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Abstract. ModelBus is a middleware system that offers the interoperability be-
tween CASE tools for supporting software development according to MDA. This 
interoperability allows tools to share services and models, by using an RPC 
mechanism. ModelBus adopts the call-by-copy-restore semantic, as it is very 
close to local call semantic and is flexible as regards tools’ heterogeneous model 
representations. In this work, we extend this semantic to enable only specific 
model fragments to be passed as parameters, instead of complete models. The 
advantages are 1) improving the performance because passing only model frag-
ments requires less data processing and 2) enhancing access control to models 
because the service’s modification can be restricted to the specific model frag-
ment that is specified as parameters. The implementation of this work is avail-
able as the Eclipse project Model Driven Development integration (MDDi). 

1   Introduction 

The Model Driven Architecture (MDA) [16] is a software development approach 
which focuses on models. In MDA, all software development artifacts are represented 
by models. Those models can be manipulated by a variety of CASE tools which offer 
automated operations on the models, such as model visualization, model edition, 
model transformation and model well-formed-ness checking. 

In our previous research, we have proposed a middleware system supporting the 
interoperability between heterogeneous and distributed CASE tools to support MDA. 
This MDA environment, called ModelBus [2] [3] [15] [24], enables distributed and 
heterogeneous CASE tools to share their functionality and models. ModelBus 
achieves this interoperability by using the RPC paradigm, which enables tools to 
invoke each other’s services and exchange models by parameter passing. Thus, in 
ModelBus, RPC parameters are models.  

ModelBus supports the call-by-copy-restore semantic1, which is very close to the 
semantic of the local procedure call. Our choice is motivated by two reasons. First, 
                                                           
*  The work presented in this paper is supported by the project MODELWARE, co-funded by 

the European Commission under the "Information Society Technologies" Sixth Framework 
Programme (2002-2006). 

1  ModelBus offers the call-by-copy semantic for IN and OUT parameters and the call-by-copy-
restore semantic for INOUT parameters [15]; however, in this paper, we focus on call-by-
copy-restore. 
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several model manipulations such as in-place model transformation [22] and model 
refactoring [26] require the ability to modify models. To allow such model manipula-
tions to be shared as services, ModelBus should not limit to read-only parameter  
passing but also enable tools to modify each other’s models. Second, unlike the call-
by-reference tool integration approach [9], our call-by-copy-restore approach avoids 
the complexity and cost of representing parameter values as distributed objects (e.g. 
CORBA, RMI). 

The copy-restore mechanism of most RPC systems, such as NRMI [25], which is 
Java RMI-based, and Microsoft RPC, which implements the DCE RPC specification 
[20], transmits a deep copy of parameter values: the objects that a programmer specifies 
as parameters and all objects reachable from them are copied. In our context, parameters 
are models, which are graph data structures containing model elements and links be-
tween them. Hence, applying this deep-copy mechanism to a model will result in trans-
mitting the entire model graph, which is inappropriate for the following reasons.  

- Performance. A model can include more elements than required by the service. 
For instance, a UML [19] model can contain use case elements; class diagram ele-
ments, and sequence chart elements (with links between them). If the service does not 
use all these elements, transmitting the entire model graph will unnecessarily waste 
computing resources.  

- Access control. The deep-copy mechanism offers too much access to the service: 
It enables the service to modify the entire model, i.e., all elements reachable from 
parameters values. Consequently, the caller can not protect parts of models from 
modification by the service.   

Those reasons motivate us to propose a new parameter passing semantic that 
transmits and restores only a specific model fragment (i.e. a subgraph of a model). 
Compared to existing graph fragment transmission solutions, our approach offers the 
following novel features:  

- Flexible specification of model fragments. The approaches based on the notion of 
object views (reduced objects) [5] [13] or on the Demeter graph traversal language 
[14] offer a way to specify graph fragments to be transmitted. However, their frag-
ment specification is statically fixed in the service definition. Therefore, at runtime, it 
is not possible to change the fragment specification for each service call. On the other 
hand, our approach offers the flexibility to specify arbitrary fragments and to change 
them in each service call. 

- Access control in parameter passing. Caching systems (e.g., CORBA caching [4], 
RMI caching [5]) enables graph elements (i.e. objects) to be transmitted only when 
requested (to avoid complete graph transmission). However, to our knowledge, few 
works offer means for limiting the model elements that a service is allowed to modify. 
I.e., if a service requests all elements in the graph, then it can modify the entire graph. 
On the other hand, our approach offers a mechanism to protect parts of models from 
modification.  

- Preserving tools’ existing data structures. To integrate existing CASE tools with 
caching systems, tool programmers would need to change the existing implementation 
of tools’ data structures to the one supported by the caching systems (e.g. object 
stubs). Our approach is different as it requires no change to existing data structure 
implementation. For this reason, it has little impact on existing tools’ implementation 
and facilitates their ad hoc integration. 
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This work has been implemented in ModelBus, which will be soon available as an 
Eclipse open source project Model Driven Development integration (MDDi, 
http://www.eclipse.org/mddi). It is built on top of the Web Services platform, which 
is widely used for integrating heterogeneous applications. While the Web Services 
protocol (SOAP/HTTP) only defines the RPC message format, ModelBus extends it 
by providing a parameter passing mechanism for transmitting model fragments and 
restoring the update made by the service to the original model.  

This paper is organized as follows. Section 2 presents our research background on 
tool integration and explains why the call-by-copy-restore approach is chosen. Section 
3 states the objectives and requirements of this work. Section 4 describes our solution 
and its rationales. Section 5 describes the implementation and performance result 
achieved by ModelBus. Related works are discussed in section 6, before conclusion. 

2   Background: CASE Tool Integration with Call-by-Copy-
Restore RPC 

ModelBus deals with model exchange between tools via RPC. In this environment, 
we assume that models being manipulated by tools (both caller and service) are stored 
in the tools’ memory, similarly to the way software generally manipulate data. When 
one tool invokes another tool’s service, the callee tool needs means for accessing 
(reading/writing) models that are service parameters located in the caller tool’s  
memory. To support this model access, RPC middleware needs to solve two compli-
cations: 

- Remote communication. An open MDA environment should support the integra-
tion of tools executing in different machines, therefore middleware needs to handle 
data transfer between the caller and the service.  

- Heterogeneous model representations. As each CASE tool can be implemented 
with different programming languages, their memory representation of models can be 
different (e.g. Java objects, C data structures). If the caller and callee tools use differ-
ent model representations, the middleware needs to translate models from one repre-
sentation to another.                      

We focus on RPC approaches that offer close semantic to local call as this can hind 
the complication of tool distribution. In our previous work [24], we have studied two 
main approaches: call-by-reference and call-by-copy-restore. The call-by-reference 
approach requires that models be represented as distributed objects so that the callee 
tool can read and modify the remote models by using callback mechanism. On the 
other hand, in the call-by-copy-restore approach, models are copied from the caller 
tool to the callee tool at the beginning of service invocation. At the end, the model is 
copied back to replace the original model at the caller tool.  

For purpose of tool integration, we have chosen the call-by-copy-restore approach 
rather than call-by-reference. First, in call-by-reference, callback makes model access 
very costly. The study by Kono & al. [10] shows that, when more than 5% of objects 
are accessed, call-by-copy-restore has significantly better performance than call-by-
reference.  
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Second, call-by-reference requires that models be represented as distributed ob-
jects. Existing tools that have not been planned for integration usually implement 
model representation with simple, local data structures. Consequently, to apply call-
by-reference, their model representations would need to be changed to distributed 
objects. On the other hand, for call-by-copy-restore, the marshaling /unmarshaling 
mechanism of middleware can be extended to cope with any model representations. 
Hence, tool programmers do not need changing the existing model representations of 
tools for integrating them. 

We identify two copy-restore RPC approaches. In the first approach, parameter res-
toration is done only at the end of service call. This is the case for NRMI and DCE 
RPC systems. In the second approach, systems offer a stronger guarantee: the parame-
ter value copy at the service side is kept consistent with the original copy at call time 
(even after service call). This is the case for caching systems. In this work, we focus 
on the first approach (restoring at the end of service call). This is because we aim to 
preserve existing data representation of tools. The caching approach requires a 
mechanism for intercepting when data is modified so that it can restore the data. If 
this approach were used, we would face the difficulties in changing or adapting the 
existing data representation of tools to support this interception.  

3   Model Fragment Copy-Restore: Objectives and Requirements 

Improving performance. Despite the advantages of distributed tool integration, the 
RPC causes additional latency compared to local call. In fact, marshaling and unmar-
shaling complex, large data structures has been recognized as costing major latency in 
RPC (25%-50%) [21]. Hence, the larger models, the more latency for marshaling, 
transmitting and unmarshaling them. Moreover, if the callee tool does not entirely use 
the models, transmitting the entire model can waste the memory for storing unused 
fragments.  

By passing only model fragments as parameters in service call, the amount of data 
to be processed is reduced. Therefore, it can significantly improve the performance 
especially if the model fragments are relatively small. 

Enhancing access control. The access control problem has not been addressed yet in 
the RPC domain. Existing call-by-copy-restore middleware, such as NRMI and DEC 
RPC, enables a programmer to pass program pointers as service parameters. It con-
siders that the service should have access to all objects reachable from those pointers. 
Therefore, the entire graph is transmitted to the service side and is entirely restored at 
the end of service call.  

In MDA, a model can be built up from a large number of model elements, each of 
which describes a different software module or aspect. As those elements have rela-
tions with each other, they are parts of the same graph. According to the existing call-
by-copy-restore semantic, passing a single element as a parameter enables a service to 
reach and modify the entire model. This approach can be dangerous because the ser-
vice can modify model parts beyond the caller’s intent.  

This problem motivates us to integrate access control with parameter passing. The 
idea is to associate each parameter value with a model fragment (i.e. a subgraph) to 
restrict the service to access only elements in the fragment.   
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Providing consistent restoration. In the call-by-copy-restore mechanism, the modi-
fication that a service makes to the data’s copy needs to be restored back to the caller 
side. Existing call-by-copy-restore systems (e.g. NRMI, DCE RPC) have already 
proposed a mechanism for complete graph restoration, which we will refer to as the 
“basic” mechanism. This mechanism consists in overwriting each graph element’s 
content with an updated value. In the case of models, a model element’s content is a 
set of properties, each of which contains either primitive data or references (pointers) 
to other model elements. Hence, to restore a model, this basic mechanism would 
overwrite all the property values of each model element.  

In our context, the data that is transmitted to the service corresponds to a model 
fragment, which also has links with the rest of the model. The links between the 
model fragment and the rest of the model consist of outbound links, which are the 
references owned by the fragment’s elements to elements outside the fragment and 
inbound links, from outside to the fragment. E.g., the complete model in fig. 1 con-
tains the elements {A, B, C…I}; the specified fragment is {F, G, H, I}; and the 
outbound and inbound links are {F A, G C} and {E H, D I} respectively. 
These outbound and inbound links exist at the caller side but not at the service side 
(since one of their ends does not exist). The basic restoration mechanism (i.e. for 
restoring a complete graph) is not aware of this fact. Therefore, it needs to be ex-
tended or modified to deal properly with those links as follows.  

  

  
 

Fig. 1. Consistent restoration of a model fragment 

- Preserving outbound links. According to the basic mechanism, overwriting the 
properties of the caller side’s elements with the properties of the service side’s ele-
ments would make the outbound links lost, e.g., in fig. 1, {F A, G C} would be 
lost after restoration. For this reason, the restoration mechanism for a model fragment 
needs to recognize outbound links and preserve them. 

- Supporting consistent element deletion. Service logics may require the deletion of 
elements passed as parameters. We observe that few call-by-copy-restore systems 
enable the service to explicitly delete elements: most systems only enable a service to 
do so implicitly by making elements unreferenced (to be garbage-collected). Those 
systems make element deletion difficult because 1) the service needs to search for 
references to be eliminated, and 2) if the model is not entirely transmitted and there 
exist inbound links to some elements, then the deletion of those elements will be  
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impossible, e.g., in fig. 1, the inbound link D I prevents the deletion of I, despite the 
service’s intent. This motivates us towards the explicit deletion approach, in which 
the service can specify elements to be deleted. In this new approach, the restoration 
mechanism needs extension to support the elimination of dangling inbound links, 
which reference deleted elements. 

4   Design in ModelBus 

Similarly to other call-by-copy-restore systems, ModelBus offers the transparent 
management of partial parameter passing through client and server stub components. 
The stubs offer programming interfaces enabling a tool programmer to write service 
call code and service implementation code. A new aspect is that these interfaces are 
extended in order that the programmer can specify a model fragment to be passed as 
parameters and the stub implementation takes into account model fragment specifica-
tion when marshaling and restoring parameters. 

4.1   Enabling Model Fragment Specification Through Stub Interface 

A stub interface generated by most RPC systems (e.g. RMI, CORBA) enables a pro-
grammer to specify complex-structured parameter values (i.e. graphs) with program 
pointers. When these pointers are passed to the service, the middleware will create a 
copy of the pointed data structure at the service side and create new pointers pointing 
to the copied data.   

ModelBus offers a new way of generating stub interfaces to add an extra parame-
ter, called scope, which enable a programmer to specify a model fragment to be 
transmitted. A scope is a subset of model elements selected from a complete model. 
Independent from programming languages and regardless the model representation 
used, a scope is a set of references to the objects representing model elements. This 
scope parameter can be mapped to any programming languages using their native 
types that can represent a set of object references, e.g., in Java, it can be mapped to 
java.lang.Collection. To define a model fragment using this scope parameter, a 
programmer instantiates a set and adds model element references to this set.  

This approach is flexible, as it enables the specification of any arbitrary model 
fragments; however, having to add each model element individually to the collection 
may be cumbersome. For this reason, we also provide a helper operation enabling a 
programmer to easily add a group of hierarchical elements. The helper operation 
addWithChildren(Collection scope, Element e) recursively adds the ele-
ment e and also its child elements to the scope. It exploits the aggregation relations 
defined in metamodels for identifying models’ hierarchical structure. An example use 
of this operation is to add a UML package and all its content (the classes in this pack-
age, the classes’ features …) to a scope.    

The operation in both client stub and server stub’s interfaces has the scope pa-
rameter. In the client stub interface, the scope parameter enables a client program to 
specify the model fragment to which the service has access. In the server stub inter-
face, this parameter enables the service program to specify the model fragment that is 
the result of service execution. It contains the model elements to be transmitted back 
to the client for restoration, which include both the elements previously received from 
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the client (which can be modified by the service) and new elements produced by the 
service. Moreover, the service program can explicitly delete existing elements by 
excluding them from the scope collection. 

Stub generation. The stub interfaces can be generated from the service description. 
ModelBus provides a service description language dedicated to the modeling domain. 
In this language, service description is defined independently from service implemen-
tation and the model representation used by the service. It uses Meta Object Facility 
(MOF) for defining the structures of models that are services parameters. More pre-
cisely, service parameters are typed by metaclasses (MOF classes). At the implemen-
tation level, the metaclasses are mapped to concrete data representations that the 
caller and callee tools use for manipulating models (e.g. Java classes, C structure 
types). The stub generation can be extended to support any model representations 
used by tools (e.g. Java Metadata Interface (JMI) [8] and Eclipse Modeling Frame-
work (EMF) [6]). ModelBus enables a programmer to choose a model representation 
used by his tool for generating the corresponding stub interfaces.  

Example. We illustrate an example service and its stub interfaces. The moveClass 
service enables a developer to modify his UML model by moving a UML class from 
one package to another. To use this service, he needs to specify two parameters: a 
class to be moved and the target package to which this class will be moved. There-
fore, the abstract definition of this service is moveClass(inout c:Class, inout 
targetPackage:Package), where Class and Package are metaclasses of the 
UML metamodel.  

If we used existing middleware to generate stub interfaces for Java, we would  
obtain the method void moveClass(uml.Class c, uml.Package target-
Package), supposing that Java classes uml.Class and uml.Package concretely 
represent Class and Package model element types. This method offers no means for 
the client program to specify the model fragment to be passed as parameters; there-
fore, the middleware will entirely marshal the UML model. On the other hand, with 
ModelBus, the generated stub will offer the method with the scope parameter: void 
moveClass(Collection scope, uml.Class c, uml.Package targetPack-
age). This method enables the client program to specify a specific model fragment 
relevant to the service. For example, if a developer wants to move a class C1 from a 
package P1 to P2, then this service needs to modify only C1, P1, and P2, i.e. it re-
moves the containment link between C1 and P1 and it creates a new containment link 
between C1 and P2. As other model elements do not concern the service, the pro-
grammer can optimize the service call by specifying the scope to be only these three 
elements.  

Rationale. This new stub interface is motivated by the following reasons. 
- Flexible specification of model fragments. Representing a model fragment as a 

collection offers the full flexibility to programmers. It enables the caller to define 
fragments arbitrarily and to change the fragment definition in each service call, i.e. 
the members of the scope collection can be selected dynamically. Therefore, this 
approach can accommodate the different needs of tools. 

- Small change to original service signatures. We only add one extra parameter to 
stub interfaces, while the other parameters remained unchanged. Therefore, the effort 
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of adapting our solution to existing RPC application only consists in adding the code 
for specifying the scope’s value, while the existing code remain unchanged. 

4.2   Model Fragment Marshaling 

The stubs offer a marshaling mechanism enabling the transmission of the model frag-
ment specified by the scope parameter from the caller to the service and also from the 
service back to the caller. This mechanism is different from one used by existing RPC 
systems as it deals with an incomplete graph transmission. Only the elements that are 
included in the scope are serialized and the elements outside the scope are not serial-
ized, even if they are linked with elements in the scope.  

Marshaling a model element consists in writing its properties’ values. These values 
are either primitive data or references to other elements (e.g., a UML package element 
contains the property name, which is primitive data and the property ownedMember, 
which contains references to other model elements owned by this package). Contrary 
to the complete model marshaling mechanism, which serializes all the property val-
ues, the model fragment marshaling mechanism must avoid marshaling the references 
to elements outside the scope (i.e. outbound links, see fig. 1.), because those refer-
ences will become dangling when transmitted to the other side. The code at line 7 
serializes only intra-fragment links. This mechanism is written in pseudo code as 
follows.  
 
1. serializeModelFragment(Collection scope, OutputStream out) { 
2. for each Element e in  scope { 
3.  for each Property p in getProperties(e) { 
4.   Object v = getPropertyValue(e, p); 
5.    if(isPrimitiveData(v))  out.writePrimitive(v); 
6.    else for each Reference r in v  
7.     if(scope.contains(r)) out.writeLink(r)                           } } }    

 
In our approach, first the model fragment specified by the scope is marshaled, and 

then the service parameters are marshaled as pointers to the previously marshaled 
elements. At the receiver side, first unmarshaling the scope produces model elements 
in memory, and then unmarshaling the service parameters produces the pointers to 
those model elements. This approach avoids duplicate model transmission when mul-
tiple parameter values reference the nodes of the same graph. In this case, only one 
graph copy is created at the service side and the transmitted parameter values will 
point to the nodes in this copy, which results in the identical structure to the one at the 
caller side.  

Example. We continue with the moveClass example from 4.1. By using the seri-
alizeModelFragment mechanism, the specified elements (C1, P1, P2) can be 
transmitted without other surrounding elements. As shown in fig. 2 (a, b), even 
though packages P1 and P2 contain classes C2 and C3, those classes will not be 
transmitted. This example also shows the pointer transmission for service parameters 
(c, targetPackage), which enables the callee tool obtains identical pointers to the 
ones at the caller side. 
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Fig. 2. Model fragment serialization 

Rationale. This approach obviously improves performance:  the amount of data to be 
serialized/ deserialized and transmitted is reduced proportionally to the scope’s size. 
Moreover, we choose to transmit all the elements in the scope at a time, instead of 
transmitting elements on demand to reduce the complication of callback. As the scope 
is specified at application level, where the knowledge of service logics is available, 
we assume that the high portion of the elements in the scope will be used by the ser-
vice. In this case, this approach is more optimal than on-demand transmission. 

As regards access control, our approach protects the service from modifying ele-
ments outside the scope, since those elements are not transmitted to the service. 

4.3   Model Fragment Restoration 

As described in 4.1., the service program can access to the scope parameter, to spec-
ify the model fragment that are the result. This scope initially contains model ele-
ments transmitted from the caller. The service can modify the content of those  
elements, i.e. modify their property values. As an element can contain not only primi-
tive data but also references to other elements, the service can also add/remove links 
between elements.  

Moreover, the service can add/ remove model elements to/from the scope collec-
tion. Adding elements to the scope enables the service to transmit back the new ele-
ments that do not exist at the caller side. Removing elements from the scope will 
result in deleting those elements at the caller side. 

At the end of service invocation, the server stub transmits the scope back to the cli-
ent and the client stub overwrites the original fragment with the received fragment. 
The restoration consists in 1) adding new elements to the caller side’s scope, 2) updat-
ing the existing model elements’ content, and 3) deleting the model elements corre-
spondingly to the deletion at the service side. In this work, we offer the following 
extensions to the “basic” restoration mechanism (cf. section 3). 

- Preserving outbound links. In the basic mechanism, the content of each original 
element is replaced by the content of received element. This mechanism preserves the 
inbound links (because the original elements preserve their identity; hence, the links 
to them remain valid). However, this mechanism makes outbound links lost; there-
fore, we propose the updateLink operation for updating intra-fragment links while 
preserving outbound links, cf. following code. This operation is applied to two corre-
sponding elements: one in the original fragment and the other in the received frag-
ment. It updates a property whose value is a set of model element references. It has 
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two parameters: originalProp is the original element’s property value to be updated 
and newProp is the received element’s property value. The algorithm begins by re-
moving all the intra-fragment links in originalProp while preserving outbound links 
(lines 2-3). Then, the links in newProp are copied to originalProp (lines 4-5).  
 
1. updateLink(ReferenceSet orginalProp, ReferenceSet newProp) { 
2.  for each Reference r in originalProp  
3.   if( scope.contains(r) ) originalProp.remove(r);  
4.  for each Reference r in newProp   
5.   originalProp.add( getCorrespondingElementOf(r) );        }  
 

- Supporting consistent element deletion. Our approach enables the service to de-
lete elements simply by excluding them from the scope. To apply the deletion, the 
caller stub searches and deletes dangling inbound links. To optimize search perform-
ance, the search space is reduced by exploiting metamodel information. In fact, poten-
tial elements that can contain dangling inbound links are the elements that have  
properties typed by the metaclasses of the deleted elements; therefore, we can filter 
out non-potential elements without examining their contents. Moreover, for the poten-
tial elements found, only their specific properties are examined, instead of examining 
their whole content.  

Example. Fig. 2(c) shows the model fragment at the service side to be propagated 
back. According to the UML class diagram structure, a package element has the prop-
erty ownedMember, which refers to the package’s elements, i.e. its value is a set of 
element references. To restore this property is not to simply overwrite the property 
value of the client side’s element with the one of the service side’s element; other-
wise, the outbound links (P1 C2, P2 C3) would be lost. We have proposed the 
updateLink operation to restore the property value correctly. 

We illustrate an element deletion example with fig. 1. In this example, the service 
explicitly removes element I by excluding it from the scope; hence, the transmitted-
back fragment will not contain I. This enables the caller stub to detect element dele-
tion so that it can search and eliminate dangling inbound links. 

Rationale. Our restoration mechanism satisfies the objectives of enhancing access 
control and preserving the entire model’s consistency. It protects elements outside the 
scope from modification and it properly manages the inbound and outbound links for 
integrating the update to the entire model.  

5   Implementation and Performance Results 

Implementation. This work has been implemented in ModelBus, a middleware sys-
tem for CASE tool integration. ModelBus’ tool integration method has already been 
described in both research papers [2] [3] and in a ModelWare project deliverable [15]. 
This method is similar to the one of existing RPC middleware. First, ModelBus pro-
vides the service description language, which enables heterogeneous tools’ services to 
be uniformly defined. Our service description language is different from others in that 
it uses MOF metamodels for defining service parameters; hence the model structures 
of services’ input/output are clearly identified in a standard way. Second, ModelBus 
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provides the stub generation for generating client and server stubs, which imple- 
ment our model fragment copy-restore mechanism. Currently, ModelBus only offers  
Java stub generation; however, the proposed copy-restore mechanism is language  
independent.  

The stubs communicate with the SOAP/HTTP protocol. This choice is motivated 
by two reasons. First, it is programming-language independent. Second, it is compati-
ble with the XML Metadata Interchange (XMI) standard [18]: models encoded with 
XMI can be easily put inside SOAP messages. 

Empirical performance results. We report the performance of ModelBus in two 
aspects. First, we show that our approach enhances the scalability in service invoca-
tion performance: Even when the size of the complete model increases, the user can 
obtain the constant performance of service invocation by limiting the size of frag-
ments to be passed as service parameters.  

We set up the experiment as follows. We generate UML models with different 
sizes (from 2,000 to 100,000 model elements). Each model contains UML classes 
organized in an arbitrary package hierarchy, similar to usual UML models in software 
development. Our benchmark program invokes a service (that has one parameter) 
with different model fragment sizes extracted from those generated models (10, 50, 
100, 500, 1000 elements). The cost measured by the benchmark tool is the total cost 
of all activities in service invocation, except the execution of the service logic (i.e. 
serialization/deserialization, data transmission through LAN, and restoration). 
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Fig. 3. ModelBus’ Performance in service invocation and model serialization/ deserialization 
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As illustrated with the result in fig. 3(top), our approach enables the user to work 
with very large models. For example, by fixing a constant fragment size of 500 model 
elements, the service invocation costs around 125 ms, regardless the size of the com-
plete model. Please note that the illustrated performance is relative to the performance 
of machine, network, model encoding method and RPC protocols. In this work, we 
encode model with the standard XMI format and invoke service with SOAP/HTTP. 
This choice offers interoperability at the cost of XML processing.  

As for the second aspect, we compare the performance of ModelBus with Eclipse 
Modeling Framework (EMF), a toolkit that is optimized for performance [7]. In this 
case, we compare only the performance of model serialization/ deserialization (as EMF 
does not offer an RPC mechanism). We observe that when the models become large, 
the EMF performance decreases rapidly (40 ms for 2,000 elements vs. 1.5 s for 50,000 
elements). Moreover, when models are very large (100,000 elements in a machine with 
1 GB of memory), EMF generates an out-of-memory error. In our approach, the user 
can avoid this problem by limiting the size of model fragment. Fig. 3(bottom) shows 
the percentage of the serialization and deserialization time of ModelBus compared to 
EMF. It shows that this percentage is close to zero when the model is larger than 
20,000 elements, i.e., EMF becomes significantly slow. 

6   Related Works 

Object views. Eberhard [5] Lipkind [13] propose the way to transmit graph frag-
ments. In their approach, graph fragments are defined with object views. An object 
view is derived from a class (i.e. data type) but contains only a subset of the class’ 
properties. Since properties can represent links, the object view can define a subgraph 
including only elements to which the object view’s properties link. E.g., given an 
object view v1 that excludes the property prop1, its corresponding fragment will 
exclude elements to which prop1 links. Compare to this approach, ModelBus offers 
a more flexible way of specifying model fragments as follows. 

- Dynamic model fragment specification. Object views are specified statically at 
the service signature level, i.e., as the types of service parameters. Therefore, it is not 
possible to change, for each service call, the structure of the fragment to be transmit-
ted. For example, if a service parameter is typed by object view v1 (previously de-
fined), then elements to which prop1 links will never be transmitted. On the other 
hand, in our approach, a subgraph is represented by a scope (a collection), which can 
be specified differently in each service call.   

- Arbitrary model fragment specification. With object view, a programmer can 
choose either to transmit all elements to which a property links, or not to transmit 
them at all. For example, given that a package has the property ownedMember, the 
programmer can either include or exclude all elements owned by this package. Our 
approach gives the freedom to programmers to define an arbitrary fragment, e.g. a 
package with a subset of its owned elements. 

Adaptive Parameter Passing. Lopes [14] proposes a parameter passing mechanism 
that avoids the transmission of entire graphs. The expression of subgraphs to be 
transmitted is based on the Demeter graph traversal language [12]. It expresses a 
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traversal from a specified element to visit elements reachable from it. I.e., this tra-
versal contains a set of selected paths from this element to some other elements. This 
approach considers that all elements in those paths will be included in the subgraph. 
We illustrate an example of expressing a UML model fragment. The expression 
“from Package through ownedMember to Class” expresses all paths from a Package 
element to Class elements that include at least once the edge ownedMember.  

This approach has a similar limitation to the object view approach. Demeter ex-
pressions are statically defined at the service signature level (as the types of service 
parameters). For example, let a model consists of a UML package containing N 
classes. Applying the previous expression example to this package always yield the 
same subgraph. The caller can not specify a different subgraph for each service call. 
Moreover, the caller can not specify an arbitrary fragment, such as, a subgraph con-
taining this package and a subset of its own classes. The subgraph will always contain 
all the owned classes.   

7   Conclusion and Future Works 

In this work, we propose a new parameter passing semantic for transmitting only 
fragments of models. This parameter passing offers the advantages of improving 
performance and enhancing access control to models. Our approach enables a pro-
grammer to define a scope of service parameters, so that the middleware can transmit 
and restore the model fragment specified by this scope. 

Even though we focus on models in this paper, our mechanism is also applicable in 
general-domain applications. In fact, metamodels are similar to class diagrams, which 
define abstractly data in any application domain, and models can be manipulated by 
any programming languages; therefore, our approach can be used for integrating het-
erogeneous applications in any domain, provided that they share the same abstract 
data structures.  

Our parameter passing approach has been implemented in ModelBus, which is 
available as an Eclipse open source project MDDi. The development of ModelBus is 
supported by the IST project ModelWare, which aims at promoting the successful 
application of the MDA approach. Currently, we are applying the ModelBus concepts 
for integrating industrial and research tools provided by the project partners, such as 
Objecteering (http://www.objecteering.com), Open Source Library for OCL (OSLO, 
http://oslo-project.berlios.de), and ATL model transformation engine [1].  

For future works, we aim to extend our approach to overcome the following limita-
tions. First, in this approach, the caller must have the knowledge of what model ele-
ments the service needs and must specify them in the scope parameter. For future 
works, we aim to relieve this complication from the caller by proposing an alterative 
approach that exploits the knowledge of the service about what model elements it 
needs. Our goal is to provide the service signature that can define the model elements 
that the service needs. This signature can be exploited by the caller stub to identify the 
model fragment to be passed to the service. Consequently, the caller can call the ser-
vice without having to specify the scope itself. 

Second, in this work, we do not take into account the concurrency of model modi-
fications. We assume here that the caller tool is blocked during the service invocation 
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to avoid that the caller and callee concurrently update the model, or that the caller 
concurrently apply another service that will update the same model. Our recent work 
to support concurrent model update [23] addresses the problem of how concurrent 
modifications made by different tools on the same model can be unified. For future 
work, we aim to combine the aspect of model fragment with the aspect of model up-
date concurrency. More precisely, we aim to enable each tool to make a different 
model fragment corresponding to what it needs. The fragment of one tool can overlap 
with the ones of others, and those tools are allowed to concurrently modify their 
fragment. We would like to study how to unify the concurrent modifications made to 
those overlapping fragments.  
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