
O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 631 – 645, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applying Model Fragment Copy-Restore to Build
an Open and Distributed MDA Environment*

Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervais

Laboratoire d’Informatique de Paris 6
8, rue du Capitaine Scott, 75015, Paris, France

{Prawee.Sriplakich, Xavier.Blanc, Marie-Pierre.Gervais}@lip6.fr

Abstract. ModelBus is a middleware system that offers the interoperability be-
tween CASE tools for supporting software development according to MDA. This
interoperability allows tools to share services and models, by using an RPC
mechanism. ModelBus adopts the call-by-copy-restore semantic, as it is very
close to local call semantic and is flexible as regards tools’ heterogeneous model
representations. In this work, we extend this semantic to enable only specific
model fragments to be passed as parameters, instead of complete models. The
advantages are 1) improving the performance because passing only model frag-
ments requires less data processing and 2) enhancing access control to models
because the service’s modification can be restricted to the specific model frag-
ment that is specified as parameters. The implementation of this work is avail-
able as the Eclipse project Model Driven Development integration (MDDi).

1 Introduction

The Model Driven Architecture (MDA) [16] is a software development approach
which focuses on models. In MDA, all software development artifacts are represented
by models. Those models can be manipulated by a variety of CASE tools which offer
automated operations on the models, such as model visualization, model edition,
model transformation and model well-formed-ness checking.

In our previous research, we have proposed a middleware system supporting the
interoperability between heterogeneous and distributed CASE tools to support MDA.
This MDA environment, called ModelBus [2] [3] [15] [24], enables distributed and
heterogeneous CASE tools to share their functionality and models. ModelBus
achieves this interoperability by using the RPC paradigm, which enables tools to
invoke each other’s services and exchange models by parameter passing. Thus, in
ModelBus, RPC parameters are models.

ModelBus supports the call-by-copy-restore semantic1, which is very close to the
semantic of the local procedure call. Our choice is motivated by two reasons. First,

* The work presented in this paper is supported by the project MODELWARE, co-funded by

the European Commission under the "Information Society Technologies" Sixth Framework
Programme (2002-2006).

1 ModelBus offers the call-by-copy semantic for IN and OUT parameters and the call-by-copy-
restore semantic for INOUT parameters [15]; however, in this paper, we focus on call-by-
copy-restore.

632 P. Sriplakich, X. Blanc, and M.-P. Gervais

several model manipulations such as in-place model transformation [22] and model
refactoring [26] require the ability to modify models. To allow such model manipula-
tions to be shared as services, ModelBus should not limit to read-only parameter
passing but also enable tools to modify each other’s models. Second, unlike the call-
by-reference tool integration approach [9], our call-by-copy-restore approach avoids
the complexity and cost of representing parameter values as distributed objects (e.g.
CORBA, RMI).

The copy-restore mechanism of most RPC systems, such as NRMI [25], which is
Java RMI-based, and Microsoft RPC, which implements the DCE RPC specification
[20], transmits a deep copy of parameter values: the objects that a programmer specifies
as parameters and all objects reachable from them are copied. In our context, parameters
are models, which are graph data structures containing model elements and links be-
tween them. Hence, applying this deep-copy mechanism to a model will result in trans-
mitting the entire model graph, which is inappropriate for the following reasons.

- Performance. A model can include more elements than required by the service.
For instance, a UML [19] model can contain use case elements; class diagram ele-
ments, and sequence chart elements (with links between them). If the service does not
use all these elements, transmitting the entire model graph will unnecessarily waste
computing resources.

- Access control. The deep-copy mechanism offers too much access to the service:
It enables the service to modify the entire model, i.e., all elements reachable from
parameters values. Consequently, the caller can not protect parts of models from
modification by the service.

Those reasons motivate us to propose a new parameter passing semantic that
transmits and restores only a specific model fragment (i.e. a subgraph of a model).
Compared to existing graph fragment transmission solutions, our approach offers the
following novel features:

- Flexible specification of model fragments. The approaches based on the notion of
object views (reduced objects) [5] [13] or on the Demeter graph traversal language
[14] offer a way to specify graph fragments to be transmitted. However, their frag-
ment specification is statically fixed in the service definition. Therefore, at runtime, it
is not possible to change the fragment specification for each service call. On the other
hand, our approach offers the flexibility to specify arbitrary fragments and to change
them in each service call.

- Access control in parameter passing. Caching systems (e.g., CORBA caching [4],
RMI caching [5]) enables graph elements (i.e. objects) to be transmitted only when
requested (to avoid complete graph transmission). However, to our knowledge, few
works offer means for limiting the model elements that a service is allowed to modify.
I.e., if a service requests all elements in the graph, then it can modify the entire graph.
On the other hand, our approach offers a mechanism to protect parts of models from
modification.

- Preserving tools’ existing data structures. To integrate existing CASE tools with
caching systems, tool programmers would need to change the existing implementation
of tools’ data structures to the one supported by the caching systems (e.g. object
stubs). Our approach is different as it requires no change to existing data structure
implementation. For this reason, it has little impact on existing tools’ implementation
and facilitates their ad hoc integration.

 Applying Model Fragment Copy-Restore 633

This work has been implemented in ModelBus, which will be soon available as an
Eclipse open source project Model Driven Development integration (MDDi,
http://www.eclipse.org/mddi). It is built on top of the Web Services platform, which
is widely used for integrating heterogeneous applications. While the Web Services
protocol (SOAP/HTTP) only defines the RPC message format, ModelBus extends it
by providing a parameter passing mechanism for transmitting model fragments and
restoring the update made by the service to the original model.

This paper is organized as follows. Section 2 presents our research background on
tool integration and explains why the call-by-copy-restore approach is chosen. Section
3 states the objectives and requirements of this work. Section 4 describes our solution
and its rationales. Section 5 describes the implementation and performance result
achieved by ModelBus. Related works are discussed in section 6, before conclusion.

2 Background: CASE Tool Integration with Call-by-Copy-
Restore RPC

ModelBus deals with model exchange between tools via RPC. In this environment,
we assume that models being manipulated by tools (both caller and service) are stored
in the tools’ memory, similarly to the way software generally manipulate data. When
one tool invokes another tool’s service, the callee tool needs means for accessing
(reading/writing) models that are service parameters located in the caller tool’s
memory. To support this model access, RPC middleware needs to solve two compli-
cations:

- Remote communication. An open MDA environment should support the integra-
tion of tools executing in different machines, therefore middleware needs to handle
data transfer between the caller and the service.

- Heterogeneous model representations. As each CASE tool can be implemented
with different programming languages, their memory representation of models can be
different (e.g. Java objects, C data structures). If the caller and callee tools use differ-
ent model representations, the middleware needs to translate models from one repre-
sentation to another.

We focus on RPC approaches that offer close semantic to local call as this can hind
the complication of tool distribution. In our previous work [24], we have studied two
main approaches: call-by-reference and call-by-copy-restore. The call-by-reference
approach requires that models be represented as distributed objects so that the callee
tool can read and modify the remote models by using callback mechanism. On the
other hand, in the call-by-copy-restore approach, models are copied from the caller
tool to the callee tool at the beginning of service invocation. At the end, the model is
copied back to replace the original model at the caller tool.

For purpose of tool integration, we have chosen the call-by-copy-restore approach
rather than call-by-reference. First, in call-by-reference, callback makes model access
very costly. The study by Kono & al. [10] shows that, when more than 5% of objects
are accessed, call-by-copy-restore has significantly better performance than call-by-
reference.

634 P. Sriplakich, X. Blanc, and M.-P. Gervais

Second, call-by-reference requires that models be represented as distributed ob-
jects. Existing tools that have not been planned for integration usually implement
model representation with simple, local data structures. Consequently, to apply call-
by-reference, their model representations would need to be changed to distributed
objects. On the other hand, for call-by-copy-restore, the marshaling /unmarshaling
mechanism of middleware can be extended to cope with any model representations.
Hence, tool programmers do not need changing the existing model representations of
tools for integrating them.

We identify two copy-restore RPC approaches. In the first approach, parameter res-
toration is done only at the end of service call. This is the case for NRMI and DCE
RPC systems. In the second approach, systems offer a stronger guarantee: the parame-
ter value copy at the service side is kept consistent with the original copy at call time
(even after service call). This is the case for caching systems. In this work, we focus
on the first approach (restoring at the end of service call). This is because we aim to
preserve existing data representation of tools. The caching approach requires a
mechanism for intercepting when data is modified so that it can restore the data. If
this approach were used, we would face the difficulties in changing or adapting the
existing data representation of tools to support this interception.

3 Model Fragment Copy-Restore: Objectives and Requirements

Improving performance. Despite the advantages of distributed tool integration, the
RPC causes additional latency compared to local call. In fact, marshaling and unmar-
shaling complex, large data structures has been recognized as costing major latency in
RPC (25%-50%) [21]. Hence, the larger models, the more latency for marshaling,
transmitting and unmarshaling them. Moreover, if the callee tool does not entirely use
the models, transmitting the entire model can waste the memory for storing unused
fragments.

By passing only model fragments as parameters in service call, the amount of data
to be processed is reduced. Therefore, it can significantly improve the performance
especially if the model fragments are relatively small.

Enhancing access control. The access control problem has not been addressed yet in
the RPC domain. Existing call-by-copy-restore middleware, such as NRMI and DEC
RPC, enables a programmer to pass program pointers as service parameters. It con-
siders that the service should have access to all objects reachable from those pointers.
Therefore, the entire graph is transmitted to the service side and is entirely restored at
the end of service call.

In MDA, a model can be built up from a large number of model elements, each of
which describes a different software module or aspect. As those elements have rela-
tions with each other, they are parts of the same graph. According to the existing call-
by-copy-restore semantic, passing a single element as a parameter enables a service to
reach and modify the entire model. This approach can be dangerous because the ser-
vice can modify model parts beyond the caller’s intent.

This problem motivates us to integrate access control with parameter passing. The
idea is to associate each parameter value with a model fragment (i.e. a subgraph) to
restrict the service to access only elements in the fragment.

 Applying Model Fragment Copy-Restore 635

Providing consistent restoration. In the call-by-copy-restore mechanism, the modi-
fication that a service makes to the data’s copy needs to be restored back to the caller
side. Existing call-by-copy-restore systems (e.g. NRMI, DCE RPC) have already
proposed a mechanism for complete graph restoration, which we will refer to as the
“basic” mechanism. This mechanism consists in overwriting each graph element’s
content with an updated value. In the case of models, a model element’s content is a
set of properties, each of which contains either primitive data or references (pointers)
to other model elements. Hence, to restore a model, this basic mechanism would
overwrite all the property values of each model element.

In our context, the data that is transmitted to the service corresponds to a model
fragment, which also has links with the rest of the model. The links between the
model fragment and the rest of the model consist of outbound links, which are the
references owned by the fragment’s elements to elements outside the fragment and
inbound links, from outside to the fragment. E.g., the complete model in fig. 1 con-
tains the elements {A, B, C…I}; the specified fragment is {F, G, H, I}; and the
outbound and inbound links are {F A, G C} and {E H, D I} respectively.
These outbound and inbound links exist at the caller side but not at the service side
(since one of their ends does not exist). The basic restoration mechanism (i.e. for
restoring a complete graph) is not aware of this fact. Therefore, it needs to be ex-
tended or modified to deal properly with those links as follows.

Fig. 1. Consistent restoration of a model fragment

- Preserving outbound links. According to the basic mechanism, overwriting the
properties of the caller side’s elements with the properties of the service side’s ele-
ments would make the outbound links lost, e.g., in fig. 1, {F A, G C} would be
lost after restoration. For this reason, the restoration mechanism for a model fragment
needs to recognize outbound links and preserve them.

- Supporting consistent element deletion. Service logics may require the deletion of
elements passed as parameters. We observe that few call-by-copy-restore systems
enable the service to explicitly delete elements: most systems only enable a service to
do so implicitly by making elements unreferenced (to be garbage-collected). Those
systems make element deletion difficult because 1) the service needs to search for
references to be eliminated, and 2) if the model is not entirely transmitted and there
exist inbound links to some elements, then the deletion of those elements will be

A

Service side

Inbound links:
to eliminate dangling links

Outbound links:
to be preserved after restoration

Element to be deleted

Restore

Fragment
passed as parameter Fragment copy

Caller side

B C F

G H I

F

D E

G H I

636 P. Sriplakich, X. Blanc, and M.-P. Gervais

impossible, e.g., in fig. 1, the inbound link D I prevents the deletion of I, despite the
service’s intent. This motivates us towards the explicit deletion approach, in which
the service can specify elements to be deleted. In this new approach, the restoration
mechanism needs extension to support the elimination of dangling inbound links,
which reference deleted elements.

4 Design in ModelBus

Similarly to other call-by-copy-restore systems, ModelBus offers the transparent
management of partial parameter passing through client and server stub components.
The stubs offer programming interfaces enabling a tool programmer to write service
call code and service implementation code. A new aspect is that these interfaces are
extended in order that the programmer can specify a model fragment to be passed as
parameters and the stub implementation takes into account model fragment specifica-
tion when marshaling and restoring parameters.

4.1 Enabling Model Fragment Specification Through Stub Interface

A stub interface generated by most RPC systems (e.g. RMI, CORBA) enables a pro-
grammer to specify complex-structured parameter values (i.e. graphs) with program
pointers. When these pointers are passed to the service, the middleware will create a
copy of the pointed data structure at the service side and create new pointers pointing
to the copied data.

ModelBus offers a new way of generating stub interfaces to add an extra parame-
ter, called scope, which enable a programmer to specify a model fragment to be
transmitted. A scope is a subset of model elements selected from a complete model.
Independent from programming languages and regardless the model representation
used, a scope is a set of references to the objects representing model elements. This
scope parameter can be mapped to any programming languages using their native
types that can represent a set of object references, e.g., in Java, it can be mapped to
java.lang.Collection. To define a model fragment using this scope parameter, a
programmer instantiates a set and adds model element references to this set.

This approach is flexible, as it enables the specification of any arbitrary model
fragments; however, having to add each model element individually to the collection
may be cumbersome. For this reason, we also provide a helper operation enabling a
programmer to easily add a group of hierarchical elements. The helper operation
addWithChildren(Collection scope, Element e) recursively adds the ele-
ment e and also its child elements to the scope. It exploits the aggregation relations
defined in metamodels for identifying models’ hierarchical structure. An example use
of this operation is to add a UML package and all its content (the classes in this pack-
age, the classes’ features …) to a scope.

The operation in both client stub and server stub’s interfaces has the scope pa-
rameter. In the client stub interface, the scope parameter enables a client program to
specify the model fragment to which the service has access. In the server stub inter-
face, this parameter enables the service program to specify the model fragment that is
the result of service execution. It contains the model elements to be transmitted back
to the client for restoration, which include both the elements previously received from

 Applying Model Fragment Copy-Restore 637

the client (which can be modified by the service) and new elements produced by the
service. Moreover, the service program can explicitly delete existing elements by
excluding them from the scope collection.

Stub generation. The stub interfaces can be generated from the service description.
ModelBus provides a service description language dedicated to the modeling domain.
In this language, service description is defined independently from service implemen-
tation and the model representation used by the service. It uses Meta Object Facility
(MOF) for defining the structures of models that are services parameters. More pre-
cisely, service parameters are typed by metaclasses (MOF classes). At the implemen-
tation level, the metaclasses are mapped to concrete data representations that the
caller and callee tools use for manipulating models (e.g. Java classes, C structure
types). The stub generation can be extended to support any model representations
used by tools (e.g. Java Metadata Interface (JMI) [8] and Eclipse Modeling Frame-
work (EMF) [6]). ModelBus enables a programmer to choose a model representation
used by his tool for generating the corresponding stub interfaces.

Example. We illustrate an example service and its stub interfaces. The moveClass
service enables a developer to modify his UML model by moving a UML class from
one package to another. To use this service, he needs to specify two parameters: a
class to be moved and the target package to which this class will be moved. There-
fore, the abstract definition of this service is moveClass(inout c:Class, inout
targetPackage:Package), where Class and Package are metaclasses of the
UML metamodel.

If we used existing middleware to generate stub interfaces for Java, we would
obtain the method void moveClass(uml.Class c, uml.Package target-
Package), supposing that Java classes uml.Class and uml.Package concretely
represent Class and Package model element types. This method offers no means for
the client program to specify the model fragment to be passed as parameters; there-
fore, the middleware will entirely marshal the UML model. On the other hand, with
ModelBus, the generated stub will offer the method with the scope parameter: void
moveClass(Collection scope, uml.Class c, uml.Package targetPack-
age). This method enables the client program to specify a specific model fragment
relevant to the service. For example, if a developer wants to move a class C1 from a
package P1 to P2, then this service needs to modify only C1, P1, and P2, i.e. it re-
moves the containment link between C1 and P1 and it creates a new containment link
between C1 and P2. As other model elements do not concern the service, the pro-
grammer can optimize the service call by specifying the scope to be only these three
elements.

Rationale. This new stub interface is motivated by the following reasons.
- Flexible specification of model fragments. Representing a model fragment as a

collection offers the full flexibility to programmers. It enables the caller to define
fragments arbitrarily and to change the fragment definition in each service call, i.e.
the members of the scope collection can be selected dynamically. Therefore, this
approach can accommodate the different needs of tools.

- Small change to original service signatures. We only add one extra parameter to
stub interfaces, while the other parameters remained unchanged. Therefore, the effort

638 P. Sriplakich, X. Blanc, and M.-P. Gervais

of adapting our solution to existing RPC application only consists in adding the code
for specifying the scope’s value, while the existing code remain unchanged.

4.2 Model Fragment Marshaling

The stubs offer a marshaling mechanism enabling the transmission of the model frag-
ment specified by the scope parameter from the caller to the service and also from the
service back to the caller. This mechanism is different from one used by existing RPC
systems as it deals with an incomplete graph transmission. Only the elements that are
included in the scope are serialized and the elements outside the scope are not serial-
ized, even if they are linked with elements in the scope.

Marshaling a model element consists in writing its properties’ values. These values
are either primitive data or references to other elements (e.g., a UML package element
contains the property name, which is primitive data and the property ownedMember,
which contains references to other model elements owned by this package). Contrary
to the complete model marshaling mechanism, which serializes all the property val-
ues, the model fragment marshaling mechanism must avoid marshaling the references
to elements outside the scope (i.e. outbound links, see fig. 1.), because those refer-
ences will become dangling when transmitted to the other side. The code at line 7
serializes only intra-fragment links. This mechanism is written in pseudo code as
follows.

1. serializeModelFragment(Collection scope, OutputStream out) {
2. for each Element e in scope {
3. for each Property p in getProperties(e) {
4. Object v = getPropertyValue(e, p);
5. if(isPrimitiveData(v)) out.writePrimitive(v);
6. else for each Reference r in v
7. if(scope.contains(r)) out.writeLink(r) } } }

In our approach, first the model fragment specified by the scope is marshaled, and

then the service parameters are marshaled as pointers to the previously marshaled
elements. At the receiver side, first unmarshaling the scope produces model elements
in memory, and then unmarshaling the service parameters produces the pointers to
those model elements. This approach avoids duplicate model transmission when mul-
tiple parameter values reference the nodes of the same graph. In this case, only one
graph copy is created at the service side and the transmitted parameter values will
point to the nodes in this copy, which results in the identical structure to the one at the
caller side.

Example. We continue with the moveClass example from 4.1. By using the seri-
alizeModelFragment mechanism, the specified elements (C1, P1, P2) can be
transmitted without other surrounding elements. As shown in fig. 2 (a, b), even
though packages P1 and P2 contain classes C2 and C3, those classes will not be
transmitted. This example also shows the pointer transmission for service parameters
(c, targetPackage), which enables the callee tool obtains identical pointers to the
ones at the caller side.

 Applying Model Fragment Copy-Restore 639

Fig. 2. Model fragment serialization

Rationale. This approach obviously improves performance: the amount of data to be
serialized/ deserialized and transmitted is reduced proportionally to the scope’s size.
Moreover, we choose to transmit all the elements in the scope at a time, instead of
transmitting elements on demand to reduce the complication of callback. As the scope
is specified at application level, where the knowledge of service logics is available,
we assume that the high portion of the elements in the scope will be used by the ser-
vice. In this case, this approach is more optimal than on-demand transmission.

As regards access control, our approach protects the service from modifying ele-
ments outside the scope, since those elements are not transmitted to the service.

4.3 Model Fragment Restoration

As described in 4.1., the service program can access to the scope parameter, to spec-
ify the model fragment that are the result. This scope initially contains model ele-
ments transmitted from the caller. The service can modify the content of those
elements, i.e. modify their property values. As an element can contain not only primi-
tive data but also references to other elements, the service can also add/remove links
between elements.

Moreover, the service can add/ remove model elements to/from the scope collec-
tion. Adding elements to the scope enables the service to transmit back the new ele-
ments that do not exist at the caller side. Removing elements from the scope will
result in deleting those elements at the caller side.

At the end of service invocation, the server stub transmits the scope back to the cli-
ent and the client stub overwrites the original fragment with the received fragment.
The restoration consists in 1) adding new elements to the caller side’s scope, 2) updat-
ing the existing model elements’ content, and 3) deleting the model elements corre-
spondingly to the deletion at the service side. In this work, we offer the following
extensions to the “basic” restoration mechanism (cf. section 3).

- Preserving outbound links. In the basic mechanism, the content of each original
element is replaced by the content of received element. This mechanism preserves the
inbound links (because the original elements preserve their identity; hence, the links
to them remain valid). However, this mechanism makes outbound links lost; there-
fore, we propose the updateLink operation for updating intra-fragment links while
preserving outbound links, cf. following code. This operation is applied to two corre-
sponding elements: one in the original fragment and the other in the received frag-
ment. It updates a property whose value is a set of model element references. It has

P1 P2

C1

P3

C2 C3

P1 P2

C1

(a) Caller side (b) Service side:
before service execution

Parameters: c, targetPackage

scope

Parameters: c, targetPackage

P1 P2

C1

(c) Service side:
execution result

Parameters: c, targetPackage

640 P. Sriplakich, X. Blanc, and M.-P. Gervais

two parameters: originalProp is the original element’s property value to be updated
and newProp is the received element’s property value. The algorithm begins by re-
moving all the intra-fragment links in originalProp while preserving outbound links
(lines 2-3). Then, the links in newProp are copied to originalProp (lines 4-5).

1. updateLink(ReferenceSet orginalProp, ReferenceSet newProp) {
2. for each Reference r in originalProp
3. if(scope.contains(r)) originalProp.remove(r);
4. for each Reference r in newProp
5. originalProp.add(getCorrespondingElementOf(r)); }

- Supporting consistent element deletion. Our approach enables the service to de-
lete elements simply by excluding them from the scope. To apply the deletion, the
caller stub searches and deletes dangling inbound links. To optimize search perform-
ance, the search space is reduced by exploiting metamodel information. In fact, poten-
tial elements that can contain dangling inbound links are the elements that have
properties typed by the metaclasses of the deleted elements; therefore, we can filter
out non-potential elements without examining their contents. Moreover, for the poten-
tial elements found, only their specific properties are examined, instead of examining
their whole content.

Example. Fig. 2(c) shows the model fragment at the service side to be propagated
back. According to the UML class diagram structure, a package element has the prop-
erty ownedMember, which refers to the package’s elements, i.e. its value is a set of
element references. To restore this property is not to simply overwrite the property
value of the client side’s element with the one of the service side’s element; other-
wise, the outbound links (P1 C2, P2 C3) would be lost. We have proposed the
updateLink operation to restore the property value correctly.

We illustrate an element deletion example with fig. 1. In this example, the service
explicitly removes element I by excluding it from the scope; hence, the transmitted-
back fragment will not contain I. This enables the caller stub to detect element dele-
tion so that it can search and eliminate dangling inbound links.

Rationale. Our restoration mechanism satisfies the objectives of enhancing access
control and preserving the entire model’s consistency. It protects elements outside the
scope from modification and it properly manages the inbound and outbound links for
integrating the update to the entire model.

5 Implementation and Performance Results

Implementation. This work has been implemented in ModelBus, a middleware sys-
tem for CASE tool integration. ModelBus’ tool integration method has already been
described in both research papers [2] [3] and in a ModelWare project deliverable [15].
This method is similar to the one of existing RPC middleware. First, ModelBus pro-
vides the service description language, which enables heterogeneous tools’ services to
be uniformly defined. Our service description language is different from others in that
it uses MOF metamodels for defining service parameters; hence the model structures
of services’ input/output are clearly identified in a standard way. Second, ModelBus

 Applying Model Fragment Copy-Restore 641

provides the stub generation for generating client and server stubs, which imple-
ment our model fragment copy-restore mechanism. Currently, ModelBus only offers
Java stub generation; however, the proposed copy-restore mechanism is language
independent.

The stubs communicate with the SOAP/HTTP protocol. This choice is motivated
by two reasons. First, it is programming-language independent. Second, it is compati-
ble with the XML Metadata Interchange (XMI) standard [18]: models encoded with
XMI can be easily put inside SOAP messages.

Empirical performance results. We report the performance of ModelBus in two
aspects. First, we show that our approach enhances the scalability in service invoca-
tion performance: Even when the size of the complete model increases, the user can
obtain the constant performance of service invocation by limiting the size of frag-
ments to be passed as service parameters.

We set up the experiment as follows. We generate UML models with different
sizes (from 2,000 to 100,000 model elements). Each model contains UML classes
organized in an arbitrary package hierarchy, similar to usual UML models in software
development. Our benchmark program invokes a service (that has one parameter)
with different model fragment sizes extracted from those generated models (10, 50,
100, 500, 1000 elements). The cost measured by the benchmark tool is the total cost
of all activities in service invocation, except the execution of the service logic (i.e.
serialization/deserialization, data transmission through LAN, and restoration).

Service invocation time

0
50

100
150
200
250
300
350

model sizes (model elements)

tim
e

(m
s)

10

50

100

500

1000

ModelBus serialization+deserialization time compared with EMF

0

20

40

60

80

100

2000 5000 10000 20000
model sizes (model elements)

M
od

el
B

us
tim

e
/E

m
f

tim
e

(%
)

10

50

100

500

1000

Fig. 3. ModelBus’ Performance in service invocation and model serialization/ deserialization

642 P. Sriplakich, X. Blanc, and M.-P. Gervais

As illustrated with the result in fig. 3(top), our approach enables the user to work
with very large models. For example, by fixing a constant fragment size of 500 model
elements, the service invocation costs around 125 ms, regardless the size of the com-
plete model. Please note that the illustrated performance is relative to the performance
of machine, network, model encoding method and RPC protocols. In this work, we
encode model with the standard XMI format and invoke service with SOAP/HTTP.
This choice offers interoperability at the cost of XML processing.

As for the second aspect, we compare the performance of ModelBus with Eclipse
Modeling Framework (EMF), a toolkit that is optimized for performance [7]. In this
case, we compare only the performance of model serialization/ deserialization (as EMF
does not offer an RPC mechanism). We observe that when the models become large,
the EMF performance decreases rapidly (40 ms for 2,000 elements vs. 1.5 s for 50,000
elements). Moreover, when models are very large (100,000 elements in a machine with
1 GB of memory), EMF generates an out-of-memory error. In our approach, the user
can avoid this problem by limiting the size of model fragment. Fig. 3(bottom) shows
the percentage of the serialization and deserialization time of ModelBus compared to
EMF. It shows that this percentage is close to zero when the model is larger than
20,000 elements, i.e., EMF becomes significantly slow.

6 Related Works

Object views. Eberhard [5] Lipkind [13] propose the way to transmit graph frag-
ments. In their approach, graph fragments are defined with object views. An object
view is derived from a class (i.e. data type) but contains only a subset of the class’
properties. Since properties can represent links, the object view can define a subgraph
including only elements to which the object view’s properties link. E.g., given an
object view v1 that excludes the property prop1, its corresponding fragment will
exclude elements to which prop1 links. Compare to this approach, ModelBus offers
a more flexible way of specifying model fragments as follows.

- Dynamic model fragment specification. Object views are specified statically at
the service signature level, i.e., as the types of service parameters. Therefore, it is not
possible to change, for each service call, the structure of the fragment to be transmit-
ted. For example, if a service parameter is typed by object view v1 (previously de-
fined), then elements to which prop1 links will never be transmitted. On the other
hand, in our approach, a subgraph is represented by a scope (a collection), which can
be specified differently in each service call.

- Arbitrary model fragment specification. With object view, a programmer can
choose either to transmit all elements to which a property links, or not to transmit
them at all. For example, given that a package has the property ownedMember, the
programmer can either include or exclude all elements owned by this package. Our
approach gives the freedom to programmers to define an arbitrary fragment, e.g. a
package with a subset of its owned elements.

Adaptive Parameter Passing. Lopes [14] proposes a parameter passing mechanism
that avoids the transmission of entire graphs. The expression of subgraphs to be
transmitted is based on the Demeter graph traversal language [12]. It expresses a

 Applying Model Fragment Copy-Restore 643

traversal from a specified element to visit elements reachable from it. I.e., this tra-
versal contains a set of selected paths from this element to some other elements. This
approach considers that all elements in those paths will be included in the subgraph.
We illustrate an example of expressing a UML model fragment. The expression
“from Package through ownedMember to Class” expresses all paths from a Package
element to Class elements that include at least once the edge ownedMember.

This approach has a similar limitation to the object view approach. Demeter ex-
pressions are statically defined at the service signature level (as the types of service
parameters). For example, let a model consists of a UML package containing N
classes. Applying the previous expression example to this package always yield the
same subgraph. The caller can not specify a different subgraph for each service call.
Moreover, the caller can not specify an arbitrary fragment, such as, a subgraph con-
taining this package and a subset of its own classes. The subgraph will always contain
all the owned classes.

7 Conclusion and Future Works

In this work, we propose a new parameter passing semantic for transmitting only
fragments of models. This parameter passing offers the advantages of improving
performance and enhancing access control to models. Our approach enables a pro-
grammer to define a scope of service parameters, so that the middleware can transmit
and restore the model fragment specified by this scope.

Even though we focus on models in this paper, our mechanism is also applicable in
general-domain applications. In fact, metamodels are similar to class diagrams, which
define abstractly data in any application domain, and models can be manipulated by
any programming languages; therefore, our approach can be used for integrating het-
erogeneous applications in any domain, provided that they share the same abstract
data structures.

Our parameter passing approach has been implemented in ModelBus, which is
available as an Eclipse open source project MDDi. The development of ModelBus is
supported by the IST project ModelWare, which aims at promoting the successful
application of the MDA approach. Currently, we are applying the ModelBus concepts
for integrating industrial and research tools provided by the project partners, such as
Objecteering (http://www.objecteering.com), Open Source Library for OCL (OSLO,
http://oslo-project.berlios.de), and ATL model transformation engine [1].

For future works, we aim to extend our approach to overcome the following limita-
tions. First, in this approach, the caller must have the knowledge of what model ele-
ments the service needs and must specify them in the scope parameter. For future
works, we aim to relieve this complication from the caller by proposing an alterative
approach that exploits the knowledge of the service about what model elements it
needs. Our goal is to provide the service signature that can define the model elements
that the service needs. This signature can be exploited by the caller stub to identify the
model fragment to be passed to the service. Consequently, the caller can call the ser-
vice without having to specify the scope itself.

Second, in this work, we do not take into account the concurrency of model modi-
fications. We assume here that the caller tool is blocked during the service invocation

644 P. Sriplakich, X. Blanc, and M.-P. Gervais

to avoid that the caller and callee concurrently update the model, or that the caller
concurrently apply another service that will update the same model. Our recent work
to support concurrent model update [23] addresses the problem of how concurrent
modifications made by different tools on the same model can be unified. For future
work, we aim to combine the aspect of model fragment with the aspect of model up-
date concurrency. More precisely, we aim to enable each tool to make a different
model fragment corresponding to what it needs. The fragment of one tool can overlap
with the ones of others, and those tools are allowed to concurrently modify their
fragment. We would like to study how to unify the concurrent modifications made to
those overlapping fragments.

References

1. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F., Applying MDA Approach for Web Ser-
vice Platform, Proc. of the 8th Int’l IEEE Enterprise Distributed Object Computing Conf.
(EDOC), 2004.

2. Blanc, X., Gervais, M-P., Sriplakich, P., Model Bus: Towards the Interoperability of Mod-
eling Tools, Proc. of the European MDA Workshop: Foundations and Applications
(MDAFA 2004), LNCS 3599, Springer, 2005.

3. Blanc, X., Gervais, M.-P., Sriplakich, P., Modeling Services and Web Services: Applica-
tion of ModelBus, Proc. of the Int’l Conf. on Software Engineering Research and Practice
(SERP), 2005.

4. Chockler, V.G., Dolev, D., Friedman, R., Vitenberg, R., Implement a Caching Service for
Distributed CORBA objects, Proc. of the IFIP/ACM Int’l Conf. on Distributed Systems
Platforms (Middleware), 2000.

5. Eberhard, J., Tripathi, A., Efficient Object Caching for Distributed Java RMI Applications,
Proc. of the IFIP/ACM Int’l Conf. on Distributed Systems Platforms (Middleware), 2001.

6. Eclipse, Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf
7. Eclipse, EMF Performance: EMF 2.0.1 vs. EMF 2.1.0 RC1, http://www.eclipse.org/emf
8. Java Community Process, Java Metadata Interface (JMI) Specification version 1.0,

http://www.jcp.org, 2002.
9. Kath, O. et al., An Open Modeling Infrastructure integrating EDOC and CCM, Proc. of the

7th IEEE Int’l Enterprise Distributed Object Computing Conf. (EDOC), 2003.
10. Kono, K., Kato, K., Masuda, T., Smart Remote Procedure Calls: Transparent Treatment of

Remote Pointers, In Proc. of the 14th Int’l Conf. on Distributed Computing Systems
(ICDCS), 1994.

11. Krishnaswamy, V., Walther, D., Bhola, S., Efficient Implementation of Java Remote
Method Invocation (RMI), Proc. of the 4th USENIX Conf. on Object-Oriented Technolo-
gies and Systems (COOTS), 1998.

12. Lieberherr K. J., Silva-Lepe, I., Xiao, C., Adaptive object-oriented programming using
graph-based customization, Comm. of ACM, 37(5), May 1994.

13. Lipkind, I., Pechtchanski, I., and Karamcheti, V., Object views: Language support for in-
telligent object caching in parallel and distributed computations, Proc. of the 14th ACM
SIGPLAN Conf. on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), 1999.

14. Lopes, C. V., Adaptive Parameter Passing, Proc. of the 2nd JSSST Int’l Symposium on Ob-
ject Technologies for Advanced Software (ISOTAS), LNCS 1049, Springer, 1996.

15. ModelBus: Functional & Technical architecture document (Vol II), ModelWare project
deliverable D3.1, http://www.modelware-ist.org, May 2005.

16. OMG, MDA Guide Version 1.0.1, document no: omg/2003-06-01, 2003.

 Applying Model Fragment Copy-Restore 645

17. OMG, Meta Object Facility version 2.0, document no: formal/06-01-01, 2006.
18. OMG, XML Metadata Interchange (XMI) Specification version 2.0, document no: for-

mal/03-05-02, 2003.
19. OMG, UML 2.0 Superstructure Specification, document no: formal/05-07-04, 2005.
20. The Open Group, DCE 1.1 RPC Specification, http://www.opengroup.org, 1997.
21. Philippsen, M., Haumacher, B., More Efficient Object Serialization, Proc. of the ACM

1999 Java Grande Conf., June 1999.
22. Porres, I., Model Refactorings as Rule-Based Update Transformations, Proc. of the 6th

Int’l Conf. on the Unified Modeling Language, 2003.
23. Sriplakich, P., Blanc, X., Gervais, M-P., Supporting Collaborative Development in an

Open MDA Environment, Proc. of the 22nd IEEE Int’l Con. on Software Maintenance
(ICSM), 2006.

24. Sriplakich, P., Blanc, X., Gervais, M-P., Supporting transparent model update in distrib-
uted CASE tool integration, Proc. of the 21st ACM Symposium on Applied Computing,
2006.

25. Tilevich, E., Y. Smaragdakis, NRMI: Natural and Efficient Middleware, Proc. of the 23rd
Int’l Conf. on Distributed Computing Systems (ICDCS), 2003.

26. Tokuda, L., and Batory, D., Evolving Object-Oriented Designs with Refactorings, Proc. of
the 14th IEEE Int’l Conf. on Automated Software Engineering (ASE), 1999.

	Introduction
	Background: CASE Tool Integration with Call-by-Copy- Restore RPC
	Model Fragment Copy-Restore: Objectives and Requirements
	Design in ModelBus
	Enabling Model Fragment Specification Through Stub Interface
	Model Fragment Marshaling
	Model Fragment Restoration

	Implementation and Performance Results
	Related Works
	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

