
Collaborative Software Engineering on Large-scale
models: Requirements and Experience in ModelBus*

* This work has been partially supported by the ModelPlex European integrated project FP6-IP 034081 (Modeling Solutions for Complex

Systems).

Prawee Sriplakich1,2, Xavier Blanc2, Marie-Pierre Gervais2

1
INRIA Futurs

Villeneuve d'Ascq, France

Prawee.Sriplakich@inria.fr

2
Laboratoire d’Informatique de Paris 6 (LIP6)

Paris, France

{Xavier.Blanc, Marie-Pierre.Gervais}@lip.fr

ABSTRACT

This work presents an approach for realizing Model-Driven
software engineering in the distributed and multi-developers
context. It particularly focuses on the scalability problems in a
complex software project involving a large set of inter-connected
models: (1) how to manipulate large data volume with limited
computing resources, and (2) how to maintain consistency of
inter-model links in a large model set, facing to concurrent model
updates. As a solution, we propose the scalable copy-modify-

merge mechanism, which allows each developer to copy only a
model subset from the entire model set, to manipulate this subset
locally, and to merge it back to the repository. This mechanism
ensures the global consistency of the model set, particularly
against dangling links. Our approach is generic: it is applicable to
all model types (UML and Domain-Specific Models). Also, it
offers interoperability with existing, heterogeneous CASE tools.
Its prototype implementation in the ModelBus environment is
now available on the Eclipse project “MDDi”.

1. Introduction
Supporting collaboration among multiple developers in a
distributed system is an essential requirement in complex software
projects. In such as collaboration, each developer, located in a
geographically distributed environment, needs to manipulate
(create, analyze, and update) software artifacts that are shared
among the team’s members. A natural way for realizing this
collaboration is to use a distributed environment offering the
copy-modify-merge functionalities [1] – a collaborative

environment. In this environment, shared software artifacts are
stored in a server called the repository. Each developer copies
those artifacts from the repository to his (her) workspace (local
machine). Then he can manipulate them independently from the
other developers. Each developer can share the updates locally
made in his workspace with his colleagues by merging the
workspace with the repository. Therefore, the result seems as if all

team members are working on single-copy and highly-available
models.

Today, software engineering techniques are shifting to Model-
Driven Engineering (MDE), where models are the main software
artifacts. However, we identify the following difficulties in the
realizing a collaborative environment for MDE (an MDE

environment):

Scalability. Complex software engineering requires the use of
multiple models. Each model describes a particular software
module at a particular viewpoint. For example, in UML, use-case
models, interaction models, and class models can be used to
define, respectively, functional, behavioral, and structural views
of the same system. Moreover, those models are interconnected:
the links among models (inter-model links) represent relations
among views, relations among software modules [19], and
traceability relations (e.g. links between user requirements and
designs [17]). Therefore, a set of models describing a system can
be considered as a large-scale and complex data structure, which
we call a modelbase.

The size of a modelbase grows according to the system’s
complexity. Let’s consider an example of a large system
containing 25,000 classes presented by [7]. Supposing that, all
model elements for describing all views of each class (e.g.
structural, behavioral, test views) take 100 KB in average, we
estimate that all the models that completely describe this system
will be as large as 2.5 GB. However, it is difficult to manipulate
entirely the large modelbase at a time with limited computing
resources. Therefore, we identify the need to partition a large
modelbase into different parts, so that each part (each model) can
be manipulated separately.

Link consistency. Modelbase partitioning and the fact that each
model can be manipulated separately lead to the need to preserve
inter-model links, because those links represent important
software engineering information, including links among views,
links among software modules, and traceability. However,
concurrent updates can cause inconsistency regarding inter-model
links (dangling links). Moreover, facing to a large data volume,
preserving link consistency becomes more complex [12].

Besides scalability and consistency, we also consider the
following requirements, which are important for usability of the
MDE environment:

Genericity. Different models involved in a complex software
project can be expressed with different metamodels, i.e. they are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

674

of different types. Besides using UML, which proposes several
model types (use-case models, class models, interaction models,
etc.), developers can require using other model types, based on
domain-specific metamodels. Therefore, the MDE environment
must be able manage models expressed with any metamodel (both
UML models and Domain-Specific Models), not to limit
developers to a single model type.

Interoperability with existing CASE tools. Both academic and
industrial CASE tools offer different functionalities, such as
model transformation [3], model checking [18], and code
generation [4]. The MDE environment should offer developers
the freedom in using any CASE tools adapted to their projects.
Therefore, an open architecture allowing existing CASE tools to
be integrated to this environment is required.

The contributions of this work are summarized into the following
points:

1) We identify essential functionalities that an MDE environment
should provide to support collaborative software engineering.

2) We present the state of the art of the existing techniques in
object management and software merging domains to identify
their lacking points and the extensions needed.

3) We present our experience in realizing those functionalities in a
MDE environment called ModelBus. The ModelBus
implementation is available in the Eclipse project MDDi (Model
Driven Development integration; http://www.eclipse.org/mddi).
This implementation has been validated in the European project
ModelWare (http://modelware-ist.org).

This article is organized as follows: Section 2 presents in more
detail the problems of applying the copy-modify-merge paradigm
to large-scale models. Section 3 surveys related works on the
identified problems. Part 4 presents our experience in realizing
ModelBus, before a conclusion.

2. MDE Environment: Requirements
Before explaining the requirements, we first present an overview
of the copy-modify-merge paradigm. This paradigm involves three
main concepts: repository-workspace, delta extraction, and delta

integration. Repository-workspace is a system composed of a
repository and workspaces. The repository serves for storing
shared models. It must also offer version control functionality for
storing model update history, in the form of model versions. This
functionality is necessary for model merging (c.f. next paragraph),
and for the software evolution analysis along all software project
phases [25]. A workspace stores a model copy at the developer
side. It allows a developer or a tool to retrieve models from the
repository, and to commit a new model version back to the
repository.

Delta extraction and delta integration are parts of the merging
mechanism, which allows each developer to integrate his updates

contained in his workspace’s models (Vlocal version) to the

repository’s current version (Vrep), which, as a consequence of
collaborative work, can contain the concurrent updates committed
by other developers (cf. next figure). Delta extraction consists of

extracting the updates (i.e. deltas) contained in the Vlocal version,
by comparing this version with the model version that has been

initially copied from the repository (Vbase). A delta contains a set

of update commands, which express how Vbase evolves to Vlocal.
An update command can express model element creation/

deletion, and modification to an element’s attributes, including
modification to its primitive attribute, and modification to its link

attribute (an attribute containing links to elements).

Delta integration consists of applying the update commands,

contained in the deltas, to Vrep. This integration will produce the

merged version (Vmerged) containing both the updates made by
this developer and the ones concurrently made by other
developers.

Figure 1. Different model versions involved in the merging

mechanism

2.1 Requirements on the repository-

workspace system
Scalability. Although a modelbase, which contains a set of
interconnected models, can be of large size (in the order of GB), a
developer usually focuses a particular software module/ viewpoint
at a time; hence he needs to manipulate only the model subset
corresponding to this module/ viewpoint. Therefore, the

repository-workspace system should offer functionality to

partition a modelbase into several models, and should enable a
developer to retrieve the model subset that he wants to
manipulate, and to commit the model subset that he has updated.

Once a developer retrieved models from the repository, he needs
to use a variety of tools to manipulate (analyze, update) the
retrieved models. Therefore, it is necessary to offer scalability in
the way tools manipulate large-scale models. In fact, before
manipulating models, a tool needs to load the models into
memory, i.e. constructing data structures in memory for
representing the models. However, we experience a problem that,
for complex software, the models in the developer’s workspace
(on disk) may be too large to be entirely loaded into memory.
Therefore, a tool needs the ability to load only a subset of models

to memory: scalable model loading. The difficulty in realizing
this functionality concerns the management of inter-model links:
The loading mechanism must deal with links from loaded models
towards unloaded models. Moreover, the unloaded models may be
unavailable in the developer’s workspace (since the developer
may have retrieved only a model subset from the repository);
therefore, the mechanism must also deal with links to unavailable
models. As tool programmers require transparency to this
difficulty, this loading functionality should be provided by the
workspace.

Interoperability with existing CASE tools. Different tools
provided by different organizations can be implemented with
heterogeneous technology. They can be written in different
programming languages, and use different model representations
(e.g. Java, C++ objects). For interoperability with those
heterogeneous tools, the workspace must enable the tools to read/

The
developer
updates
the model.

Vrep

Vmerged Vmerged

Copy of

Vbase

Vlocal

Retrieve

Commit

The repository

Other
developers
commit their

Evolution

Vbase

This developer
commits his
updates

The developer

merges Vlocal with

Vrep.

The developer’s
workspace

675

update the retrieved models, regardless of their internal model
representations, which can be heterogeneous.

2.2 Requirements on delta extraction
- Genericity. The delta extraction principle consists of matching

elements in two model versions (Vbase and Vlocal). For each pair
of matching elements, their contents are compared to generate
update commands. For elements with no matching, the ones in

Vlocal are considered to be created elements, while the ones in

Vbase are considered to be deleted.

Element matching has been recognized as a difficult mechanism
in delta extraction [24]. It needs to identify matches among
multiple possibilities, which grow rapidly according to the
number of model elements. Concerning this matching, genericity
is required to support all model types. Therefore, the mechanism
must be able to match any model elements, which are instances of
any metaclass, even though those elements have different
attributes.

Scalability. We identify that, for scalability, partitioning a
modelbase into several models is necessary, because it enables a
developer to restrict delta extraction to a selected model subset.
However, this partitioning creates a new problem: the detection of
element moving among models, which is an essential action for
reorganizing software modules and views. Moving an element
from one model to another model reflects the moving of this
element to a new software module/ view.

Moving an element is different from deleting this element from an
source model, and creating an identical model element in the
target model: in the case of moving, all links to the moved
element must remain valid. However, this element moving would
be undetected, if the delta extraction mechanism analyzed only the
source model or only the target model. Therefore, our requirement
concerns not only scalability (delta extraction on a model subset),
but also the model reorganization support (element moving
detection).

2.3 Requirements on delta integration
The delta integration mechanism consists of applying update
commands (contained in deltas) to the repository’s model version

(Vrep). This mechanism needs to be aware of the conflicts between
the update commands to be applied and the concurrent updates
previously integrated by other developers.

In this work, we focus on the following conflicts that dedicated to
large-scale models.

2.3.1 Conflicts caused by element moving
Element moving among models is a frequently-used operation for
reorganizing or re-architecting software specification. For
instance, to re-architect class models, developers may move
classes among packages. However, facing to concurrent updates,
element moving can interfere with update commands that target
the moved elements in the following cases.

Updating moved elements. Let us consider the application of
update command U, which expresses an update to element E at
model M1. However, before the command is applied, another
developer has moved E to another model M2. Thus, this moving
will interfere with update command U, because, in the repository,
E is missing in model M1.

Moving referenced elements. Let us consider that a developer
intends to apply an element moving to the repository. Since the
developer works on a part of the modelbase, he can be unaware of
the links from the rest of the models to the element to be moved,
which will become dangling.

2.3.2 Conflicts caused by element deletion
Element deletion also interferes with update commands that target
the deleted elements in the following cases.

Creating links to deleted elements. Let us consider the
application of update command U, which expresses the link
creation to element E. However, E might have been deleted by
other developers. Thus, the created links will become dangling.

Deleting referenced elements. Let us consider that a developer
intends to apply an element deletion to the repository. Since the
developer works on a part of the modelbase, he can be unaware of
the links from the rest of the models to the deleted element, which
will become dangling.

We note that the fact that a developer manipulates only a part of
the modelbase adds difficulties to the all presented problems. If a
developer updates only a part of the modelbase, he will
concentrate on merging the updated part. However, the merging
of this part requires the analysis of the rest of the modelbase,
which may contain elements related to the updated ones, for
detecting/ solving the presented conflicts.

Moreover, this analysis should avoid exhaustive element
searching for scalability. For example, the mechanism to deal with
problem “updating moved elements” should avoid searching
exhaustively the move target locations; similarly, the mechanism
to deal with “deleting referenced elements” should avoid
searching exhaustively the links towards the elements to be
deleted.

3. Related works

3.1 Repository-workspace
OODB systems. Several works, such as [15] [16], propose an
Object-Oriented Database (OODB) system for managing storage
and version control for software artifacts. In those works, model
elements are considered to be objects managed by an OODB
system. CASE tools behave as client programs: they access (read
and write) those objects through an OODB client API, which
offers operations for retrieving objects from the server to the
workspace, manipulating (reading, writing) them, and committing
them back to the server.

On the other hand, our goal consists of building an MDE
environment that enables developers to use heterogeneous tools to
perform collaborative work. We identify that OODB systems do
not correspond to this goal for two reasons: (1) An OODB client
API is usually complex. Thus, to integrate a tool with an OODB
system, the tool programmers must spend considerable effort in
writing code against this API (up to 30% of programs [23]). (2)
The client API imposes an object representation to be used by the
client programs. On the other hand, existing tools are already
coupled with particular object representations, e.g. JMI (http://-
java.sun.com/products/jmi), EMF (http://www.eclipse.org/emf),
or proprietary representations (C++ objects [8]). Therefore, tool
programmers would suffer the impedance mismatch problem [2]
when adapting their tools with an OODB system.

676

File-based versioning systems. Another approach for managing
model storage and version control consists of using file versioning
systems, such as CVS, or Subversion. By adapting those systems,
a modelbase can be partitioned into a set of files, for scalability in
model manipulation.

There exist works on adapting a file versioning system for
collaborative model manipulation (e.g. [9]); however, few works
focus on the large-scale aspect of models. In our experience, when
multiple tools are used together in collaborative work, one tool
usually faces the problem on resolving inter-model links encoded
by other tools. Moreover, tool programmers also face difficulties
in how to make the tool manipulate a model subset, without
destroying links between this model subset and the rest of the
modelbase.

We identify that, between the two approaches, file versioning
systems are more appropriate for a MDE environment in terms of
interoperability with existing tools. A file versioning system offers
loose coupling with heterogeneous tools; i.e., it offers a simple
way to convert between the models and the tools’ internal object
representations (e.g. Java, C++ objects). Moreover, models can be
encoded as files with the XMI standard, which now supported by
a wide variety of tools. This standard simplifies the coupling of
tools with a file versioning system.

3.2 Delta extraction
Update interception. By exploring existing works, we identify
three main approaches on delta extraction. The first approach is
based on update interception [13]. In this approach, when tools
update models, the objects representing models are expected to
generate model update events, which will be recorded as update
commands. This approach has restriction on model
representations; therefore, it is not suitable for integrating
heterogeneous tools.

Model comparison based on element similarity. The second
approach consists in comparing two model versions. In this, two
elements in two model versions are matched, their contents
compared, then update commands are generated from this
comparison. Element matching is based on their similarity. To
apply this approach, heuristic matching rules need to be defined
for each type of data elements. e.g., Xing [24] proposes matching
rules for different types of elements in UML class models, such
as: two classes match if they have similar names and similar
properties; two operations match if they have similar signature.
Wang [22] proposes matching rules for XML documents, which
are restricted to tree data structures (graph comparison is not
supported). For this reason, this approach does not correspond to
our requirement on genericity: it is not applicable to all model
types. Moreover, this approach can produce false matching (false
negative and false positive), because it uses heuristic rules (Xing
[24] shows an error rate study).

Model comparison based of IDs. The third approach uses IDs for
matching model elements (e.g. [14] [9]). Each element owns a
persistent ID; therefore, two elements with the same ID from two
model versions match.

According to our study, model comparison based on ID offers a
good promise for its application in an MDE environment. First, it
offers genericity: it can match all kinds of model elements (UML
and DSM models). Moreover, unlike the approach based on
element similarity, the ID-based approach enables accurate

detection of element matching. However, to apply this approach it
is necessary to deal with ID management, facing heterogeneous
tools.

3.3 Delta integration
The survey [10] presents several works on delta integration.
Those works propose the detection of different conflict kinds,
including conflicts causing lost update; conflicts causing syntax or
semantic inconsistency. In the MDE context, a generic mechanism
for detecting lost update conflicts and syntax inconsistency
conflicts (non-conformance to metamodels) have already been
proposed in [20]. On the other hand, we do not consider semantic
conflicts, because they depend on the semantics of each model
type.

To our knowledge, the large-scale aspect of conflict detection has
not yet been addressed. In fact, existing conflict detection
mechanisms operate on an entire data structure. Those
mechanisms are not appropriate for a modelbase, which is too
large to be manipulated entirely at a time. On the other hand, an
appropriate mechanism should operate only on a specified model
subset, while preserving link consistency of the entire modelbase.

Concerning conflict resolution, Munson [11] proposes a
framework allowing developers to program their customized
conflict resolution rules. This approach is powerful, but it is only
suitable for experts. Grundy [6] proposes an interactive conflict
resolution program, which enables developers to accept or reject
conflicting commands causing conflicts. This approach offers
good control to developers; however, it is time-consuming. On the
other hand, Oda [13] proposes default automated conflict
resolution rules, which consist in accepting update commands if
their preconditions hold, or rejecting them otherwise. This
approach offers less control to developers, but it is automated.

We propose that the use of manual and automated conflict
resolutions should be combined; i.e., an MDE environment
should offer flexibility to developers in choosing the way to
resolve conflicts, either manually or automatically.

3.4 Summary
This section surveyed several works related to repository-
workspace systems, delta extraction, and delta integration. This
survey revealed the concepts that can be reused, i.e. the use of
file-based versioning systems for interoperability with
heterogeneous tools; the use of IDs in delta extraction for
achieving genericity; and the use of existing conflict detection
rules in delta integration. However, we also identified lacking
points of those works – ability to manage large-scale,
interconnected models. More precisely, few works focus on the
management of model partitioning and inter-model links (e.g.
detecting element moving among models, then repairing
references towards them). To our knowledge, recent CASE tools
supporting collaborative model edition, such as IBM Rational
Software Architect or MagicDraw, do not handle those problems.

4. Experience in ModelBus
This section reports our experience in realizing the ModelBus
environment. Only core concepts of ModelBus are presented here
(please refer to the Ph.D. thesis [21] for more details).

ModelBus reuses a file versioning system (specifically CVS) for
storing models. It allows each developer to retrieve models from
the CVS repository to his workspace (cf. fig. 2, step 1), then to

677

use any tools to manipulate the retrieved models (step 2), and
finally to merge and commit the models to the repository (step 3).
ModelBus offers two components for supporting those actions:
WorkspaceManager and Tool Adapter.

Figure 2. Overview of ModelBus

WorkspaceManager enables the developer to retrieve models from
the repository, to merge the models, and to commit them back to
the repository. It extends a CVS client with model merging
functionalities (delta extraction and delta integration). This
component can interoperate with any CASE tools used by the
developer by sharing XMI files with them.

Tool Adapter allows a CASE tool to be integrated with the
ModelBus environment: It enables the tool to manipulate the
workspace’s models transparently to model encoding. In
particular, it offers functionality for converting models stored as
XMI files in the workspace to objects in memory, according to the
tool’s model representation.

4.1 Extension to the file versioning system
Model partitioning and link encoding. In ModelBus, each
model is stored in the repository and in workspaces as an XMI
file. A model is identified with the file path, which is relative to

the repository’s root directory (e.g. /module1/model1.xml). Each
model element is encoded as an XML element. It owns a

persistent ID, which is stored in XML attribute xmi:id. Its content
(sub XML elements, or attributes) can include links towards other
model elements. A link is encoded in the form: the target model’s

file path # the linked element’s ID. If the linked element is in the
same model, the target model’s file path can be omitted.

Our contribution consists of proposing a specific use of XMI with
the following characteristics: (1) It ensures the availability of
element IDs, which are necessary for model merging. (2) It
formalizes the encoding of links between models to avoid the
ambiguity in link resolution (when tools try to navigate through
the links). We propose that the directory structure of the models in
the developer’s workspace remain the same as the one in the

repository (e.g. if R is the root directory of the developer’s

workspace, then the file /module1/model1.xml in the repository must

be placed at the R/module1/model1.xml in the workspace).
Therefore, the links encoded according to our approach can be
resolved without ambiguity in all developers’ workspaces. (3)
Our addressing scheme is suitable for large-scale models (using
model path and ID). It enables efficient link resolution without
exhaustive search of linked elements in the entire modelbase.

Scalable model loading. Tool Adapter offers load and save
operations for enabling tools to manipulate models in the
workspace. Its added values consist in (1) masking the ID
management from the tool, (2) offering the scalable model loading
mechanism for scalability. This mechanism applies the previously
described link encoding and resolution convention.

 ID management consists of preserving IDs when a model is
loaded in memory, and then saved back. Tool Adapter uses an ID

table for maintaining the associations between IDs and the model

objects, which represent model elements in memory. The ID table
management is transparent to tools. The ID table contains entries
<ID, the pointer to the model object>. When a model is loaded,
Tool Adapter inserts entries to the ID table. During model saving,
Tool Adapter writes those IDs back together with the model. For
the new model elements, Tool Adapter automatically assigns IDs
to them. It generates IDs with the UUID (Universally Unique
Identifier) standard, which ensures ID uniqueness.

Concerning ID management, our contribution concerns the
following points: (1) Tool Adapter ensures the transparency of ID
management regarding tools. (2) Our approach is applicable to all
model representations, as the ID table entries can point to any
objects (Java, C++, etc). (3) It offers scalability in terms of
memory usage. The ID table’s size changes according to the
models currently loaded in memory. We apply the weak pointer
concept [5], so that, when models are unloaded from memory, the
corresponding ID table’s entries will be automatically removed
together with the models.

Concerning scalable model loading, Tool Adapter enables a tool
to load a set of interconnected models in the on-demand manner.

Its load operation enables the tool to select the models to be
initially loaded to memory. It returns a set of corresponding model
objects to the tool. The tool can manipulate those objects, and
navigates through their links. When the tool attempts to navigate
to a model not yet loaded, Tool Adapter automatically loads this
model to memory, and resolves the link to the linked model
object. However, if the model does not exist in the workspace,
Tool Adapter returns an empty object, which informs the tools of
the model unavailability.

We note that Tool Adapter is a component that depends on the
model representation used by each tool. Moreover, the on-demand
loading functionality can be realized only when the model
representation enables Tool Adapter to intercept navigation
towards unloaded models. An example of such model
representations is EMF.

On the other hand, for model representations lacking navigation
interception support, we propose an alternative mechanism, which
consists of allowing the tool to explicitly specify all models that it
wants to load. In this case, Tool Adapter will disable the links
from the loaded models to the unloaded models. We prefer
disabling those links, rather than loading the linked models
recursively, in order to avoid high memory consumption.

4.2 Delta extraction
In order to merge models, the developer executes the command

merge (of WorkspaceManager), and specifies a set of models to be
merged. WorkspaceManager begins model merging by extracting

deltas from those models. To do so, it retrieves the Vbase version

of those models from the repository. Then it compares the Vbase-

XMI

Workspace
Manager

Tool Adapter

File repository

server (CVS)

Any CASE tool
Step 2: use a tool for
manipulating models

Step 2.1: invoke load()
Step 2.2: invoke save()

Step 1: Retrieve
Step 3: Merge/
commit

ModelBus environment

Retrieve/
commit files

Developer

The workspace’s
models XMI

678

version models with the Vlocal-version models (in the workspace)
for generating update commands.

Delta metamodel. We represent update commands in the form of
models as well; i.e., we define the delta metamodel (cf. fig. 4),
which define the update commands’ structures. This metamodel

contains the following metaclasses: Delta groups all update

commands that affect a given model. UpdateCommand is a super
type of all update commands. It specifies the context element,
which the command involves, using its ID (cf. meta-attribute

contextElemID). Create represents creation of an element. Delete

represents deletion of an element. Move represents element
moving to a target model, specified with a path (cf. meta-attribute

targetModelPath). ModifyPrimitiveAtt, InsertRef, RemoveRef represent

changes to an element’s attributes. ModifyPrimitiveAtt represents

changes to a primitive attribute, while InsertLink/ RemoveLink

represent changes to a link attribute: link insertion/ removal. A
link to be inserted/ removed is denoted by the element’s ID and

the model’s path (cf. metaclass Link). InsertLink also supports
changes to the ordered link attribute: it specifies the position to

insert a link sequence (cf. meta-attribute positonAfter). This
metamodel offers the following new features dedicated to large-
scale models. (1) It expresses element moving, an essential action
for reorganizing the partitioning of a modelbase. (2) It is based
on the scalable addressing scheme, which enables us to link
update commands to the involved elements in a large modelbase.

RemoveLink

property : String

removedLinks : Link[]

InsertLink

property : String

insertedLinks : Link[]

positionAfter : Link

DeleteCreate ModifyPrimitiveAtt

property : String

newValue : PrimitiveType

UpdateCommand

contextElemID : String

type : MetaClass

Delta

modelPath : String **

Link

id : String

modelPath : String

Move

targetModelPath : String

Figure 4. Delta metamodel

- Comparison mechanism. Our comparison mechanism is based
on IDs (similar to [14] [9]). It consists of matching elements in
two model versions, determining new elements, deleted elements,
elements whose content is changed, and finally generating
corresponding update commands. This mechanism offers the
following new features. (1) It detects element moving. For two
matching elements, if the mechanism determines that both

elements belong to different models, it will generate a Move
command. (2) It offers scalability. It can compare (two versions
of) each model separately, so it reduces the amount of data to be
loaded in memory at a time. The only case where multiple models
need to be examined simultaneously is when elements are moved
among those models.

4.3 Delta integration
In order to produce the merged version (Vmerged),

WorkspaceManager retrieves the Vrep-version models from the
repository, and applies the update commands to them. Then it
commits the results back to the repository. During the command
application, WorkspaceManager detects the lost update conflicts
and ensures the consistency of the modelbase. We handle the link
inconsistency problems caused by element moving and deletion as
follows:

4.3.1 Handling element moving
We present the following solutions to the problems identified in
section 2.3:

Solution for “updating moved elements”. This problem is
caused by the previous committer’s moving commands that
invalidate the current committer’s the update commands. Let’s

suppose that one developer has moved element E from a source

model Msrc to target model Mtar, and commits this change.

Concurrently, another developer updates E. Then, he merges his
update after the previous committer. Consequently,

WorkspaceManager will detect that E is missing in Msrc, but it

does not know whether E has been moved or deleted, and, in the
case of moving, what the target model is.

For scalability, exhaustive search of the move target in the
modelbase should be avoided. Therefore, we propose that
WorkspaceManager maintains element moving history for each
model, and stores it together with the model in the repository.
This moving history is stored in a file called MoveLog, which is
associated with each model. A MoveLog file contains a set of
entries: deletion entries, and move entries. A deletion entry
informs about an element’s deletion, while a move entry informs
about an element’s moving from this model and also the move
target model.

Therefore, to adapt an update command to missing element E in

Msrc, WorkspaceManager examines Msrc’s MoveLog file, then it

can identify whether E has been deleted or moved. Let’s suppose

E has been moved, to apply a command involving E,
WorkspaceManager will identify the move target model (Mtar).
Consequently, it will adapt the command accordingly to the move
target model: it will apply the command to Mtar.

Solution for “moving referenced elements”. This problem
occurs when the developer’s move commands invalidate the
existing links in the modelbase. Let’s suppose that the developer

wants to move element E from model Msrc to Mtar. The existing

links to E in the entire modelbase need to be repaired, so that they

point to Mtar.

For scalability, we aim to avoid exhaustive search for locating all

links to E. Therefore, we propose that WorkspaceManager
maintains index files and store those files together with the
models in the repository. Each of those index files, called
RefIndex, is associated to a model. It informs about all elements
in other models that contain links to the elements in this model.
WorkspaceManager updates RefIndex files each time a developer
commits his updates: link insertion results in new entries in the
RefIndex files, while link removal results in entry deletion in the
RefIndex files.

Therefore, in order to repair links to a moved element E, first
WorkspaceManager examines the RefIndex file associated with

the model which is the source of moving (Msrc). Then, it locates

all models owning links to E in the modelbase, without exhaustive
search. Next, it retrieves those models from the repository,
updates links in those models, and commits them together with
the models that the developer explicitly commits.

4.3.2 Handling element deletion
We provide the following solution to the conflicts caused by
element deletion, identified in Section 3.2.2.

679

Solution for “creating links to deleted elements”. During
command application, WorkspaceManager detects whether the
elements referred to by a command is missing. Then, it will use
the location mechanism (previously described) for determining
whether the missing elements have been deleted or moved. In the
case of deletion, the command will be marked as conflicting. The
developer can choose to resolve this conflict either by applying
our automated conflict resolution rules, or manually. We propose
the following automated conflict resolution rules that the
developer can choose: (a) the conflicting command is cancelled.
(b) WorkspaceManager restores the deleted elements by copying

them from Vbase to Vrep. For manual conflict resolution,
WorkspaceManager enables the developer to manually edit the
merged models before committing them to the repository, so that
he can manually repair the model inconsistency.

Solution for “deleting referenced elements”. Before

WorkspaceManager applies a Delete command, it needs to verify
that there is no link to the element to be deleted. In fact,

WorkspaceManager applies Delete commands after RemoveLink
commands, to remove links to the to-be-deleted elements first.
However, since there can exist links originating from outside the
model subset to be merged towards the to-be-deleted elements,
which would become dangling links, WorkspaceManager needs to
verify that no such link exists. To so do, it examines the RefIndex
files, as previously described. If it detects potential dangling links,

then it will mark the Delete command as conflicting. The
developer can choose to resolve this conflict either by applying
our automated conflict resolution rules, or manually. We propose
the following automated conflict resolution rules that the

developer can choose: (a) The conflicting Delete command is
cancelled. (b) WorkspaceManager removes all the dangling links
from the modelbase.

4.4 Example
Figure 3 illustrates a model merging example with ModelBus. In

this example, the modelbase contains four UML class models (p1,

p2, p3, p4). Each model can contain a set of UML classes, and the
classes in different models can be interconnected. Two developers
(Bob and Tom) retrieve these models (or subsets of them) to their
workspace, and concurrently modify them. Then, Bob integrates
his updates to the repository before Tom. When Tom integrates
his updates, ModelBus will adapt the command “insert link

C5�C4”, according to the moving of C4 (cf. problem “updating
moved elements”). Moreover, ModelBus also repair the link

C6�C2 according to the moving of C2 (cf. problem “moving
referenced elements”).

This example also shows the detection of dangling link conflicts.

ModelBus detects that the command of Tom “insert link C5�C3”

is invalid, because C3 has been deleted by Bob (cf. problem
“crating links to deleted elements”). The dangling link caused by

command “delete C1” is also detected, since Bob has previously

inserted the link C6�C1 (cf. problem “deleting referenced
elements”).

Figure 3. A model merging example

4.5 Implementation
The ModelBus implementation is available as an Eclipse project
MDDi. This implementation is composed of the
WorkspaceManager and Tool Adapter components. Tool Adapter
is implemented in the form of an API, which existing CASE tools
can call for loading and saving large-scale models. This
component depends on the model representations used by the
tools. The current implementation supports the EMF model
representation, which is widely used by recent CASE tools. We
estimate that implementing Tool Adapter for other model
representations is not costly for tool programmers who want to
adapt their tools to our approach. In fact, tool programmers can
reuse existing XMI import/export modules for building Tool
Adapter.

The WorkspaceManager implementation is independent from the
CASE tools that are integrated with ModelBus: it can be executed
as a separate program. It is composed of modules that manage the
interaction with a CVS repository, and that perform the merging
mechanism. It also offers user interfaces to developers (for
retrieving, merging and committing models) through the Eclipse
workbench.

ModelBus has been validated in the European project
ModelWare. It offers the interoperability among multiple CASE
tools which are provided by project partners (18 tools have been
integrated so far).

5. Conclusion and future works
In this work, we have identified the key requirements on
supporting collaborative work on large-scale models. Those
requirements are not completely supported by OODB systems
(since they lack tool interoperability), neither by existing model
merging approaches (since they do not consider data partitioning).
Then, we presented our experience in realizing ModelBus. Our
solution can be adapted to current software projects, either by
advanced developers or tool implementers, for solving difficulties
in managing traceability links and inter-view links among models,
which are currently scattered in different tools and different

p3

C6

b. Vlocal In Tom’s workspace
Updates: Delete C1; Move C2 to P2;

Create C5; Insert links C5�C3, C5�C4

c. Vrep The modelbase integrated with
Bob’s updates: Delete C3; Move C4 to P4;
Create C6; Insert links C6�C1, C6�C2

d. Vmerged

Repaired
links

Dangling
links
detected

C1

p2

C2
C3

p1

C4

p4

C1

p2

C2

C3
p1

C4

p3

C1

p2

C2
C3

p1

C4

p4

C1

p2

C2

C3
p1

C4 C6

p3 p4
C5

C5

Links between classes

C

Notation
Moved class

Deleted class

a. Vbase Initial state of the
modelbase containing four UML
class models: p1, p2, p3, and p4.

680

developers’ machines. We also note that our solution takes into
account its usability in real software projects (interoperability with
existing tools and genericity to all model types). Our approach
does show the ability to limit the data amount to be processed at a
time (for both model loading and model merging). For the future,
we consider reporting performance measurements on different
model merging scenarios. We aim to realize this task in the
ModelPlex project (the follow-up project of ModelWare).

6. REFERENCES
[1] E. W. Adams, M. Honda, T.C. Miller, Object Management
in a CASE Environment, Int’l Conf. on Software Engineering
(ICSE), 1989.
[2] M. L. Barja et al., An Effective Deductive Object-Oriented
Database Through Language Integration, Int’l Conf. on Very
Large Data Bases, 1994.
[3] J. Bézivin S. Hammoudi, D. Lopes, F. Jouault, Applying
MDA Approach for Web Service Platform, EDOC Conf., 2004.
[4] F. J. Budinsky, M.A. Finnie, J.M. Vlissides, P.S. Yu,
Automatic Code Generation from Design Patterns, IBM Systems
Journal, 1996.
[5] R. K. Dybvig, C. Bruggeman, D. Eby, Guardians in a
Generation-Based Garbage Collector, ACM SIGPLAN Notices,
28(6), 1993.
[6] J. Grundy, J. Hosking, W.B. Mugridge, Inconsistency
management for multiple-view software development
environments, IEEE Trans. on Software Engineering 24(11),
1998.
[7] F. van Ham, Using Multilevel Call Matrices in Large
Software Projects, IEEE Symp. on Information Visualization,
2003.
[8] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, The
Generic Modeling Environment, Workshop on Intelligent Signal
Processing, IEEE, 2001.
[9] A. Mehra, J. Grundy, J. Hosking, A Generic Approach to
Supporting Diagram Differencing and Merging for Collaborative
Design, IEEE/ACM Conf. on Automated Software Engineering
(ASE), 2005.
[10] T. Mens, A state-of-the-art survey on software merging,
IEEE Trans. on Software Engineering, 28(5), 2002.
[11] J.P. Munson, P. Dewan, A Flexible Object Merging
Framework, ACM Conf. on Computer Supported Cooperative
Work (CSCW), 1994.
[12] C. Nentwich, L. Capra, W. Emmerich, A. Finkelstein,

xlinkit: A Consistency Checking and Smart Link Generation
Service, ACM Trans. on Internet Technology 2(2), 2002.
[13] T. Oda, M. Saeki, Generative Technique for Version
Control Systems for Software Diagrams, IEEE Int’l Conf. on
Software Maintenance (ICSM), 2005.
[14] D. Ohst, M Welle, U. Kelter, Difference Tools for Analysis
and Design Documents, IEEE Int’l Conf. on Software
Maintenance (ICSM), 2003.
[15] C. Oussalah, C. Urtado, Complex Object Versioning, Int’l
Conf. on Advanced information Systems Engineering (CAiSE),
LNCS, 1997.
[16] J. Rho, C. Wu, An Efficient Version Model of Software
Diagrams, Asia-Pacific Software Engineering Conf. (APSEC),
IEEE, 1998.
[17] J. Richardson, J. Green, Automating Traceability for
Generated Software Artifacts, IEEE Conf. on Automated Software
Engineering (ASE), 2004.
[18] M. Richters, M. Gogolla, Validating UML Models and OCL
Constraints, UML Conf., 2000.
[19] P. Sriplakich, X. Blanc, M.-P. Gervais, Applying Model
Fragment Copy-Restore to Build an Open and Distributed MDA
Environment, MoDELS/UML Conf., 2006.
[20] P. Sriplakich, X. Blanc, M.-P. Gervais, Supporting
Collaborative Development in an Open MDA Environment, IEEE
Int’l Conf. on Software Maintenance (ICSM), 2006.
[21] P. Sriplakich, ModelBus – An Open and Distributed
Environment for Model Driven Engineering, Ph.D. Thesis,
University Pierre and Marie Curie, http://www-
src.lip6.fr/homepages/Prawee.Sriplakich, September 2007.
[22] Y. Wang, D.J. Dewitt, J-Y. Cai, X-Diff: An Effective
Change Detection Algorithm for XML Documents, IEEE Conf.
on Data Engineering, 2003.
[23] D. L. Wells, J. A. Blakeley, C. W. Thompson, Architecture
of an Open Object-Oriented Database Management System, IEEE
Computer 25(10), 1992.
[24] Z. Xing, E. Stroulia, UMLDiff: an Algorithm for object-
oriented design differencing, IEEE/ACM Conf. on Automated
Software Engineering (ASE), 2005.
[25] Z. Xing, E. Stroulia, Refactoring Practice: How it is and
How it Should be Supported - An Eclipse Case Study, IEEE Int’l
Conf. on Software Maintenance (ICSM), 2006.

681

