work performed by one ProcessRole and may consist of atomic
elements called Steps.
• Product: A WorkProduct in SPEM is anything produced, consumed, or modified
by a process.

Figure 1. The process Structure package, the core of SPEM1.1 metamodel for process
definitions.

Classifier
(from Core)

Parameter
(from Core)

ActivityParameter
hasWorkPerArtifact : Boolean

WorkDefinition
/ performer : ProcessPerformer
/ parentWork : WorkDefinition0..*

0..*

+subWork

0..*

+parentWork
0..*

ProcessPerformer
/ work : WorkDefinition

0..* 1

+work

0..*
{ordered}

+performer

1

Operation
(from Core)

ActionState
(from Activi tyGraphs)

ModelElement
(from Core)

Step
Activity

/ assistant : ProcessRole
/ step : Step

0..*1

+step

0..*

+activity

1 ProcessRole

0..*

0..*

+assistant 0..*

+activity
0..*

WorkProduct
isDeliverable : Boolean
/ kind : WorkProductKind
/ responsibleRole : ProcessRole

0..*

0..1

+workProduct0..*

+responsibleRole

0..1

WorkProductKind

0..*

1

0..*

+kind 1

22 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

It describes one class of artifacts produced in a process and has a WorkProductKind
that describes a category of artifact, such as Text Document, UML Model,
Executable, Code Library, and so on.
• Role: in SPEM, a ProcessRole is a subclass of ProcessPerformer and defines
responsibilities and roles over specific WorkProducts and Activities.

Whether SPEM1.1 defines the notion of ProcessRole (Role), it does not provide the
one of Human who can undertake this Role. Moreover, concepts equivalent to Tool
and Evolution Support are not provided by the standard. In SPEM1.1, software
processes are described in static models and there is no support for their evolution
during execution-time.
Table 1 summarizes correspondences between primary process model elements and
those offered by SPEM1.1. It shows that Human, Tool and Evolution Support
notions are lacking in SPEM1.1.

Basic process model elements SPEM1.1
Activity WorkDefintion /Activity
Product WorkProduct
Role ProcessRole
Human -
Tool -
Evolution -

Table 1. Comparison between primary process elements and SPEM1.1 elements.

3.3 Evaluation of SPEM1.1 Towards Basic PMLs Requirements

In this section, SPEM1.1 is evaluated with respect to requirements on process
modelling languages.
• Formality: As SPEM1.1 extends a sub set of UML1.4, discussing the formality
i.e., syntax and semantics of SPEM1.1 partly comes to discuss the formality of UML
1.4 which is a very large debate. The UML semantics is described using a metamodel
that is presented in terms of three views: the abstract syntax, well-formedness rules,
and modelling element semantics. The abstract syntax is expressed using a subset of
UML static modelling notations and well-formedness rules are expressed in the
Object Constraint Language (OCL). The semantics of modelling elements are
described in natural language, which may not be sufficiently precise. This may cause
disagreements, multiple interpretations and confusion over the precise meaning of a
construct [9]. In SPEM1.1, an example of this lack of semantic is the semantic given
to the Step element: "An Activity may consist of atomic elements called: Steps" [34].
This is the only reference to Step in the specification, which is obviously insufficient.
A Step inherits from UML1.4 ActionState. "An action state represents the execution
of an atomic action, typically the invocation of an operation" [38]. But, UML1.4 does
not explicitly specify, neither parameters of the invocation action (i.e., name and
value) nor their types as it is done with Actions in UML2.0. Then, mapping this
element to an executable or analyzable format would be impossible and useless. Let's
also consider the concept of ProcessPerformer. The standard defines the

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 23

ProcessPerformer as a performer for a set of WorkDefinitions. It also states that
ProcessPerformer represents abstractly the “whole process” or one of its components.
Definitively, we can clearly note that this definition is confusing. One obvious
question would be: what is the practical use of a ProcessPerformer? Is it used as a
container for WorkDefinitions or as a role, responsible for specific activities? In the
latter case, what is the difference with the ProcessRole concept? We believe that a
container of WorkDefinitions and roles are totally two separate concepts that should
be expressed separately.
• Understandability: SPEM1.1 uses UML notation. This is considered as an
advantage as UML has attractive features: it is standard, graphical, intuitive, and easy
to be understood. Besides, a wide community of software developers is familiar with
UML and uses a UML case tool environment. UML being so popular and widely
used, SPEM has an important competitive advantage compared to any specialized
PML [8].
• Expressiveness: In this point, we address expressiveness of SPEM1.1 concepts
to model software processes and not UML1.4 expressiveness. We have seen in
section 3.2., that SPEM1.1 doesn't provide concepts like Human, Tool or Evolution
support. In the following, we present other limitations related to the expressiveness
criterion:
a) In SPEM1.1, a WorkProduct inherits from the UML1.4 Classifier and is used as a
parameter into or from Activities (WorkDefinition in general). Nevertheless, we can’t
know which Steps of the Activity are going to act on WorkProducts nor responsible
roles of these Steps. We think that it would be useful to affect WorkProducts to Steps
rather than to Activities for more exhaustive process automation. Also, we believe that
we have to provide designers with the possibility to specify and to personalize their
own WorkProducts in order to be domain or method specific. The WorkProduct class
has some fixed properties such as name, isDeliverable, or kind and it is not possible to
add more properties for the WorkProduct. Indeed, with the appearance of the MDA,
some specific WorkProducts emerge. Examples are models, model transformation
rules and so on. These WorkProducts have different properties each, which can't be
resumed by a name and a boolean that indicates either it is a deliverable or not as it is
in SPEM1.1.
b) During software development process, depending on some results, developers
would need to interact and to impose choices about activities to be executed. Human
interactions are lacking by SPEM1.1.
c) Finally, project managers would also like to have some additional features on
process definitions in order to monitor and to capture process metrics during
execution-time. Examples of these features could be duration time of an activity, its
priority and its thrown exceptions. The current specification does not provide any of
those facilities.
• Abstraction: As the OMG has chosen an OO approach for modelling software
processes [34], SPEM1.1. provides Abstraction thanks to the Generalization/
Specialization mechanism. Indeed, a process model defined by SPEM1.1 can be
customized using the inheritance i.e., specialization mechanism in order to fit specific
domains or user's requirements. Thus, in the specialized process model, we can add
new attributes to new classes that inherit basic ones as well as new references. This

24 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

allows taking advantage of existing process models while adapting them to an
appropriate domain.
• Modularization: One of the major lacks of SPEM1.1 is ProcessComponent
compositions. A ProcessComponent is a chunk of process description that is
internally consistent and may be reused with other ProcessComponents to assemble a
complete process. However, developers who want to combine two or more
ProcessComponents in order to get one coherent process, have to carry out a
unification procedure. Indeed, to combine for instance two ProcessComponents P1
and P2, at least the output WorkProducts from P1 must be unified i.e., made identical
with the inputs to P2. Other elements may possibly be unified in addition, such as
ProcessRoles. Composition of ProcessComponents can be fully automated only if
they originate from a common family so that the unification is obviously capable of
being automated. Otherwise, the unification would involve human intervention that
normally would consist of some re-writing of the elements, and possibly associated
elements, to be unified. This could be manageable in case of the combination of two
simple ProcessComponents. However in case of complex ProcessComponents, it
becomes increasingly difficult. When outsourcing and offshore appear as a new way
working for companies, it is important to address this lack.
• Executability: Nowadays, companies are looking for how to extensively
automate all parts participating in software production, among them the development
process itself. However, SPEM1.1 provides as actions of a development activity, the
concept of Step, which only represents the name of the action that developer has to
perform (e.g., Step x: Check model consistency). This could help for process
description but it is so far of its execution. We agree that execution of process models
is outside the scope of SPEM1.1. However, we hardly believe that it should provide
concepts that enable the specification of executable action semantics within process
models. UML2.0 offers this possibility thanks to the Actions packages. It gives
precise execution semantics to actions, by defining their effect as well as their typed
inputs and outputs. This may help in mapping them into executable actions in some
well-known OO languages such as Java or C++ [8].
• Analyzability: SPEM1.1 is defined as a MOF metamodel, based on a subset of
UML. This is considered as an advantage as MOF definitions are machine
processable. Specifically, the MOF standard dictates how MOF models and instances
of MOF models may be rendered in XML format (schemas and XML documents,
respectively), and how interfaces to repositories for models can be derived from MOF
definitions of the languages in which those models are expressed [20] [19]. This helps
in manipulating SPEM1.1 models i.e., creation, suppression or modification, in
checking their conformance to the SPEM1.1 metamodel and in analyzing them from
different process perspectives (e.g. to get ProcessRole for the Activity: x, or Steps
owned by the Activity: y, how many WorkProducts are used by the WorkDefinition: z,
and so on).
• Reflection: Reflection is about whether SPEM1.1 supports process models
evolution (static or dynamic) or not. In fact, SPEM1.1 doesn't provide mechanisms
for dynamic evolution of process models. Static evolution is offered by manipulating
process models outside execution-time.
• Multiple conceptual perspectives/views: Another considerable advantage for
SPEM is that is defined both as a metamodel and as a UML profile, which allows

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 25

SPEM modelers to use the UML as a concrete notation. Thus, SPEM both defines
modelling capacities dedicated to the software process domain, and gains the benefit
of the expressiveness of UML. For example, Use Case modelling, which is sometimes
used for modelling processes, is not defined as a specific SPEM facility, but can be
inherited from UML. Other UML diagrams i.e., Class, Package, Sequence, State chart
and Activity diagrams can be used by SPEM1.1 with some restrictions. For instance,
SPEM1.1 allows the use of UML Sequence diagrams to illustrate interaction patterns
among SPEM model element instances with the restriction that only stick arrowheads
should be used [34]. Table 2 summarizes the result of the evaluation of SPEM1.1 with
respect to basic PML requirements.

Basic PML
Requirements SPEM1.1

Formality -Lacks of a precise semantic of some elements
(Step, ProcessPerformer…).

-Lacks of some process model elements (Human,
Tool and Evolution Support);

-WorkProducts are used as parameters of Activities
and not of Steps(useless for process automation)

-Impossibility of defining explicit WorkProducts
properties;
-Lacks of human interactions and decision points;

Expressiveness

-Lacks of some features on process elements in
order to capture process metrics, exceptions.

Understandability -Good. Uses UML as a notation
Abstraction -Good. As an OO PML, SPEM1.1 offers

Generalization/Specialization mechanism to deal
with Abstraction.

Modularization -Lacks of ProcessComponent compositions. Need
of a Unification mechanism.

Executability -Major Lack. SPEM1.1 models are not executable.
It was outside the scope of the specification.

Analyzability -Good. Possibility to manipulate process models
and to analyze them thanks to MOF repositories.

Reflection -Lack
Multiple conceptual
perspectives/views

-Good. Thanks to the possibility of using UML
diagrams as SPEM1.1 is a UML profile.

Table 2. Evaluation of SPEM1.1 with respect to basic requirements of PMLs.

As we can notice, SPEM1.1 suffers from several lacks at different levels of PML
requirements. Principal ones are: Formality, Expressiveness, Modularization,
Executability and Reflection, whereas it has serious advantages in Understandability,
Abstraction, Analyzability and Multiple conceptual perspectives/views.

In the next section we introduce our solution and show how it overcomes these lacks.

26 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

4 UML4SPM: A UML2.0-Based Metamodel for Software
Process Modelling

As intent to overcome SPEM1.1 limitations, our proposition for modelling software
processes comes in form of a MOF-compliant metamodel named: UML4SPM. It
takes advantages of the expressiveness of UML2.0 by extending a subset of its
elements suitable for process modelling. By adopting UML2.0 as a basis of our
metamodel, we will take advantage of:
o The expressiveness of the new UML2.0 for modelling executable action

semantics within activities and in orchestring them;
o The fact that UML is currently the most widely used modeling language in the

industry;
o Tool supports and facilities;
o Notations and diagrams offered by the standard ;
o Easier adoption by UML and SPEM1.1modelers;

4.1 Metamodel Presentation

As in SPEM1.1, UML4SPM comes in form of package hierarchies. The outermost
level contains two packages: the SPEM_Foundation package and the
SPEM_Extensions package (see figure 2).

The SPEM_Foundation package contains all UML2.0 packages required as a basis for
defining software process models. Main ones relate to Activities, Actions, Behavior
and Kernel packages. The SPEM_Extensions package holds packages that extend
UML2.0 and add the constructs and semantics required for software process
modelling i.e., the ProcessStructure package and the WorkProducts package. Figure 3
point out how concepts of both packages are interconnected. It gives a global
overview of UML4SPM Lighted boxes of the figure represent UML2.0 classes.
Shaded boxes represent those we specified and that inherit UML2.0 classes. We start
the description of the metamodel by SPEM_Extensions packages.

Process Structure Package
The ProcessStructure package is the core of UML4SPM. Its main class is the Process
class (figure 3). A Process inherits form UML2.0 BehavioredClassifier. A
BehavioredClassifier is a Classifier that has Behavior specifications defined in its
namespace. One of these may specify the classifier's behavior itself which will be
invoked when an instance of the BehavioredClassifier is created. One advantage is
that the Process's behavior can be represented by state machines; this adds more
control on the Process lifecycle. Another advantage, being a Classifier, a Process can
be categorized and can own (encapsulate) other Classifiers such as WorkProducts as
well as ActivityPerformer on these WorkProducts. A Process has a name and is
governed by a Lifecycle. It is composed of SoftwareActivities, which extends the
UML2.0 Activity. A Process may be defined by a meta-process thanks to the
metaProcAssoc association. A SoftwareActivity may be an Activity or a Phase
depending on the value of the Kind attribute.

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 27

Figure 2. UML4SPM Package hierarchies

As mentioned previously, we need to have some features within activity descriptions
that help in monitoring and in getting metrics on development processes. Thus, we
define a new property named weigh within SoftwareActivity.
It represents its importance in the development process (e.g. collecting user's
requirements = 30%) and a TimeLimit class linked to the SoftwareActivity class with
the starts at, ends at associations and witch represents time estimations defined by the
team. Based on these metrics, project managers may affect more time and resources to
Activities having a high weight. A SoftwareActivity contains Actions. An Action takes
a set of inputs and converts them into a set of outputs, though either or both sets may
be empty. Input to, respectively, output from, an Action is a typed element. It
represents the Pin of the Action. A Pin is typed by a Classifier. A SoftwareActivity has
one or more ActivityPerformer who are in charge of the SoftwareActivity and more
particularly of Actions owned by it. An ActivityPerformer can be a ResponsibleRole
or a SoftwareTool (i.e. compilers, model transformation engines…). A Respon-
sibleRole describes the rights and responsibilities of the Human who will be in charge
of the Activity. A Human may be an agent or a team; it has a name, a skill(s) and an

SPEM_Extensions

ProcessStructure
<<metamodel>>

WorkProducts
<<metamodel>>

<<import>>

SPEM_Foundation

<<merge>>

BasicActivities
<<metamodel>>

Communications
<<metamodel>>

CompleteActions
<<metamodel>>

IntermediateActions
<<metamodel>>

Kernel
<<metamodel>>

BasicBehaviors
<<metamodel>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

CompleteActivities
<<metamodel>>CompleteStructuredActivities

<<metamodel>>

ExtraStructuredA
ctivities

<<metamodel>>

IntermediateActivities
<<metamodel>>

StructuredActivities
<<metamodel>>

FundamentalActivities
<<metamodel>>

<<import>>

<<merge>>

<<merge>>

<<merge>>

<<import>>

<<merge>>

<<merge>>

BasicActions

<<import>>

<<import>>

<<import>>

<<merge>>

<<merge>>

28 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

authority. Actions consume and produce WorkProducts. The relation between an
Action and WorkProducts it handles is made through the fact that WorkProducts are
Classifiers and Inputs and Outputs of an Action have a type which is specified by a
Classifier too. This would allow Actions to manipulate WorkProducts as easily as
calling a method while passing it parameters in usual OO programming languages.

WorkProducts Package
A WorkProduct is the specification of a physical piece of information that is
produced, consumed, or modified by a software process. In UML4SPM, we decide to
add a new property to the WorkProduct class, the resourceIdentifier property (figure
4). It represents a unique identifier of the WorkProduct and helps in its localization.
Then, during process executions, it should be up to a naming service to resolve the
identifier in order to locate the WorkProduct. WorkProduct is specified as a concrete
class. It may have Properties defined by a name and a value. This adds more
flexibility (see figure 4). Thus, developers could specify new WorkProducts with
specific properties depending on their needs. The modification of a WorkProduct may
affect one or more WorkProducts. This property is defined thanks to the impacts
association.

Pin
(from BasicActions)

Classifier
(from Kernel)

SoftwareActivityKind
Phase : String
Activity : String

<<enumeration>>

BehavioredClassifier
(from BasicBehaviors)

Behavior
(f rom BasicBehav iors)

*0..1
+ownedBehavior

*

{subsets ownedMember}+context

0..1

0..1
0..1

0..1

+classifierBehavior
0..1

{subsets ownedBehavior}

SoftwareTool
name : String
isBatch : Boolean = true

Human
name : String
authority : String
skill : String

Interaction

ResponsibleRole
responsability : String
Rights : String

0..*

1..*

+agent 0..*

+Role 1..*1
+involves

1

TimeLimit

SoftwareActivity
Kind : SoftwareActivityKind
weight : String

0..1
+endsAt

0..1 0..1
+startAt

0..1

Lifecycle
<<reference>> / governed...
LifecycleKind : String

Process

0..n

1
+processActivity

0..n
{ordered}

1

1
+gouvernedLifecycle

1

1

1

+defineProcess 1
metaProcAssoc

+metaprocess

1

TypedElement
(from Kernel)

Classifier
(from Kernel)

1

+type

1

Property
propertyName : String
value : String

WorkProduct

isDeliverable : Boolean
resourceIdentifier : String

(from WorkProducts)

0..n +property0..n

0..n
+impacts

0..n

ActivityPerformer

0..*

0..1

+workProduct
0..*

+ActivityPerformer

0..1

Activity
(f rom IntermediateActiv it ies)

0..*

0..*

+performer
0..*

+activity

0..*

InputPin
(f rom BasicActions)

OutputPin
(f rom BasicActions)

ActivityNode
(from IntermediateActivities)

0..1

*

+activity
0..1{filters owner}

+node *
{filters ownedElement}

Action

effect : String

*

1

+inputPin*
{filters input}

+action

1

{filters owner}

*

1

+output
*

{ordered, union
subsets ownedElement}

+action

1

{filters owner}

0..1

0..*

0..1

+action
0..*

{ordered filters node}

Figure 3. A global overview of UML4SPM

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 29

Figure 4. The WorkProducts package

Additional Actions
As pointed out earlier, a software development process can’t be fully automated.
Developer involvements are necessary during development phases. Considering this
need of human interactions, we add the concept of Interaction. An Interaction is an
Action. It involves a ResponsibleRole and is associated with a Guide in order to help
ResponsibleRole in taking decisions and guides its design choices (see above figure
3). Finally, having in mind that processes may need some tool facilities during
execution-time, we decide to extend the Actions model. The CallToolServiceAction is
a CallAction (see figure 5). It has InputPins which represent the arguments of the call
and OutputPins as call results. We make the assumption that a ToolService has a
name and a set of typed parameters. One constrain on the CallToolServiceAction,
would be that CallToolServiceAction arguments fits to ToolService parameters (in
number and type). The model of the tool (list of services, parameters of services,
binding mode…) is outside the scope of this work [3].

Figure 5. The CallToolServiceAction

4.2 Comparison of UML4SPM with Respect to Basic Process Model Elements

Table 3 compares UML4SPM elements with basic process model elements introduced
in Section 2. The concept of Tool (SoftwareTool) which will be in charge of

WorkProduct

isDeliverable : Boolean
localisationUri : String

0..n

+impacts

0..n

Property
propertyName : String
value : String

0..n
+property
0..n

Classifier
(from Kernel)

OutputPin
(from BasicActivities)

CallAction*

+result

*

{ordered,
subsets output}

InvocationAction
ValueSpecification

(from Kernel)
*

+argument

*

{ordered,
subsets input}

ToolService
name : String

CallToolServiceAction
isSynchronous : Boolean = false

30 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

performing activities as well as Human that may undertake roles within the software
process can now be expressed in process models.

Table 3. Comparison of primary process elements with UML4SPM

4.3 Evaluation of UML4SPM Towards Primary PMLs Requirements

In this section, we only address requirements that were lacking by SPEM1.1. As a
first stage, we particularly focus on Expressiveness, Modularization, Executability
and Formality. Reflection will be addressed in a further work. Requirements for
Understandability, Abstraction, Analyzability and Multiple conceptual
perspectives/views are taking into account since UML4SPM, as SPEM1.1, is UML
based (cf. Section 3.3).
• Expressiveness: In SPEM1.1 the ability to orchestrate process Activities and
Steps was ensured thanks to the Precedes dependency. Kinds of precedence were:
start-start, finish-start or finish-finish. UML2.0 Activities offer three mechanisms for
the orchestration of Activities as well as Actions owned by these Activities:
- The CallBehaviorAction overcomes Activity orchestration limitations. It is a
callAction that invokes a behavior directly rather than invoking a behavioral feature
that, in turn, results in the invocation of that behavior. Activity being a Behavior,
therefore, an Activity could be invocated while passing typed parameters to be treated
by Actions owned by the Activity. This adds more flexibility for Activity
orchestrations (figure 6).
- Object flow connects object nodes. It expresses the fact that the output of an action
could be used like an input of another one.
- Control flow: In the absence of an explicit object flow between actions, a control
flow indicates an ordering constraint between a predecessor action and a successor
action. It explicitly connects Actions to indicate that the target action cannot start until
the source action finishes.
- Concerning flexibility, decision points are not taken into account by SPEM1.1.
UML2.0 offers the possibility to specify decision points thanks to DecisionNodes. A
Decision Node is a Control Node that chooses between outgoing flows in order to
invoke the appropriate behavior. Guards are fixed on those flows to drive behavior
invocations. In order to express concurrency as well as synchronization, UML2.0
defines respectively, ForkNode and JoinNode. A ForkNode splits a flow into multiple
concurrent flows while a JoinNode synchronizes them.

Basic Process
model Elements UML4SPM

Activity SoftwareActivity with Kind attribute=
Activity

Product WorkProduct
(Model/Guide/Library/Documentation)

Role ResponsibleRole
Human Human
Tool SoftwareTool
Evolution
support

Only static evolution. Dynamic
evolution as further work

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 31

Figure 6. The CallBehaviorAction for Activity orchestrations

- The UML2.0 Activity metamodel defines seven levels with increasing
expressiveness: FundamentalActivities, BasicActivities, IntermediateActivities,
CompleteActivities, StructuredActivities, CompleteStructured-Activities, and
ExtraStructuredActivities. The fundamental level defines activities as containing
nodes, which includes actions. The second level i.e. IntermediateActivities provides
the way to specify concurrency and synchronization through ControlNodes
(ForkNode, JoinNode).

This would allow activities to be launched concurrently or for an activity before
starting, to wait for other activity completions. The StructuredActivities level supports
modelling of traditional structured programming constructs, such as loops and
conditionals, as an addition to the basic non-structured activity sequencing.
- In UML2.0 Activity metamodel, another facility is offered to process modelers. It is
about how to support exception handling during Action executions. This is ensured
within the (“ExtraStructuredActivities”) level. As in programming languages, an
Action can be handled by exception handlers.
- Finally, the lack of some process model elements (tool, human), of human
interaction, of explicit WorkProduct and features for process metrics was addressed
while defining UML4SPM (see Section 4.1).
• Modularization: When SPEM1.1 offers process component compositions
through unification procedure, UML2.0 provides a more powerful way to deal with
that.
Let’s have two Process Components PC1 and PC2 (see figure 7). PC1 is in charge to
realize a UML class diagram. PC2 has to transform a UML Class Diagram to a
Relational Database Diagram. These two processes were specified separately, so
WorkProducts and roles might have different names. If a process modeler decides to

OutputPin
(from BasicActivities)

CallAction

*

+result

*

{ordered,
subsets output}

Behavior
(from BasicBehaviors)

CallBehaviorAction

isSynchronous : Boolean = true

1

*

+behavior 1

*

InvocationAction

Operation
(from Kernel)

CallOperationAction

isSynchronous : Boolean = true
*

1

*

+operation 1

Action
(from BasicActivities)

Activity
(from BasicBehaviors)

ValueSpecification
(from Kernel)

0..1

1

0..1

+target

1
{subsets input}

*
+argument

*

{ordered,
subsets input}

32 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

compose these two process components, he will have to unify output-WorkProducts
from PC1(i.e., ClassD) in order to be in conformity with inputs-WorkProducts of
PC2(i.e., UmlCD). Likewise, he has to explicitly link activities from PC2 within PC1.
Because of these limitations, unification procedure can’t be automated.

PC1: Class Diagram Process Component

PC2: Class DiagramToRDBTransformation Process Component

Figure 7. Two SPEM1.1 process components

Considering that a UML2.0 Activity can define an internally consistent process,
Activities can be seen as a Process Components. The UML2.0 CallBehaviorAction
allows to Activities to be interconnected in a practical way. The advantage of this
construct is that Activity behaviors are invoked as it is done for methods in classical
programming languages. Making this way, modelers don’t have to carry out the
unification of PC1 outputs with PC2 inputs. In Java for instance, parameters of a
method call can have another name in the operation signature. CallBehaviorAction
being a CallAction, casting of parameters is done implicitly when activities are

identify Objects :
Step

identify class objects : Step

designer : ProcessRole

.... : Step

Model :
WorkProduct

Note: [Output
parameter]

ClassDiag :
ActivityParameter

type

ClassDiagramPC :
ProcessComponent

Class Diagram Elaboration :
Activity

parameter

step

step

step

assistant

ownedElement

ownedElement

ownedElement

ownedElement

Class Diagram To RDB transformation : Activity

UML Model : WorkProduct

load Src & Tgt Metamodels : Step
load model : Step

Note: [input
parameter]

UmlCD :
ActivityParameter

type

Transformation designer :
ProcessRole

parameter

step
step

assistant

.... : Step

step

cdTOrdbPC :
ProcessComponent

ownedElement

ownedElement

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 33

invoked thanks to the abstraction given by InputPins and OutputPins concepts. The
previous example is used in order to demonstrate how CallBehaviorAction allows
process component compositions see figure 8.Shaded boxes of the figure represent the
“class diagram realization” Activity. In the figure we can see how output of an Action
(i.e., a ClassDiagram) can be used as an input of CallBehaviorAction. The lighted
boxes of the figure represent “ClassDiagram-ToRDBTransformation” Activity. The
two activities are interconnected thanks to ActivityParameterNode and no unification
procedure is needed. Then, process component compositions (Activities composition
in this case) can be automated. They can even be specified at execution-time. This
offers more flexibility and spares many efforts to process modelers.

Figure 8. Activity interconnections thanks to CallBehaviorAction.

• Executability: In UML2.0, the intent of Activity construct has changed fairly
radically from UML1.x. Activities are not only used to model processes, they also
now have some features necessary to support the automation of these processes [36].
Comparing the UML2.0 Activity and Action constructs with those of SPEM1.1
WorkDefinition (more particularly the Activity) and Step respectively, we found some
significant variations. While an activity Step in SPEM1.1 is just defined by a name
(e.g. Check for model consistency), UML2.0 offers the possibility to specify inputs of
the Action, its effect on these inputs and the outputs resulting of the action execution.
We illustrate this in an example in figure 9. CallOperationAction is an Action that
transmits an operation call request to the target object, where it may cause the
invocation of associated behavior. As additional features, CallOperationAction

ClassDiagramElaboration : Activity

ntify Objects : Action

identify object classes : Action

.... : Action

CallModelTransformationActivity :
CallBehaviorAction

ClassDiagram :
OutputPin

CD : Model

ClassDiagramToRDBTra
nsformation : Activity

 : ActivityParameterNode

 : Parameter
CD_UML :

InputPin

output

type

parameter

type
type

Load SRC & TRG
metamodels : Action

Load source
Model : Action

.. : Action

behavior

action

action

action

action

node

action

action

action

34 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

specifies the operation to be invoked by the action execution as well as the target
object to which the request is sent. Besides, UML2.0 offers four Actions packages
(BasicActions, IntermediateActions, Structured Actions and CompleteActions) in
order to express most semantic of executable actions that we can find in programming
languages (CallAction, LinkAction, CreateObjectAction, StructuralFeatureAction,
ValueSepcification-Action and so on). Thus, the specification of software process
models with executable action semantics is rendered possible. By the same way, the
rigorous semantics given to Actions within the new UML2.0 standard tends to be
more precise than previous versions of UML. Indeed, the Activity and Action
constructs in UML2.0 are more sophisticated than Activity and Step in SPEM1.1 This
facility makes possible the automation of mapping software process models towards
programming languages or workflow formalisms in order to execute them. Some
works was already done as intent to formalize Activities within UML2.0 [13] [36].
Furthermore, the OMG issues a new RFP (Request For Proposal) named: Executable
UML Foundation [33]. The objective of this RFP is the definition of a
computationally complete and compact subset of UML 2.0 to be known as
“Executable UML Foundation”, along with a full specification of the execution
semantics of this subset. “Computationally complete” means that the subset shall be
sufficiently expressive to allow definition of models that can be executed on a
computer either through interpretation or as equivalent computer programs generated
from the models through some kind of automated transfor-mations. We believe that
all these efforts will reduce the lack of Formality in SPEM1.1.

Figure 9. Instance of CallOperationAction

Table 4 summarizes the result of comparing UML4SPM with basic PML
requirements. As we can notice, our metamodel overcomes major SPEM1.1 lacks
requirements of Understan-dability, Abstraction, Analyzability and Multiple
conceptual perspectives/views are fulfilled as UML4SPM is UML based.

IncClassDiagram : InputPin

ConsClassDiagram : OutputPin

Class Diagram Realization : Activity

UML Class Diagram : Model
+ isUMLCompliant : Boolean = tr...
+ uriParentModel : String = null

typed

typed

CallClassDConsistencyOp : CallOperationAction

composedOf

CheckModelConsistency : Operation

output

input
operation

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 35

Table 4. Comparison of UML4SPM with PML requirements and with SPEM1.1 lacks

5 Related Work

In this Section, we only deal with existing approaches that extend the UML meta-
model for software process modelling. Taxonomy of recent PMLs is given in [39]. In
PROMENADE [12], a UML metamodel is extended to allow modeling of both the
static and the dynamic aspects of software processes. The static aspect of software
processes is given by means of a conceptual model. It defines the elements that
participate in a software PMs and which extend UML ones. The dynamic aspect of
software processes consists of the way in which model is enacted (e.g. the ordering of
tasks). PROMENADE introduced both proactive control-flow (e.g., enactment of
some actions according to pre-establish plan) and reactive control-flow (e.g.,
enactment of some actions in response to events). Authors were induced to introduce
these mechanisms in order to deal with the lack of expressiveness in UML1.4 activity
diagrams [31]. Nevertheless, PROMENADE does not provide the possibility to
specify Tasks with executable semantics. It lacks of evolution support as well as of
the Interaction element (i.e., human intervention) which is primordial due to the
variability and no-rigidity nature of software processes.

[18] Presents an approach which describes in UML, the dynamic part of the model
using class diagrams with stereotyped associations for showing the control and data
flow. The metamodel is defined by attaching stereotypes to model elements.
However, stereotypes and other UML extension mechanisms have proven several

Basic PML
Requirements SPEM1.1 UML4SPM

Formality -Lacks of a precise semantic of some
elements (e.g. Step, ProcessPerformer).

-Formality provided thanks to the precise and
executable semantics of Actions within UML2.0

Expressiveness -Lacks of some process model elements
(Human, Tool and Evolution Support);
-Lacks of efficient mechanism for Activity
and Step orchestrations;
-WorkProducts are used as parameters of
Activties and not of Steps(useless for
process automation);
-Lacks of explicit WorkProducts (models,
libraries…);

-Lacks of human interactions and decision
points

-Lacks of some features on process
elements in order to capture process
metrics, exceptions;

-SoftwareTool and Human elements provided to
overcome this lack
-Three mechanisms for Action and Activity
orchestrations: Control Flow, Object Flow and the
CallBeaviorAction.
- WorkProducts are used as typed parameters by
Actions;
-Definition of explicit WorkProduct (Model,
Guide, Library and Documentation);
urilLocalization attribute for WorkProducts;
WorkProduct as a concrete class with the
possibility to specify new properties.
- Class Interaction defined for human decisions as
well as Decision, Fork and Join Nodes thanks to
UML2.0
- TimeLimit, SoftwareActivity weight for process
metrics; the possibility to handle exceptions
thanks to ExceptionHandler in
ExtraStructuredActivities

Modularization -Lacks of ProcessComponent compositions
mechanism. Need of a Unification
mechanism.

-Process Component composition/integration
thanks to the CallBehaviorAction from/to
Activities

Executability -SPEM1.1 models are not executable. It
was outside the scope of the specification.

-Use/extends of Activities and Actions packages of
UML2.0 makes possible the specification of
executable software process models

Reflection -Lacks - Will be addressed in a further work.

36 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

limitations in order to define a metamodel. A well-known is the lack of standard
semantics. As in [18], [22] proposes the use of the stereotype mechanism of UML to
extend activity diagrams in the context of business process modelling. The new
diagrams can express the required activity properties (computer support to the
activity, duration...) but no new control paradigm is provided. In [17], authors select
class and state diagrams as main constructs to describe processes. Tasks are
represented as objects that can be created and manipulated as needed. Activities
(tasks) are represented as "task packages" which encapsulate the interface of a task
(i.e., offered behavior) and "realization packages" which define how the task is
realized in terms of other lower level tasks. In the corresponding class diagrams,
stereotypes are used to represent the input and output of each task, as well as the flow
of control and data between tasks which is missing in UML1.4 activity diagrams. The
internal behavior of tasks is described by a predetermined and un-modifiable state
diagram. Compared to previous approaches, this one is clearly more focused on
adapting UML to the capabilities and semantics of the virtual machine that will be
used to enact the process. Therefore, the process is described at a low level of
abstraction. However, it is not apparent how roles that participate in the process are
described and how they are associated to the various activities to be executed, or how
possible parallelisms between activities, synchronizations and decision points are
expressed. This, together with the replacement of activity diagrams with massively
stereotyped class diagrams makes the resulting process description less natural for
UML users. In [8] Di Nitto et at., propose a formalization of the semantics of the
UML subset and present the translation of UML process models into code, which can
be enacted in a process-centered environment. However, as in PROMENADE,
authors did not consider modeling the interface with human agents and/or the
development tools used in the process. Likewise, no semantics for executable actions
is defined in PM

6 Conclusion

One important challenge in the area of software process modelling is the development
of a standard PML. As principal requirements, the PML has to promote
expressiveness, understandability, and executability. In this paper, we introduced a
UML2.0-based metamodel for software process modelling named: UML4SPM. It
extends a subset of UML2.0 by adding constructs and semantics required for defining
process models. We compared it with primary PMLs requirements. UML4SPM has
proven that it fulfils all of them except Reflection, which will be addressed in a further
work. As a result, it allows the specification of understandable process models with
executable action semantics. Another contribution of this work was the identification
of SPEM1.1 limitations and advantages which may help in the next revision of the
standard, namely: SPEM2.0. One perspectives of this work is to address the
Reflection requirement in UML4SPM. Then, a case study will be elaborated and
evaluated within the MODELWARE project [25], which this work is part of. We will
also investigate the possible use of a UML virtual machine in order to execute
UML4SPM process models.

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 37

7 References

[1] Ambriola V., Conradi R. and Fuggetta A. “Experiences and Issues in Building and Using
Process centered Software Engineering Environments”, Internal draft paper, Politecnico di
Milano, September 1994.
[2] ANSI/IEEE Std 1012-1986, "IEEE Standard for Software Verification and Validation
Plans", The Institute of Electrical and Electronics Engineers, Inc., February 10, 1987.
[3] Blanc X., Gervais M.P., and Sriplakich P. "Model Bus: Towards the Interoperability of
Modelling Tools", in Proc. of the Model Driven Architecture: Foundations and Applications
(MDAFA 2004), Linköping University, Sweden, June 2004.
[4] Conradi R., Fernström C., Fuggetta A. and Snowdon R. "Towards a Reference Framework
for Process Concepts", in Proc. Of the 2nd European Workshop on Software Process
Technology (EWSPT’92), Trondheim, Norway, September 1992, LNCS Vol. 635.
[5] Conradi R., Liu C. "Process Modelling Languages: One or Many?", in Proc. of the 4th
European Workshop on Software Process Technology (EWSPT'95), Noordwijkerhout, The
Netherlands, April 1995, LNCS, Vol. 913.
[6] Curtis B., Kellner M., and Over J. "Process Modelling", Communications of the ACM Vol.
35, Num. 9, September 1992.
[7] Derniame J.C., Kaba B.A. and Wastell D. "Process Modelling Languages": in "Software
Process: Principles, Methodology, and Technology", LNCS Vol. 1500/1999.
[8] Di Nitto E. et at. "Deriving executable process descriptions from UML", in Proc. of the 24th
Inter. Conf. on Software Engineering (ICSE'02), Orlando, Florida 2002, ACM Press.
[9] Evans A.S., S.Kent. "Meta-modelling semantics of UML: the pUML approach", in Proc. of
the 2nd Inter. Conf. on the Unified Modelling Language, 1999, Colorado, LNCS Vol. 1723.
[10] Feiler P.H., Humphrey Watts. S. “Software process development and enactment”, in Proc.
of 2nd Inter. Conf. on the Software Process, Berlin, 1993, IEEE Computer Society Press.
[11] FIPS PUB 132, "Guideline for Software Verification and Validation Plans", U.S.
Department of Commerce/National Bureau of Standards (U.S.), November 19, 1987.
[12] Franch X., Ribó J. M. "Using UML for Modelling the Static Part of a Software Process",
in Proc. of UML ’99, Forth Collins CO, USA, LNCS, Vol.1723.
[13] Hausmann J.H., Störrle H., "Towards a Formal Semantics of UML 2.0 Activities", in Proc.
of the German Software Engineering Conference (SE'05).
[14] Humphrey Watts S. "Process Models in Software Engineering", Encyclopedia of Software
Engineering, 2nd Edition, John Wiley and Sons, Inc, New York, December 2001.
[15] Humphrey Watts S. "The Software Engineering Process: Definition and Scope", in Proc.
of the 4th International Software Process Workshop on Representing and Enacting the Software
Process, Devon, United Kingdom, 1989.
[16] Jaccheri M.L., Baldi M., Divitini M., "Evaluating the Requirements for Software Process
Modelling Languages and Systems", in Proc. of Process support for Distributed Team-based
Software Development (PDTSD'99), Orlando, Florida, USA, August 1999.
[17] Jager D., Schleicher A., and Westfechtel B. "Using UML for Software Process Modelling",
in Proc. of ESEC/FSE'99,Toulouse, France, LNCS Vol.1687, September 1999.
[18] Jäger D., Schleicher A., Westfechtel B." Object-Oriented Software Process Modeling", in
the Proc. of the 7th European Software Engineering Conference (ESEC), Toulouse, September
1999.
[19] JMI1.0, "Java Metadata Interface Specification", Java Community process document
JSR040, June 2002, at http://www.jcp.org.
[20] Kent S. "Model Driven Engineering", in Proc. of the 3rd Inter. Conf. on Formal Method
(IFM 2002), Turku, Finland, May 2002, LNCS Vol. 2335.

http://www.pst.informatik.uni-muenchen.de/%7Estoerrle/V/AD-11-Limits.pdf
http://staff.polito.it/mario.baldi/publications/pdts99.pdf
http://staff.polito.it/mario.baldi/publications/pdts99.pdf
http://www.jcp.org/

38 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

[21] Lonchamp J. “A structured conceptual and terminological framework for software process
engineering”, in Proc. of the 2nd Inter.l Conf. on Software Process, Berlin, 1993, IEEE
Computer Society Press.
[22] McLeod, G. "Extending UML for Entreprise and Business Process Modeling", in Proc. of
the UML 98’ Workshop, Mulhouse, France (1998).
[23] MDA. "Model Driven Architecture (MDA)", OMG TC document ormsc/2001-07-01, July
2001, at http://www.omg.org.
[24] Mellor S. J., Balcer M. J., Balcer M. "Executable UML: A Foundation for Model-Driven
Architecture", Pearson Education, July 2002.
[25] MODELWARE Project, at http://www.modelware-ist.org
[26] MOF 1.4. "Meta-Object Facility", OMG document formal/2002-04-03, April 2002, at
http://www.omg.org.
[27] Montangero C., Derniame J.C., and Kaba B.A., Warboys B. "The software process:
Modelling and technology", LNCS GmbH. Vol. 1500/1999.
[28] Osterweil L., "Software Processes Are Software Too" in Proc. of the 9th Inter. Conf. on
Software Engineering (ICSE'9), New York, 1987, ACM Press.
[29] Perry D. E., Editor, Proc. of the 5th Inter. Software Process Workshop (ISPW’5),
Kennebunkport, Maine, USA, October 1989, IEEE Computer Society Press.
[30] Raistrick C., Francis P. and Wright J. "Model Driven Architecture With Executable
UML", Cambridge University Press, March 2004.
[31] Ribó J. M., Franch X. " A Precedence-based Approach for Proactive Control in Software
Process Modelling", in Proc. of the Conf. on Software Engineering and Knowledge
Engineering (SEKE-2002), Ischia (Italy), ACM Press, September 2002.
[32] Riehle D., et at. "The Architecture of a UML Virtual Machine", n Proc. of the 2001 Conf.
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '01), ACM
Press, 2001.
[33] Semantics of a Foundational Subset for Executable UML Models RFP, OMG document
ad/05-04-02, April 2005, at: http://www.omg.org/docs/ad/05-04-02.pdf, page last visit June 17,
2005
[34] SPEM1.1, “Software Process Engineering Metamodel”, OMG document formal/02-11/14,
November 2002, at http://www.omg.org.
[35] SPEM2.0 RFP, “Software Process Engineering Metamodel”, OMG document ad/2004-
11-04, November 2004, at http://www.omg.org/docs/ad/04-11-04.pdf, page last visit April 4,
2005.
[36] Störrle H. "Semantics of UML2.0 Activities with Data-Flow", in Proc. of the Visual
Languages and Formal Methods Workshop (VLFM'04), Rome, Italy, Septembre 2004.
[37] UML2.0 Superstructure, "Unified Modelling Language", adopted specification, OMG
document ptc/04-10-02, October 2004, at http://www.omg.org.
[38] UML1.4, "Unified Modelling Language", OMG document formal/01-09-67, September
2001, at http://www.omg.org.
[39] Zameli, K. Z., Lee, P.A. "Taxonomy of Process Modelling Languages", in Proc. of the
ACS/IEEE Inter. Conf. on Computer Systems and Applications (AICCSA'01) Beirut, Lebanon,
June 2001.

http://www.omg.org/
http://www.amazon.fr/exec/obidos/search-handle-url/index=books-fr&field-author=Mellor%2C Stephen J./402-8353172-2839328
http://www.amazon.fr/exec/obidos/search-handle-url/index=books-fr&field-author=Balcer%2C Marc J./402-8353172-2839328
http://www.amazon.fr/exec/obidos/search-handle-url/index=books-fr&field-author=Balcer%2C Marc/402-8353172-2839328
http://www.modelware-ist.org/
http://www.omg.org/
http://www.amazon.fr/exec/obidos/search-handle-url/index=books-fr-intl-us&field-author=Raistrick%2C Chris/402-8353172-2839328
http://www.amazon.fr/exec/obidos/search-handle-url/index=books-fr-intl-us&field-author=Francis%2C Paul/402-8353172-2839328
http://www.amazon.fr/exec/obidos/search-handle-url/index=books-fr-intl-us&field-author=Wright%2C John/402-8353172-2839328
http://www.riehle.org/computer-science/research/2001/oopsla-2001.html
http://www.omg.org/docs/ad/05-04-02.pdf
http://www.omg.org/
http://www.omg.org/docs/ad/04-11-04.pdf
http://www.omg.org/
http://www.omg.org/
http://csdl.computer.org/comp/proceedings/aiccsa/2001/1165/00/1165toc.htm

	Introduction
	Software Engineering
	SPEM 1.1
	UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling
	Related Work
	Conclusion
	References

