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ABSTRACT 

This work presents an approach for realizing Model-Driven 
software engineering in the distributed and multi-developers 
context. It particularly focuses on the scalability problems in a 
complex software project involving a large set of inter-connected 
models: (1) how to manipulate large data volume with limited 
computing resources, and (2) how to maintain consistency of 
inter-model links in a large model set, facing to concurrent model 
updates. As a solution, we propose the scalable copy-modify-

merge mechanism, which allows each developer to copy only a 
model subset from the entire model set, to manipulate this subset 
locally, and to merge it back to the repository. This mechanism 
ensures the global consistency of the model set, particularly 
against dangling links. Our approach is generic: it is applicable to 
all model types (UML and Domain-Specific Models). Also, it 
offers interoperability with existing, heterogeneous CASE tools. 
Its prototype implementation in the ModelBus environment is 
now available on the Eclipse project “MDDi”.   

1. Introduction 
Supporting collaboration among multiple developers in a 
distributed system is an essential requirement in complex software 
projects. In such as collaboration, each developer, located in a 
geographically distributed environment, needs to manipulate 
(create, analyze, and update) software artifacts that are shared 
among the team’s members. A natural way for realizing this 
collaboration is to use a distributed environment offering the 
copy-modify-merge functionalities [1] – a collaborative 

environment. In this environment, shared software artifacts are 
stored in a server called the repository. Each developer copies 
those artifacts from the repository to his (her) workspace (local 
machine). Then he can manipulate them independently from the 
other developers. Each developer can share the updates locally 
made in his workspace with his colleagues by merging the 
workspace with the repository. Therefore, the result seems as if all 

team members are working on single-copy and highly-available 
models. 

Today, software engineering techniques are shifting to Model-
Driven Engineering (MDE), where models are the main software 
artifacts. However, we identify the following difficulties in the 
realizing a collaborative environment for MDE (an MDE 

environment): 

Scalability. Complex software engineering requires the use of 
multiple models. Each model describes a particular software 
module at a particular viewpoint. For example, in UML, use-case 
models, interaction models, and class models can be used to 
define, respectively, functional, behavioral, and structural views 
of the same system. Moreover, those models are interconnected: 
the links among models (inter-model links) represent relations 
among views, relations among software modules [19], and 
traceability relations (e.g. links between user requirements and 
designs [17]). Therefore, a set of models describing a system can 
be considered as a large-scale and complex data structure, which 
we call a modelbase. 

The size of a modelbase grows according to the system’s 
complexity. Let’s consider an example of a large system 
containing 25,000 classes presented by [7]. Supposing that, all 
model elements for describing all views of each class (e.g. 
structural, behavioral, test views) take 100 KB in average, we 
estimate that all the models that completely describe this system 
will be as large as 2.5 GB. However, it is difficult to manipulate 
entirely the large modelbase at a time with limited computing 
resources. Therefore, we identify the need to partition a large 
modelbase into different parts, so that each part (each model) can 
be manipulated separately. 

Link consistency. Modelbase partitioning and the fact that each 
model can be manipulated separately lead to the need to preserve 
inter-model links, because those links represent important 
software engineering information, including links among views, 
links among software modules, and traceability. However, 
concurrent updates can cause inconsistency regarding inter-model 
links (dangling links). Moreover, facing to a large data volume, 
preserving link consistency becomes more complex [12].  

Besides scalability and consistency, we also consider the 
following requirements, which are important for usability of the 
MDE environment: 

Genericity. Different models involved in a complex software 
project can be expressed with different metamodels, i.e. they are 
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of different types. Besides using UML, which proposes several 
model types (use-case models, class models, interaction models, 
etc.), developers can require using other model types, based on 
domain-specific metamodels. Therefore, the MDE environment 
must be able manage models expressed with any metamodel (both 
UML models and Domain-Specific Models), not to limit 
developers to a single model type.  

Interoperability with existing CASE tools. Both academic and 
industrial CASE tools offer different functionalities, such as 
model transformation [3], model checking [18], and code 
generation [4]. The MDE environment should offer developers 
the freedom in using any CASE tools adapted to their projects. 
Therefore, an open architecture allowing existing CASE tools to 
be integrated to this environment is required.  

The contributions of this work are summarized into the following 
points:  

1) We identify essential functionalities that an MDE environment 
should provide to support collaborative software engineering.  

2) We present the state of the art of the existing techniques in 
object management and software merging domains to identify 
their lacking points and the extensions needed. 

3) We present our experience in realizing those functionalities in a 
MDE environment called ModelBus. The ModelBus 
implementation is available in the Eclipse project MDDi (Model 
Driven Development integration; http://www.eclipse.org/mddi). 
This implementation has been validated in the European project 
ModelWare (http://modelware-ist.org).  

This article is organized as follows: Section 2 presents in more 
detail the problems of applying the copy-modify-merge paradigm 
to large-scale models. Section 3 surveys related works on the 
identified problems. Part 4 presents our experience in realizing 
ModelBus, before a conclusion. 

2. MDE Environment: Requirements  
Before explaining the requirements, we first present an overview 
of the copy-modify-merge paradigm. This paradigm involves three 
main concepts: repository-workspace, delta extraction, and delta 

integration. Repository-workspace is a system composed of a 
repository and workspaces. The repository serves for storing 
shared models. It must also offer version control functionality for 
storing model update history, in the form of model versions. This 
functionality is necessary for model merging (c.f. next paragraph), 
and for the software evolution analysis along all software project 
phases [25]. A workspace stores a model copy at the developer 
side. It allows a developer or a tool to retrieve models from the 
repository, and to commit a new model version back to the 
repository.  

Delta extraction and delta integration are parts of the merging 
mechanism, which allows each developer to integrate his updates 

contained in his workspace’s models (Vlocal version) to the 

repository’s current version (Vrep), which, as a consequence of 
collaborative work, can contain the concurrent updates committed 
by other developers (cf. next figure). Delta extraction consists of 

extracting the updates (i.e. deltas) contained in the Vlocal version, 
by comparing this version with the model version that has been 

initially copied from the repository (Vbase). A delta contains a set 

of update commands, which express how Vbase evolves to Vlocal. 
An update command can express model element creation/ 

deletion, and modification to an element’s attributes, including 
modification to its primitive attribute, and modification to its link 

attribute (an attribute containing links to elements).  

Delta integration consists of applying the update commands, 

contained in the deltas, to Vrep. This integration will produce the 

merged version (Vmerged) containing both the updates made by 
this developer and the ones concurrently made by other 
developers. 

 

 

Figure 1. Different model versions involved in the merging 

mechanism  

2.1 Requirements on the repository-

workspace system 
Scalability. Although a modelbase, which contains a set of 
interconnected models, can be of large size (in the order of GB), a 
developer usually focuses a particular software module/ viewpoint 
at a time; hence he needs to manipulate only the model subset 
corresponding to this module/ viewpoint. Therefore, the 

repository-workspace system should offer functionality to 

partition a modelbase into several models, and should enable a 
developer to retrieve the model subset that he wants to 
manipulate, and to commit the model subset that he has updated.  

Once a developer retrieved models from the repository, he needs 
to use a variety of tools to manipulate (analyze, update) the 
retrieved models. Therefore, it is necessary to offer scalability in 
the way tools manipulate large-scale models. In fact, before 
manipulating models, a tool needs to load the models into 
memory, i.e. constructing data structures in memory for 
representing the models. However, we experience a problem that, 
for complex software, the models in the developer’s workspace 
(on disk) may be too large to be entirely loaded into memory. 
Therefore, a tool needs the ability to load only a subset of models 

to memory: scalable model loading. The difficulty in realizing 
this functionality concerns the management of inter-model links: 
The loading mechanism must deal with links from loaded models 
towards unloaded models. Moreover, the unloaded models may be 
unavailable in the developer’s workspace (since the developer 
may have retrieved only a model subset from the repository); 
therefore, the mechanism must also deal with links to unavailable 
models. As tool programmers require transparency to this 
difficulty, this loading functionality should be provided by the 
workspace.  

Interoperability with existing CASE tools. Different tools 
provided by different organizations can be implemented with 
heterogeneous technology. They can be written in different 
programming languages, and use different model representations 
(e.g. Java, C++ objects). For interoperability with those 
heterogeneous tools, the workspace must enable the tools to read/ 
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update the retrieved models, regardless of their internal model 
representations, which can be heterogeneous. 

2.2 Requirements on delta extraction 
- Genericity. The delta extraction principle consists of matching 

elements in two model versions (Vbase and Vlocal). For each pair 
of matching elements, their contents are compared to generate 
update commands. For elements with no matching, the ones in 

Vlocal are considered to be created elements, while the ones in 

Vbase are considered to be deleted. 

Element matching has been recognized as a difficult mechanism 
in delta extraction [24]. It needs to identify matches among 
multiple possibilities, which grow rapidly according to the 
number of model elements. Concerning this matching, genericity 
is required to support all model types. Therefore, the mechanism 
must be able to match any model elements, which are instances of 
any metaclass, even though those elements have different 
attributes.  

Scalability. We identify that, for scalability, partitioning a 
modelbase into several models is necessary, because it enables a 
developer to restrict delta extraction to a selected model subset. 
However, this partitioning creates a new problem: the detection of 
element moving among models, which is an essential action for 
reorganizing software modules and views. Moving an element 
from one model to another model reflects the moving of this 
element to a new software module/ view.  

Moving an element is different from deleting this element from an 
source model, and creating an identical model element in the 
target model: in the case of moving, all links to the moved 
element must remain valid. However, this element moving would 
be undetected, if the delta extraction mechanism analyzed only the 
source model or only the target model. Therefore, our requirement 
concerns not only scalability (delta extraction on a model subset), 
but also the model reorganization support (element moving 
detection). 

2.3 Requirements on delta integration 
The delta integration mechanism consists of applying update 
commands (contained in deltas) to the repository’s model version 

(Vrep). This mechanism needs to be aware of the conflicts between 
the update commands to be applied and the concurrent updates 
previously integrated by other developers. 

In this work, we focus on the following conflicts that dedicated to 
large-scale models.  

2.3.1 Conflicts caused by element moving 
Element moving among models is a frequently-used operation for 
reorganizing or re-architecting software specification. For 
instance, to re-architect class models, developers may move 
classes among packages. However, facing to concurrent updates, 
element moving can interfere with update commands that target 
the moved elements in the following cases.  

Updating moved elements. Let us consider the application of 
update command U, which expresses an update to element E at 
model M1. However, before the command is applied, another 
developer has moved E to another model M2. Thus, this moving 
will interfere with update command U, because, in the repository, 
E is missing in model M1.  

Moving referenced elements. Let us consider that a developer 
intends to apply an element moving to the repository. Since the 
developer works on a part of the modelbase, he can be unaware of 
the links from the rest of the models to the element to be moved, 
which will become dangling.  

2.3.2 Conflicts caused by element deletion  
Element deletion also interferes with update commands that target 
the deleted elements in the following cases. 

Creating links to deleted elements. Let us consider the 
application of update command U, which expresses the link 
creation to element E. However, E might have been deleted by 
other developers. Thus, the created links will become dangling.  

Deleting referenced elements. Let us consider that a developer 
intends to apply an element deletion to the repository. Since the 
developer works on a part of the modelbase, he can be unaware of 
the links from the rest of the models to the deleted element, which 
will become dangling. 

We note that the fact that a developer manipulates only a part of 
the modelbase adds difficulties to the all presented problems. If a 
developer updates only a part of the modelbase, he will 
concentrate on merging the updated part. However, the merging 
of this part requires the analysis of the rest of the modelbase, 
which may contain elements related to the updated ones, for 
detecting/ solving the presented conflicts.  

Moreover, this analysis should avoid exhaustive element 
searching for scalability. For example, the mechanism to deal with 
problem “updating moved elements” should avoid searching 
exhaustively the move target locations; similarly, the mechanism 
to deal with “deleting referenced elements” should avoid 
searching exhaustively the links towards the elements to be 
deleted.   

3. Related works 

3.1 Repository-workspace  
OODB systems. Several works, such as [15] [16], propose an 
Object-Oriented Database (OODB) system for managing storage 
and version control for software artifacts. In those works, model 
elements are considered to be objects managed by an OODB 
system. CASE tools behave as client programs: they access (read 
and write) those objects through an OODB client API, which 
offers operations for retrieving objects from the server to the 
workspace, manipulating (reading, writing) them, and committing 
them back to the server. 

On the other hand, our goal consists of building an MDE 
environment that enables developers to use heterogeneous tools to 
perform collaborative work. We identify that OODB systems do 
not correspond to this goal for two reasons: (1) An OODB client 
API is usually complex. Thus, to integrate a tool with an OODB 
system, the tool programmers must spend considerable effort in 
writing code against this API (up to 30% of programs [23]). (2) 
The client API imposes an object representation to be used by the 
client programs. On the other hand, existing tools are already 
coupled with particular object representations, e.g. JMI (http://-
java.sun.com/products/jmi), EMF (http://www.eclipse.org/emf), 
or proprietary representations (C++ objects [8]). Therefore, tool 
programmers would suffer the impedance mismatch problem [2] 
when adapting their tools with an OODB system. 
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File-based versioning systems. Another approach for managing 
model storage and version control consists of using file versioning 
systems, such as CVS, or Subversion. By adapting those systems, 
a modelbase can be partitioned into a set of files, for scalability in 
model manipulation. 

There exist works on adapting a file versioning system for 
collaborative model manipulation (e.g. [9]); however, few works 
focus on the large-scale aspect of models. In our experience, when 
multiple tools are used together in collaborative work, one tool 
usually faces the problem on resolving inter-model links encoded 
by other tools. Moreover, tool programmers also face difficulties 
in how to make the tool manipulate a model subset, without 
destroying links between this model subset and the rest of the 
modelbase. 

We identify that, between the two approaches, file versioning 
systems are more appropriate for a MDE environment in terms of 
interoperability with existing tools. A file versioning system offers 
loose coupling with heterogeneous tools; i.e., it offers a simple 
way to convert between the models and the tools’ internal object 
representations (e.g. Java, C++ objects). Moreover, models can be 
encoded as files with the XMI standard, which now supported by 
a wide variety of tools. This standard simplifies the coupling of 
tools with a file versioning system.  

3.2 Delta extraction 
Update interception. By exploring existing works, we identify 
three main approaches on delta extraction. The first approach is 
based on update interception [13]. In this approach, when tools 
update models, the objects representing models are expected to 
generate model update events, which will be recorded as update 
commands. This approach has restriction on model 
representations; therefore, it is not suitable for integrating 
heterogeneous tools.  

Model comparison based on element similarity. The second 
approach consists in comparing two model versions. In this, two 
elements in two model versions are matched, their contents 
compared, then update commands are generated from this 
comparison. Element matching is based on their similarity. To 
apply this approach, heuristic matching rules need to be defined 
for each type of data elements. e.g., Xing [24] proposes matching 
rules for different types of elements in UML class models, such 
as: two classes match if they have similar names and similar 
properties; two operations match if they have similar signature. 
Wang [22] proposes matching rules for XML documents, which 
are restricted to tree data structures (graph comparison is not 
supported). For this reason, this approach does not correspond to 
our requirement on genericity: it is not applicable to all model 
types. Moreover, this approach can produce false matching (false 
negative and false positive), because it uses heuristic rules (Xing 
[24] shows an error rate study). 

Model comparison based of IDs. The third approach uses IDs for 
matching model elements (e.g. [14] [9]). Each element owns a 
persistent ID; therefore, two elements with the same ID from two 
model versions match.  

According to our study, model comparison based on ID offers a 
good promise for its application in an MDE environment. First, it 
offers genericity: it can match all kinds of model elements (UML 
and DSM models). Moreover, unlike the approach based on 
element similarity, the ID-based approach enables accurate 

detection of element matching. However, to apply this approach it 
is necessary to deal with ID management, facing heterogeneous 
tools.  

3.3 Delta integration  
The survey [10] presents several works on delta integration. 
Those works propose the detection of different conflict kinds, 
including conflicts causing lost update; conflicts causing syntax or 
semantic inconsistency. In the MDE context, a generic mechanism 
for detecting lost update conflicts and syntax inconsistency 
conflicts (non-conformance to metamodels) have already been 
proposed in [20]. On the other hand, we do not consider semantic 
conflicts, because they depend on the semantics of each model 
type.  

To our knowledge, the large-scale aspect of conflict detection has 
not yet been addressed. In fact, existing conflict detection 
mechanisms operate on an entire data structure. Those 
mechanisms are not appropriate for a modelbase, which is too 
large to be manipulated entirely at a time. On the other hand, an 
appropriate mechanism should operate only on a specified model 
subset, while preserving link consistency of the entire modelbase.  

Concerning conflict resolution, Munson [11] proposes a 
framework allowing developers to program their customized 
conflict resolution rules. This approach is powerful, but it is only 
suitable for experts. Grundy [6] proposes an interactive conflict 
resolution program, which enables developers to accept or reject 
conflicting commands causing conflicts. This approach offers 
good control to developers; however, it is time-consuming. On the 
other hand, Oda [13] proposes default automated conflict 
resolution rules, which consist in accepting update commands if 
their preconditions hold, or rejecting them otherwise. This 
approach offers less control to developers, but it is automated.  

We propose that the use of manual and automated conflict 
resolutions should be combined; i.e., an MDE environment 
should offer flexibility to developers in choosing the way to 
resolve conflicts, either manually or automatically.  

3.4 Summary 
This section surveyed several works related to repository-
workspace systems, delta extraction, and delta integration. This 
survey revealed the concepts that can be reused, i.e. the use of 
file-based versioning systems for interoperability with 
heterogeneous tools; the use of IDs in delta extraction for 
achieving genericity; and the use of existing conflict detection 
rules in delta integration. However, we also identified lacking 
points of those works – ability to manage large-scale, 
interconnected models. More precisely, few works focus on the 
management of model partitioning and inter-model links (e.g. 
detecting element moving among models, then repairing 
references towards them). To our knowledge, recent CASE tools 
supporting collaborative model edition, such as IBM Rational 
Software Architect or MagicDraw, do not handle those problems.  

4. Experience in ModelBus 
This section reports our experience in realizing the ModelBus 
environment. Only core concepts of ModelBus are presented here 
(please refer to the Ph.D. thesis [21] for more details).  

ModelBus reuses a file versioning system (specifically CVS) for 
storing models. It allows each developer to retrieve models from 
the CVS repository to his workspace (cf. fig. 2, step 1), then to 
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use any tools to manipulate the retrieved models (step 2), and 
finally to merge and commit the models to the repository (step 3). 
ModelBus offers two components for supporting those actions: 
WorkspaceManager and Tool Adapter. 

  

 

Figure 2. Overview of ModelBus 

 

WorkspaceManager enables the developer to retrieve models from 
the repository, to merge the models, and to commit them back to 
the repository. It extends a CVS client with model merging 
functionalities (delta extraction and delta integration). This 
component can interoperate with any CASE tools used by the 
developer by sharing XMI files with them. 

Tool Adapter allows a CASE tool to be integrated with the 
ModelBus environment: It enables the tool to manipulate the 
workspace’s models transparently to model encoding. In 
particular, it offers functionality for converting models stored as 
XMI files in the workspace to objects in memory, according to the 
tool’s model representation. 

4.1 Extension to the file versioning system  
Model partitioning and link encoding. In ModelBus, each 
model is stored in the repository and in workspaces as an XMI 
file. A model is identified with the file path, which is relative to 

the repository’s root directory (e.g. /module1/model1.xml). Each 
model element is encoded as an XML element. It owns a 

persistent ID, which is stored in XML attribute xmi:id. Its content 
(sub XML elements, or attributes) can include links towards other 
model elements. A link is encoded in the form: the target model’s 

file path # the linked element’s ID. If the linked element is in the 
same model, the target model’s file path can be omitted. 

Our contribution consists of proposing a specific use of XMI with 
the following characteristics: (1) It ensures the availability of 
element IDs, which are necessary for model merging. (2) It 
formalizes the encoding of links between models to avoid the 
ambiguity in link resolution (when tools try to navigate through 
the links). We propose that the directory structure of the models in 
the developer’s workspace remain the same as the one in the 

repository (e.g. if R is the root directory of the developer’s 

workspace, then the file /module1/model1.xml in the repository must 

be placed at the R/module1/model1.xml in the workspace). 
Therefore, the links encoded according to our approach can be 
resolved without ambiguity in all developers’ workspaces. (3)  
Our addressing scheme is suitable for large-scale models (using 
model path and ID). It enables efficient link resolution without 
exhaustive search of linked elements in the entire modelbase. 

Scalable model loading. Tool Adapter offers load and save 
operations for enabling tools to manipulate models in the 
workspace. Its added values consist in (1) masking the ID 
management from the tool, (2) offering the scalable model loading 
mechanism for scalability. This mechanism applies the previously 
described link encoding and resolution convention.  

 ID management consists of preserving IDs when a model is 
loaded in memory, and then saved back. Tool Adapter uses an ID 

table for maintaining the associations between IDs and the model 

objects, which represent model elements in memory. The ID table 
management is transparent to tools. The ID table contains entries 
<ID, the pointer to the model object>. When a model is loaded, 
Tool Adapter inserts entries to the ID table. During model saving, 
Tool Adapter writes those IDs back together with the model. For 
the new model elements, Tool Adapter automatically assigns IDs 
to them. It generates IDs with the UUID (Universally Unique 
Identifier) standard, which ensures ID uniqueness.  

Concerning ID management, our contribution concerns the 
following points: (1) Tool Adapter ensures the transparency of ID 
management regarding tools. (2) Our approach is applicable to all 
model representations, as the ID table entries can point to any 
objects (Java, C++, etc). (3) It offers scalability in terms of 
memory usage. The ID table’s size changes according to the 
models currently loaded in memory. We apply the weak pointer 
concept [5], so that, when models are unloaded from memory, the 
corresponding ID table’s entries will be automatically removed 
together with the models. 

Concerning scalable model loading, Tool Adapter enables a tool 
to load a set of interconnected models in the on-demand manner. 

Its load operation enables the tool to select the models to be 
initially loaded to memory. It returns a set of corresponding model 
objects to the tool. The tool can manipulate those objects, and 
navigates through their links. When the tool attempts to navigate 
to a model not yet loaded, Tool Adapter automatically loads this 
model to memory, and resolves the link to the linked model 
object. However, if the model does not exist in the workspace, 
Tool Adapter returns an empty object, which informs the tools of 
the model unavailability. 

We note that Tool Adapter is a component that depends on the 
model representation used by each tool. Moreover, the on-demand 
loading functionality can be realized only when the model 
representation enables Tool Adapter to intercept navigation 
towards unloaded models. An example of such model 
representations is EMF.  

On the other hand, for model representations lacking navigation 
interception support, we propose an alternative mechanism, which 
consists of allowing the tool to explicitly specify all models that it 
wants to load. In this case, Tool Adapter will disable the links 
from the loaded models to the unloaded models. We prefer 
disabling those links, rather than loading the linked models 
recursively, in order to avoid high memory consumption. 

4.2 Delta extraction 
In order to merge models, the developer executes the command 

merge (of WorkspaceManager), and specifies a set of models to be 
merged. WorkspaceManager begins model merging by extracting 

deltas from those models. To do so, it retrieves the Vbase version 

of those models from the repository. Then it compares the Vbase-
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version models with the Vlocal-version models (in the workspace) 
for generating update commands. 

Delta metamodel. We represent update commands in the form of 
models as well; i.e., we define the delta metamodel (cf. fig. 4), 
which define the update commands’ structures. This metamodel 

contains the following metaclasses: Delta groups all update 

commands that affect a given model. UpdateCommand is a super 
type of all update commands. It specifies the context element, 
which the command involves, using its ID (cf. meta-attribute 

contextElemID). Create represents creation of an element. Delete 

represents deletion of an element. Move represents element 
moving to a target model, specified with a path (cf. meta-attribute 

targetModelPath). ModifyPrimitiveAtt, InsertRef, RemoveRef represent 

changes to an element’s attributes. ModifyPrimitiveAtt represents 

changes to a primitive attribute, while InsertLink/ RemoveLink 

represent changes to a link attribute: link insertion/ removal. A 
link to be inserted/ removed is denoted by the element’s ID and 

the model’s path (cf. metaclass Link). InsertLink also supports 
changes to the ordered link attribute: it specifies the position to 

insert a link sequence (cf. meta-attribute positonAfter). This 
metamodel offers the following new features dedicated to large-
scale models. (1) It expresses element moving, an essential action 
for reorganizing the partitioning of a modelbase. (2)  It is based 
on the scalable addressing scheme, which enables us to link 
update commands to the involved elements in a large modelbase.  
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insertedLinks : Link[]

positionAfter : Link
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Figure 4. Delta metamodel 

 

- Comparison mechanism. Our comparison mechanism is based 
on IDs (similar to [14] [9]). It consists of matching elements in 
two model versions, determining new elements, deleted elements, 
elements whose content is changed, and finally generating 
corresponding update commands. This mechanism offers the 
following new features. (1) It detects element moving. For two 
matching elements, if the mechanism determines that both 

elements belong to different models, it will generate a Move 
command. (2) It offers scalability. It can compare (two versions 
of) each model separately, so it reduces the amount of data to be 
loaded in memory at a time. The only case where multiple models 
need to be examined simultaneously is when elements are moved 
among those models.  

4.3 Delta integration 
In order to produce the merged version (Vmerged), 

WorkspaceManager retrieves the Vrep-version models from the 
repository, and applies the update commands to them. Then it 
commits the results back to the repository. During the command 
application, WorkspaceManager detects the lost update conflicts 
and ensures the consistency of the modelbase. We handle the link 
inconsistency problems caused by element moving and deletion as 
follows: 

4.3.1 Handling element moving 
We present the following solutions to the problems identified in 
section 2.3:  

Solution for “updating moved elements”. This problem is 
caused by the previous committer’s moving commands that 
invalidate the current committer’s the update commands. Let’s 

suppose that one developer has moved element E from a source 

model Msrc to target model Mtar, and commits this change. 

Concurrently, another developer updates E. Then, he merges his 
update after the previous committer. Consequently, 

WorkspaceManager will detect that E is missing in Msrc, but it 

does not know whether E has been moved or deleted, and, in the 
case of moving, what the target model is.  

For scalability, exhaustive search of the move target in the 
modelbase should be avoided. Therefore, we propose that 
WorkspaceManager maintains element moving history for each 
model, and stores it together with the model in the repository. 
This moving history is stored in a file called MoveLog, which is 
associated with each model. A MoveLog file contains a set of 
entries: deletion entries, and move entries. A deletion entry 
informs about an element’s deletion, while a move entry informs 
about an element’s moving from this model and also the move 
target model.  

Therefore, to adapt an update command to missing element E in 

Msrc, WorkspaceManager examines Msrc’s MoveLog file, then it 

can identify whether E has been deleted or moved. Let’s suppose 

E has been moved, to apply a command involving E, 
WorkspaceManager will identify the move target model (Mtar). 
Consequently, it will adapt the command accordingly to the move 
target model: it will apply the command to Mtar.  

Solution for “moving referenced elements”. This problem 
occurs when the developer’s move commands invalidate the 
existing links in the modelbase. Let’s suppose that the developer 

wants to move element E from model Msrc to Mtar. The existing 

links to E in the entire modelbase need to be repaired, so that they 

point to Mtar.  

For scalability, we aim to avoid exhaustive search for locating all 

links to E. Therefore, we propose that WorkspaceManager 
maintains index files and store those files together with the 
models in the repository. Each of those index files, called 
RefIndex, is associated to a model. It informs about all elements 
in other models that contain links to the elements in this model. 
WorkspaceManager updates RefIndex files each time a developer 
commits his updates: link insertion results in new entries in the 
RefIndex files, while link removal results in entry deletion in the 
RefIndex files.  

Therefore, in order to repair links to a moved element E, first 
WorkspaceManager examines the RefIndex file associated with 

the model which is the source of moving (Msrc). Then, it locates 

all models owning links to E in the modelbase, without exhaustive 
search. Next, it retrieves those models from the repository, 
updates links in those models, and commits them together with 
the models that the developer explicitly commits.  

4.3.2 Handling element deletion 
We provide the following solution to the conflicts caused by 
element deletion, identified in Section 3.2.2.  
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Solution for “creating links to deleted elements”. During 
command application, WorkspaceManager detects whether the 
elements referred to by a command is missing. Then, it will use 
the location mechanism (previously described) for determining 
whether the missing elements have been deleted or moved. In the 
case of deletion, the command will be marked as conflicting. The 
developer can choose to resolve this conflict either by applying 
our automated conflict resolution rules, or manually. We propose 
the following automated conflict resolution rules that the 
developer can choose: (a) the conflicting command is cancelled. 
(b) WorkspaceManager restores the deleted elements by copying 

them from Vbase to Vrep. For manual conflict resolution, 
WorkspaceManager enables the developer to manually edit the 
merged models before committing them to the repository, so that 
he can manually repair the model inconsistency.   

Solution for “deleting referenced elements”. Before 

WorkspaceManager applies a Delete command, it needs to verify 
that there is no link to the element to be deleted. In fact, 

WorkspaceManager applies Delete commands after RemoveLink 
commands, to remove links to the to-be-deleted elements first. 
However, since there can exist links originating from outside the 
model subset to be merged towards the to-be-deleted elements, 
which would become dangling links, WorkspaceManager needs to 
verify that no such link exists. To so do, it examines the RefIndex 
files, as previously described. If it detects potential dangling links, 

then it will mark the Delete command as conflicting. The 
developer can choose to resolve this conflict either by applying 
our automated conflict resolution rules, or manually. We propose 
the following automated conflict resolution rules that the 

developer can choose: (a) The conflicting Delete command is 
cancelled. (b) WorkspaceManager removes all the dangling links 
from the modelbase.  

4.4 Example 
Figure 3 illustrates a model merging example with ModelBus. In 

this example, the modelbase contains four UML class models (p1, 

p2, p3, p4). Each model can contain a set of UML classes, and the 
classes in different models can be interconnected. Two developers 
(Bob and Tom) retrieve these models (or subsets of them) to their 
workspace, and concurrently modify them. Then, Bob integrates 
his updates to the repository before Tom. When Tom integrates 
his updates, ModelBus will adapt the command “insert link 

C5�C4”, according to the moving of C4 (cf. problem “updating 
moved elements”). Moreover, ModelBus also repair the link 

C6�C2 according to the moving of C2 (cf. problem “moving 
referenced elements”). 

This example also shows the detection of dangling link conflicts. 

ModelBus detects that the command of Tom “insert link C5�C3” 

is invalid, because C3 has been deleted by Bob (cf. problem 
“crating links to deleted elements”). The dangling link caused by 

command “delete C1” is also detected, since Bob has previously 

inserted the link C6�C1 (cf. problem “deleting referenced 
elements”).  

 
Figure 3. A model merging example 

4.5 Implementation 
The ModelBus implementation is available as an Eclipse project 
MDDi. This implementation is composed of the 
WorkspaceManager and Tool Adapter components. Tool Adapter 
is implemented in the form of an API, which existing CASE tools 
can call for loading and saving large-scale models. This 
component depends on the model representations used by the 
tools. The current implementation supports the EMF model 
representation, which is widely used by recent CASE tools. We 
estimate that implementing Tool Adapter for other model 
representations is not costly for tool programmers who want to 
adapt their tools to our approach. In fact, tool programmers can 
reuse existing XMI import/export modules for building Tool 
Adapter. 

The WorkspaceManager implementation is independent from the 
CASE tools that are integrated with ModelBus: it can be executed 
as a separate program. It is composed of modules that manage the 
interaction with a CVS repository, and that perform the merging 
mechanism. It also offers user interfaces to developers (for 
retrieving, merging and committing models) through the Eclipse 
workbench.  

ModelBus has been validated in the European project 
ModelWare. It offers the interoperability among multiple CASE 
tools which are provided by project partners (18 tools have been 
integrated so far).  

5. Conclusion and future works 
In this work, we have identified the key requirements on 
supporting collaborative work on large-scale models. Those 
requirements are not completely supported by OODB systems 
(since they lack tool interoperability), neither by existing model 
merging approaches (since they do not consider data partitioning). 
Then, we presented our experience in realizing ModelBus. Our 
solution can be adapted to current software projects, either by 
advanced developers or tool implementers, for solving difficulties 
in managing traceability links and inter-view links among models, 
which are currently scattered in different tools and different 

p3 

C6 

b. Vlocal In Tom’s workspace 
Updates: Delete C1; Move C2 to P2; 

Create C5; Insert links C5�C3, C5�C4 

c. Vrep The modelbase integrated with 
Bob’s updates: Delete C3; Move C4 to P4; 
Create C6; Insert links C6�C1, C6�C2 

 

d. Vmerged  

Repaired 
links 
 
Dangling 
links 
detected 

C1 

p2 

C2 
C3 

p1 

C4 

p4 

C1 

p2 

C2 

C3 
p1 

C4 

p3 

C1 

p2 

C2 
C3 

p1 

C4 

p4 

C1 

p2 

C2 

C3 
p1 

C4 C6 

p3 p4 
C5 

C5 

Links between classes 

C 

Notation 
Moved class 

Deleted class 

a. Vbase Initial state of the 
modelbase containing four UML 
class models: p1, p2, p3, and p4. 
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developers’ machines. We also note that our solution takes into 
account its usability in real software projects (interoperability with 
existing tools and genericity to all model types). Our approach 
does show the ability to limit the data amount to be processed at a 
time (for both model loading and model merging). For the future, 
we consider reporting performance measurements on different 
model merging scenarios. We aim to realize this task in the 
ModelPlex project (the follow-up project of ModelWare). 
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