

Software Process Modeling and Execution: The UML4SPM to WS-BPEL
Approach 1

Reda Bendraou1, Andrey Sadovykh2, Marie-Pierre Gervais1, 3 and Xavier Blanc1

1 Laboratoire d'Informatique de Paris 6, 104 Av. du Président Kennedy - F75015 PARIS
3 Université Paris X

{Reda.Bendraou, Marie-Pierre.Gervais, Xavier.Blanc}@lip6.fr
2Softeam

27 Av. Victor Hugo F75008 PARIS
Andrey.Sadovykh@softeam.fr

Abstract. Over the two past decades, the software
process modeling community is1 being confronted to the
following dilemma: how a Software Process Modeling
Language (SPML) can be sufficiently abstract to hide
the increasing complexity of development processes
while being precise enough to be executed? Since no
SPML succeeded in satisfying these apparently
conflicting requirements, in this paper we propose to
combine two languages: UML4SPM, an UML2.0-based
Software Process Modeling language and WS-BPEL
(Web Services Business Process Execution Language).
While UML4SPM brings expressiveness,
understandability and abstraction in modeling software
development processes, BPEL provides a semantically
rich set of concepts for process executions. The mapping
between the two languages, how do they complement
each other, some issues and the value of the approach
are discussed.

Key Words: Software Process Modeling, Process
Enactment, UML, WS-BPEL, PML, Workflow, MDD.

1. Introduction

The standardization of UML (Unified Modeling
Language) [OMG 05a] and its successful adoption by
the industry and academia has naturally attracted the
attention of the software process modeling community.
The principal ingredients that participate in the success
of UML, among others, are its ability of abstracting the
complexity of systems under specification and the use of
an intuitive and understandable set of notations and
diagrams. Therefore, the possibility of using UML as a
software process modeling language has been largely
explored in the literature [Jäger 98] [OMG 02] [Di Nitto
02] [Chou 02]. However, whether UML provides a high-
level of abstraction and understandability in representing
process models, it lacks of some semantics, concepts and
tools for their execution [Rumpe 02]. On the other hand,
in the Business Process Management (BPM) domain,
recently, a consolidation has led to a single language for
business process executions: the Business Process
Execution Language for Web Services (WS-BPEL,
BPEL for short) [WSBPEL 07]. Rapidly, BPEL gained

1 This work is supported in part by the IST European project
 "MODELPLEX" (contract no IST-3408).

importance and became the "Language" for business
process orchestrations. Many tool vendors already
provide training supports and process engines for this
standard [ActiveBPEL].

In this paper we explore the possibility of combining
both standards for the purpose of software process
modeling and execution. In addition to the fact that
UML and BPEL share the common point of being
standard, widely adopted and many people are familiar
with their use, they can be used to complement each
other. While UML comes with a high degree of
abstraction, expressiveness and notations suitable for
modeling software processes, BPEL provides concepts
and precision required for their execution support. In this
context, we use our UML2.0-based Language for
Software Process Modeling (UML4SPM) [Bendraou 05]
[Bendraou 06] as a high-level language for modeling
software processes. UML4SPM process descriptions
will be then mapped to BPEL specifications in order to
be executed. Our main motivations for combining both
languages are first, to keep a clear separation between
the business concerns of software process descriptions
(i.e., Phases, Activities, Roles, etc.) and all the technical
and organizational features needed for their execution
support (Task sequencing, Artifacts assignment, alarms,
events and exception handling, etc); second, to leverage
the maturity level of the BPM field and the bunch of
existing tools instead of starting from scratch. This
approach will reinforce the connection between process
modeling tools and process execution tools.

In the following, we start by introducing UML4SPM,
our UML-Based Language for software process
modeling. To demonstrate the feasibility of the
approach, in Section 3, we present a software process
example, which we model using the UML4SPM
notation. After a brief presentation of WS-BPEL in
Section 4, the process example is used in Section 5 for
demonstrating the mapping between UML4SPM and
BPEL. We will discuss this mapping but most of all; we
will share some of the feedbacks and issues we had
while experimenting the approach. Section 6, concludes
this work and draws some future perspectives.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

2. UML4SPM

UML4SPM is a UML2.0-based Language for
Software Process Modeling. Expressiveness,
understandability, precision and executability were our
main requirements while designing UML4SPM. The
language comes in form of a MOF-Compliant
metamodel, a precise semantics and a simple yet
expressive graphical notation and diagrams. Hereunder,
we start by presenting the UML4SPM metamodel.

2.1. UML4SPM Metamodel
The UML4SPM language is defined as a MOF-

compliant metamodel. It contains two packages: 1) the
UML4SPM Process Structure package, in which we
defined the set of primary process elements with a
semantic proper to software process modeling (see
figure 1.); 2) the UML4SPM Foundation package, in
which we reuse Activities and Actions elements from
UML2.0 Superstructure [OMG 05a]. These elements
provide UML4SPM with coordination mechanisms, and
executability semantics for the enactment of process's
activities. Herein, we start the UML4SPM presentation
by the Process Structure package:

 UML4SPM Process Structure Package

The building block of any UML4SPM process model
is the Software Activity element. It describes any effort
or piece of work to be performed during the
development process. It has a description property that
briefly outlines what has to be done by Responsible
Roles of the activity, a priority ranging from low to high
to highlight its importance within the process and a
complexity property to show its degree of difficulty (i.e.,
easy, medium or difficult). The isInitial property is to tell
whether the activity is the initial one within the process
or not, i.e. it plays the role of a container that will
encapsulate all process activities. A special behavior is
assigned to it and it is considered as the current context
of the process.

Thus, any UML4SPM process model should have an
outermost Software Activity with its isInitial property set
at "true" and that encapsulates all subsequent activities.
A Software Activity may be totally executed by a
machine. Then, the kind property is set to "machine
execution". Otherwise, it is fixed at "human execution"
if a human expertise is required. A Software Activity has
a SoftwareActivityType, which can be for instance a
Phase, an Activity, a Sprint (term used in the Scrum agile
process), etc.

In order to realize a Software Activity, one or more
Role Performers are assigned however this is not
mandatory at process specification time. The
Responsible Role element defines responsibilities and
qualifications required from the Role Performer to
realize the activity. A Role Performer may be a Tool, an
Agent with a name and skills or a Team, which in its turn
may be composed of Agents or Teams. In order to help
the Role Performer to perform the activity, Guidance
may be provided. Guidance may be guidelines,
checklists, tool tutorials, etc.

Another essential element is the WorkProduct
element. It represents any physical piece of information
consumed, produced or modified during the software
development process. A WorkProduct has a unique
identifier specified by the idWorkProduct property. A
WorkProduct may be either a process deliverable or not,
and an uriLocalization property that serves at
determining the WorkProduct location during process
execution. Finally, the Version and lastTimeModified
properties were defined in order to help developers in
avoiding confusion while manipulating different
versions of the same WorkProduct during development
activities. The UML4SPM meta-classes we introduced
in this section represent the constructs and semantics
required to represent primary process model elements.
However, this is insufficient. Coordination of Software
Activities (i.e., control and data flows), the ability to
express events, decisions, iterations, exceptions, and
interactions is still lacking. This is where the
UML4SPM Foundation package comes into action.

 Figure 1. UML4SPM Process Structure package elements

softwareActivityKind
machineExecution
humanExecution

<<enumeration>>

Tool
description : String
isBatch : Boolean
version : String

complexityKind
easy
Medium
Difficult

<<enumeration>>

priorityKind
Low
Medium
High

<<enumeration>>

Agent
skills : String

Team
TimeLimit

milestone : String

SoftwareAcitivityType
Type : String

Guidance

RolePerformer
name : String

1..n

*

+performers

1..n

+team
*

SoftwareActivity
description : String
kind : softwareActivityKind
priority : priorityKind
complexity : complexityKind
isInial : Boolean = false

0..1

+endsAt

0..1 0..1
+startsAt

0..1

0..n

1

+ActivityType

0..n
{ordered}

1

0..n
+requires

0..n

WorkProduct
idWorkProduct : String
uriLocalization : String
isDeliverable : Boolean
isComposite : Boolean
lastTimeModified : String
version : String

0..n

0..*

+impacts 0..n

+impacted0..*

ResponsibleRole
responsability : String
qualifications : String
rights : String

1..*

0..*

+rolePerformer 1..*

+Role 0..*

1..n

0..*

+responsible roles

1..n

+activities

0..*

0..*

0..n

+workProducts
0..*

+Performer

0..n

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

UML4SPM Foundation Package
In this section, we give a brief description of the

UML2.0 subset that we identified as a basis of
UML4SPM:

- Activity: in UML2.0, an Activity is the specification

of a parameterized behavior defined in terms of a
coordinated sequencing of Actions [OMG 05a]. The
sequencing of these actions is ensured using an Object
and Control flow model. The former is used to sequence
data produced by one action that are used by other
actions. The latter is used to explicitly sequence the
execution of actions. Activities also include Control
Nodes, which structure control and object flow between
actions. In addition to Initial and Final Nodes, these
include Decision (to express choices), Fork
(parallelism), Join (synchronization) and Merge Nodes
(to accept one among several alternate flows). Object
Nodes in activities are to represent objects and data as
they flow in and out of invoked behaviors (Activities) or
Actions. As UML4SPM Software Activity element
extends UML2.0 Activity, we take advantage of all its
properties and associations. Thus, a Software Activity
can be composed by other Software Activities and may
contain Actions (the hierarchy dimension). An UML2.0
Activity being indirectly a Classifier, the possibility to
specify new properties and new operations is then
offered to Software Activities. A Software Activity being
now a specialization of UML2.0 Activity meta-class, the
specification of pre and post conditions on the execution
of a Software Activity is also rendered possible.

- Artifact: The UML2.0 standard defines an Artifact

as a Classifier that represents a physical entity. It may
have Properties that represent its features, and
Operations that can be performed on its instances. It can
be involved in associations to other Artifacts (e.g.,
composition associations). Examples of Artifacts include
model files, source files, scripts, and binary executable
files, a development deliverable. The UML4SPM
WorkProduct element extends UML2.0 Artifact. An
Artifact being a Classifier, WorkProducts can be defined
as InputPins and OutputPins of Software Activity's
Actions. They can also have additional properties and
operations than those we explicitly defined. It is possible
to specify composite WorkProducts thanks to the "nested
artifact" association. Finally a WorkProduct may be
associated with a state machine that defines its allowable
states and operations to switch between them.

Due to space restrictions, we cannot present in details
the precise set of UML2.0 Actions and Activity elements
(control flow, object flow, events, exception handling,
etc.) we identified as a basis for software process
modeling as well as those we newly defined. Hereunder
is a table (see table 1) that just enumerates them. Their
definitions are given in the standard [OMG 05a]. Their
use, notation, new elements we defined and a discussion
on how UML4SPM reaches the expressiveness,
understandability and precision requirements are given
in more detail in [Bendraou 06].

Actions Activity Elements

AcceptEvenAction,
Action,
CallBehaviorAction,
CallOperationAction,
SendSignalAction,
RaiseExceptionAction

Activity, ActivityFinalNode,
ActivityParameterNode,
ConditionalNode, ControlFlow,
DataStoreNode, DecisionNode,
ExceptionHandler, FinalNode,
ForkNode, InialNode,
InterruptibleActivityRegion,
JoinNode, MegeNode, Pin
(Inputpin, Outputpin), LoopNode,
ObjectFlow, StructureActivityNode

Table 1. The identified set of UML2.0 Actions and

Activity elements suitable for process modeling

In the next section, we present the software process

example that we will use for demonstrating the
UML4SPM to WS-BPEL approach. The example is then
modeled using the UML4SPM notation.

3. The Software Process Example

In this section we introduce a simple yet
representative example of a portion of a software
development process. This process example was
provided by our industrial partners within the IST
European Project MODELPLEX, which this work is part
of [MODELPLEX 06]. The process example will be first
described in natural language and then represented using
UML4SPM.

The process is composed of two phases: "Inception"
and "Construction" phases. The "Inception" phase is
composed of two activities. The "Elaborate Analysis
Model" activity and the "Validate Analysis Model"
activity. The "Elaborate Analysis Model" activity takes
as input "Work Specifications" (i.e. requirement
documents) and produces an UML "Analysis Model".
The "Analysis Model" is then taken as input by the
"Validate Analysis Model" activity which is composed
of the following steps: 1) Get the "Analysis Model"
(which is in this example a UML Model); 2) Submit the
UML model for validation to an UML Checker Tool
which will emit a validation report; if the "Analysis
Model" is valid then send an email to the development
team and go to the next phase. If the "Analysis Model" is
invalid, then send an email to the development team and
comeback to the "Elaborate Analysis Model" activity.
The role in charge of both activities of this phase is
ensured by the "Analyst". For brevity reasons, the
"Construction" phase is skipped.

Looking at the process description we can notice
some aspects that characterize software development
processes. The first one is the hierarchy of the process.
We have a Phase, which may contain Activities, which
in their turn may contain steps. The second aspect is the
presence of both human activities and automated
activities, which makes it difficult to automate the entire
process. Finally, the transformation process of artifacts

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

from one activity to another and the necessity to know
the artifact's states at any time of the process.

3.1. Software Process Example Description
Using UML4SPM Notation

The graphical representation of a UML4SPM
Software Activity is given in figure 2. As we can notice,
it differs slightly from the one proposed by the UML2.0
standard. This is because it has new properties and
associations specific to software process modeling that
we newly defined. Precision was a major requirement
for this notation. At a glance, the Agent or the customer
can know the name of the activity, its input and output
parameters, its priority in the process, its duration, the
assigned roles, the tools used for performing the activity,
accepted and triggered events. Post and pre conditions
may be expressed in natural language or by means of
OCL2.0 constraints (Object Constraint Language). More
details on the notation are given while commenting the
process description.

Figure 2. UML4SPM Software Activity Notation

The process description focuses on the "Inception
Phase" and activities it owns (figure 3).

As we can notice, the "Inception Phase" activity
represents the context of this process. This is indicated
by the start-blob in the top-left corner. It is used to
coordinate between different activities and workproducts
of the process. The "M" letter is to indicate that the
activity is machine-executable (H for Human execution).
One important aspect is the use of CallBehaviorActions
in order to initiate/call process's activities (e.g.,
"Elaborate Analysis Model" call). In the call, we have to
precise 1) whether the call is synchronous (use of a
compete arrow in the top-left corner) or not (half arrow,
e.g., "Construction Phase" call); 2) the parameters of the
call, which represent workproducts inputs/outputs of the
activity. The parameter types may be in, out or inout.
Another aspect is the use of Decision and Merge nodes.
The decision node allows expressing a choice of actions
to do depending on a condition (in this case whether the
analysis model is valid or not). The merge node here is

used to express that the "Elaborate Analysis model"
activity may be triggered by one of the two possibilities.
The first one is when the "Inception Phase" activity is
lunched. The second one is when the analysis model
validation fails. In the next section we introduce BPEL
and how this orchestration language can be used as a
support for UML4SPM process model executions.

Figure 3. "Inception Phase" Activity

4. WS-BPEL2.0

BPEL is an XML-based standard for defining how a
set of Web services can be orchestrated (i.e., combined)
in order to implement business processes [WSBPEL 07].
It is built upon WSDL (Web Services Definition
Language) and XML Schema. A BPEL process
definition is serialized in XML and owns a number of
activities. Activities fall into two categories: Basic
Activities and Structured Activities. Basic activities
correspond to atomic actions such as: invoke, invoking
an operation on a Web service; receive, waiting for a
message from a partner; reply, replying to a partner;

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

assign, assigning a value to a variable; exit, terminating
the entire process instance; empty, doing nothing; and
etc. In WS-BPEL2.0, new activities were introduced
such as if-then-else, repeatUntil, validate, forEach
(parallel and sequential), rethrow and extensionActivity.
Structured activities impose behavioral and execution
constraints on a set of activities contained within them.
These include: sequence, for defining an execution
order; flow, for parallel routing; switch, for conditional
routing; pick, for capturing a race between timing and
message receipt events; while, for structured looping;
and scope, for grouping activities into blocks to which
event, fault and compensation handlers may be attached
[Ouyang 06] [Dobson 06]. BPEL processes are closely
coupled with WSDL. A BPEL process provides a web
service interfaces described in WSDL and at the same
time deals with services that also have to be described in
WSDL. From this point of view, a BPEL process
represents a compound web service. In the next section,
we present mapping rules from UML4SPM to WS-
BEPL.

5. From UML4SPM to WS-BPEL

In this section, we address the mapping between
UML4SPM and BPEL. We will start by introducing the
mappings between concepts of both languages. Then, we
will discuss some obstacles we faced while establishing
these mappings. A discussion on the human interaction
is also addressed. Finally, a brief description of the
transformation is given in natural language.

5.1. Mapping Rules

Table 2 lists major mappings between UML4SPM
and WS-BPEL2.0. UML4SPM proposes new concepts
that deal with the modeling of software process concerns
(.i.e., Roles, Guidance, Artifact, TimeLimit, etc.) and
reuses UML2.0 Activity and Action package elements,
which deal with actions sequencing and synchronization,
exceptions, events, invocation, etc. In the following, we
propose mappings for both concepts.

In the literature, we can find some work done for
mapping UML activity diagrams to BPEL. In [Mantell
05], the author maps UML1.4 Activity diagram elements
to BPEL1.1. In UML1.4, Activity diagrams were
completely different from UML2.0 ones. They were a
special case of state diagrams and no actions with
executable semantics were provided. This resulted to a
very coarse-grained mapping with only few
correspondence rules proposed (e.g. A UML Class maps
to a BPEL Process, UML Activity to a BPEL Activity,
and so on). With the adoption of UML2.0, Activity
diagrams are enriched with executable semantics
actions. These actions reduced the gap between both
languages (i.e.,UML2.0 and BPEL.) In [Korherr 06],
authors define a UML2.0 Profile for BPEL1.1 and

propose a mapping between the two formalisms.
However, this was only restricted to actions and did not
cover activity elements such as Fork node, Decision
node, Control Flow, etc. Similarly, in [Bodbar 04],
author concentrated on UML2.0 actions. Mappings for
Control Nodes (fork, join, merge, etc.), Loops, and
Exception constructs were not defined. Moreover,
authors map the UML2.0 Control Flow as a BPEL1.1
Sequence activity. However, a UML Control Flow can
only link two activities (i.e., When activity A finishes, B
starts). While the BPEL Sequence activity defines a
block where one or more activities are to be performed
sequentially.

UML4SPM BPEL

Software Activity BPEL Process

SoftwareActivityType BPEL Variable with name = "ActivityType"
and type = "String"

Software Activity's
attributes and
associations

BPEL Variable with name =
"attributeName" (respectively
"associationEndName") and type =
"XSD_Type". The type may be simple or
complex and defined in a xsd file

Software Activity
hierarchy and enclosing
elements (actions,
inputpins and ouputpin,
control nodes, etc)

BPEL Sequence or Flow elements

Pre and Post Conditions
of a SA BPEL Transition Condition element

Value of the Pre/Post
Condition

The text element of the BPEL Transition
Condition

WorkProduct input or
output of Actions

BPEL Variable with attribute
MessageType equals to the WorkProduct
Type. If the Action has more than one
WorkProduct than one WSDL Message
Part (name=workProductName) with its
type is to be defined for each WorkProduct
whithin the MessageType. The attributes
of the WorkProduct have to be defined in
the type of the WorkProduct in an xsd file

Responsible Role BPEL Variable

TimeLimit of a SA BPEL Variable

Guidance BPEL Variable

Team BPEL Variable

Agent BPEL Variable

Tool BPEL Variable

AcceptEventAction BPEL Receive Activity

AcceptEventAction that
waits for an event among
a list of possible events

Pick activity. Accepts a message among a
list of possible expected messages

AcceptCall Action et
ReplyAction to model
synchronious calls

BPEL Receive activity with a Reply and
input and output specification

Variable (in the context of
a StructuredActivity) BPEL Variable with name and type

ReadVariableAction
followed by a
WriteVariableAction

BPEL Assign with From (for reading) and
To (for writing) within the Copy element

CallBehaviorAction (Sync
/ Async)

BPEL Invoke activity (with input and output
specification / Only input specification)

CallOperationAction
(Sync / Async)

BPEL Invoke activity (with input and output
specification / Only input specification)

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

RaiseExceptionAction.
The exception type is
defined by the action's
InputPin

BPEL Throw activity. Throw has a
FaultVariable attribute that corresponds to
the exception type

An AcceptEventAction
that wait for a TimeEvent

BPEL Wait activity. Waits for a deadline
(use of Until element) or a duration (use of
For element)

AcceptEventAction onEvent in the EventHandlers section

InitialNode BPEL Receive with a CreateInstance=true

FinalNode BPEL Exit activity may be used to abort
the process

ControlFlow BPEL Link element combined with Source
and Target elements

ObjectFlow BPEL Assign with From (the source) and
To (the target) within the Copy element

DecisionNode BPEL IF activity witht Condition element to
express the condition

ExceptionHandler BPEL FaultHandlers with Catch
ForkNode to express
parallelism. BPEL Flow Activity

JoinNode BPEL Link element combined with Source
and Target elements

While activity with element Condition

RepeatUnitl activity

LoopNode with Test
expressed via the
association
test:ExecutableNode ForEach activity
StructuredActivity
(defines an activity with
its actions, control nodes,
variables limited to the
activity scope, etc.)

BPEL Scope Activity with all its
partnerlinks, variables, faulthandlers, etc

Table 2. UML4SPM to WS-BPEL2.0

While establishing these rules we have noticed many
observations. The most important one relates to the fact
that all elements in UML4SPM that provide semantics
proper to software process modeling have no equivalent
in BPEL. All elements such as Responsible Role,
Guidance, Time Limit, etc are converted to BPEL
process variables. On the other hand, all elements that
deal with the coordination of activities, events, exception
handling, etc. map easily to BPEL concepts. This
observation comforted us in our choice of combining the
two standards, one for process modeling and
communication, and the other one for process execution.
The second observation is that there is no one-to-one
correspondence between UML4SPM elements and
BPEL elements. As we can see in the table an
UML4SPM element (e.g., LoopNode) can be mapped
into different BPEL elements (i.e., While, Repeat Until,
or ForEach activities). This implies that during the
transformation phase, the process modeler has to choose
one mapping rule among those proposed (if multiple
choices) and always apply the same one along the
process specification. On the other hand, there are some
BPEL concepts that have no equivalent in UML4SPM
such as Validate, Empty, or Extension Activities.

Another important aspect relates to the impossibility
of BPEL to support some Control Flow patterns, more
commonly known as workflow patterns [Van der Aalst
03]. Indeed, BPEL lacks support of multiple merges
pattern (merge many execution paths without
synchronizing) and discriminators pattern (merge many

execution paths without synchronizing. Execute the
subsequent activity only once). It also does not allow
the synchronization of multiple instances of the same
activity and lacks support of arbitrary cycles (e.g. in our
process example, there is a cycle between "Send
Message" activity and "Elaborate Analysis Model"
activity). Similarly, in [Wohed 04], authors evaluated
UML2.0 Activity diagrams against workflow patterns.
Activity Diagrams succeeded in fulfilling sixteen of the
twenty patterns proposed. Among those that were not
satisfied, the Synchronizing Merge and the Milestone
patterns. Details about the patterns can be found in
[WfP]. These lacks then have to be taken into account
while modeling software processes with UML4SPM in
order to avoid the use patterns that are not supported by
BPEL and vise versa. To avoid for instance arbitrary
cycles we propose to combine the use of a
SendSignalAction and an AcceptEventAction. These
concepts can be an alternative to cycles and map to
BPEL concepts (Invoke and Receive activities).

5.2. Human interactions
While some business processes can be fully

automated, software processes are composed of creative
activities (i.e., modeling, checking, communicating,
decisions, etc.) that make them need a support for human
interactions. Even, in the field of BPM, it has been
recognized that the human dimension is essential for
process realization. We can notice in Table 2 that BPEL
does not provide any support for this kind of activities.
In UML4SPM, we have the possibility to express that an
activity is automated or has to be carried out by a
human. This data can then be mapped as BPEL process
variable that the process engine can take into account at
enactment time. In order to deal with this issue, we
decided to reuse a very interesting work done by
industrials known as "BPEL4PEOPLE" [Kloppmann
05]. In BPEL4PEOPLE, a new BPEL activity called
People activity is introduced. A People activity is a basic
activity, which is not realized by a piece of software but
an action performed by a human being. It can be
associated with a group of people, a generic role, etc.
The extended BPEL engine creates for each People
activity - depending on its contents - a list of tasks, also
called work items ("to-dos") and affect them to the
appropriate process participants. A generic user interface
is associated with each task of the activity in order to
highlight inputs/outputs of the activity, deadlines, to add
the possibility to attach other materials (e.g., guidelines)
and to ease communication between agents. In
UML4SPM, each human software activity will be
mapped to a People activity. Each action within the
activity will be considered as a task (a work item).
InputPins and OutputPins of actions will be used as I/O
of tasks. Regarding the implementation of tasks,
BPEL4PEOPLE leaves the choice to the modeler
between five possible configurations. These five
configurations, that we will not detail here, fall roughly
into two kinds: Inline Tasks and Standalone Tasks.
Inline tasks are defined as part of the People activity or

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

of the BPEL process (they have access to the process
context, variables, etc.) while standalone tasks are
defined outside the process. Standalone tasks may be
accessed through 1) implementation-specific invocation
mechanisms (i.e., no WDSL), 2) a Web service interface
defined with WSDL or 3) a BPEL Invoke activity that
calls a Web service implemented by the task (WSDL +
binding). We opted for the latter configuration. Main
reasons are: 1) to promote reusability of standalone tasks
by other processes, 2) to use tasks in a distributed
environment since they offer a WSDL interface, 3) to
avoid BPEL engine extensions, since that solution is
generic and does not need a support of the new People
activity kind. However, process modeler can decide to
use another configuration among the five that
BPEL4PEOPLE proposes if needed.

5.3. Transformation
For experimentation purposes, the transformation of

UML4SPM process models into BPEL code is currently
carried out by a Java program. However, we plan to
formalize the transformation with a model
transformation language such as ATL [ATL 06].
Hereunder, we present in natural language main steps of
the transformation algorithm:
1) The creation of an empty BPEL process definition; 2)
Generation of the "import" and "variable" section. All
UML4SPM elements in table 2 that map to a BPEL
variable are processed here; 3) then, the "flow" section is
created followed by the "links" declaration. All
UML4SPM control flows are generated as BPEL "links"
and the Source and Target elements are documented; 4)
The BPEL "flow" starts with a “receive” activity, which
is used for communicating input Work Products to the
BPEL process. This activity should also contain
"createInstance" attribute equals to "True" to indicate
that the process is instantiable; 5) “Human” activities are
transformed into a pair of linked "invoke" / "receive"
activities implementing an asynchronous call of
"Workflow Administration" Web service which is a
service offering a GUI we defined. Other activities are
transformed into synchronous "invoke" activities that
have to be completed after the BPEL code generation in
order to indicate web services to be used. The remaining
UML4SPM elements are transformed according to what
was defined in Table 2; 6) Finally, the "import" section
is filled manually in order to document the "partner link"
and the WSDL location of Web services the process
uses, in particular here, the "Workflow Administration"
Web service. The generated BPEL process is to be
deployed with a conventional BPEL engine,
ActiveBPEL in our case. Then, the process is run
according to the BPEL process definition. All human
tasks are to be redirected to the "Workflow
Administration" Web Service which provides a console
for guiding the agent in performing the task. Listing 1
gives a sample of the generated process example defined
with UML4SPM in section 3. Due to space restrictions,
we skipped some process's activities of the example.

<bpel:process xmlns:bpel="http://docs.oasis-
open.org/wsbpel/2.0/process/executable"

xmlns:ns1="http://www.softeam.fr/WorkflowAdmi
nistration/"
xmlns:ns2="http://www.example.org/orchestration
/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
name="Inception" suppressJoinFailure="yes"
targetNamespace="http://Inception">

 <bpel:import
importType="http://schemas.xmlsoap.org/wsdl/"
location="WorkflowAdministration.wsdl"
namespace="http://www.softeam.fr/WorkflowAdmini
stration/"/>

 <bpel:partnerLinks>
 <bpel:partnerLink

myRole="HumanActivityFacade"
name="HumanActivity"
partnerLinkType="ns1:HumanActivity"
partnerRole="HumanActivityFacade"/>

 </bpel:partnerLinks>
 <bpel:variables>
 <bpel:variable

messageType="ns1:HumanActivityRequest"
name="InceptionRequest"/>

 <bpel:variable
messageType="ns1:HumanActivityRequest"
name="ElaborateAnalysisModelRequest"/>

 </bpel:variables>
 <bpel:flow>
 <bpel:links>
 <bpel:link name="L1"/>
 <bpel:link name="L2"/>

 </bpel:links>
 <bpel:receive createInstance="yes"

name="StartInception"
operation="HumanActivityRequest"
partnerLink="HumanActivity"
portType="ns1:WorkflowAdministrationPT"
variable="InceptionRequest">

 <bpel:sources>
 <bpel:source linkName="L1"/>
 </bpel:sources>
 </bpel:receive>
 <bpel:invoke

inputVariable="ElaborateAnalysisModelRequest"
name="ElaborateAnalysisModelRequest"
operation="HumanActivityRequest"
partnerLink="HumanActivity"
portType="ns1:WorkflowAdministrationPT">

<bpel:targets>
 <bpel:target linkName="L1"/>
 </bpel:targets>
 <bpel:sources>
 <bpel:source linkName="L2"/>
 </bpel:sources>
 </bpel:invoke>
 <bpel:receive

name="ElaborateAnalysisModelResponse"
operation="HumanActivityResponse"
partnerLink="HumanActivity"
portType="ns1:WorkflowAdministrationPT"
variable="ElaborateAnalysisModelResponse">

 <bpel:targets>

 </bpel:receive>

 </bpel:flow>
</bpel:process>

Listing 1. A Sample of the generated BPEL code

6. Contributions & Conclusions

Whether WS-BPEL provides a rich set of concepts
for executing processes, it lacks of the abstraction and
expressiveness needed in modeling human-readable and

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

understandable process definitions. Its deficiency in
supporting some workflow patterns, the lack of graphical
notation and its no support for human interactions and
arbitrary cycles makes it inappropriate for the modeling
and understanding of software processes. On the other
hand, our UML2.0-based language for software process
modeling namely, UML4SPM, provides a high level of
abstraction, expressiveness, notation and a set of
elements and concepts with executable semantics;
however it lacks of enactment support. In this paper we
demonstrated how the two languages are combined in
order to complement each other and to fully support both
process modeling and execution. We defined a set of
mapping rules between UML4SPM and WS-BPEL and
we proposed to reuse the BPEL4PEOPLE proposition in
order to deal with human interactions. The mapping
rules we proposed are not only UML4PSM-to-BPEL
specific since all rules that deal with UML2.0 concepts
can be reused by any UML2.0-Based language or profile
for software or business process modeling.

However, even if this approach presents the
advantage of leveraging existing BPEL process engines
and takes advantage of the execution support, it still
suffers from some issues. The first one deals with the
fact that during the transformation process all the aspects
and semantics proper to software process activities
(roles, guidance, deadlines, etc) are lost or scattered as
BPEL variables. The only concepts that have equivalents
in BPEL are those that deal with the sequencing of
activities, events headlining, etc and which already have
executable semantics (i.e.,UML2.0 Activities and
Actions). This has as direct effect the loss of data needed
for process measurement and improvement. Another
issue is that process modeler has to choose the right
concepts, which can be mapped in BPEL while
modeling the process, otherwise there will be no support
for them. Finally, the last issue relates to the fact that the
generated BPEL is not usable straightforward after the
transformation. A configuration step is needed in order
to set Partner Link properties (service locations that
have to be combined). This step can be automated during
the transformation and process modeler would be asked
to enter these information However, if the process
modeler adds new elements or variables for execution
aims after the transformation, this would raise the issue
the issue of traceability between UML4SPM process
definition and the generated BPEL process, and how
coherence between the two definitions can be preserved.

This approach is currently evaluated within the
MODELPLEX [MODELPLEX 06] project as well as in
the MDDi Eclipse project (http://eclipse.org/mddi).
Future perspectives of this work are the formalization of
the transformation (currently in Java) by means of well-
established model transformation languages such as
ATL [ATL 06] or QVT [OMG 05b]. This will reduce
human intervention and ambiguities due to multiple
mappings that one UML4SPM element may have to
BPEL. In addition, the support of OCL2.0 as a language
for the specification of Pre and Post condition is
underway.

7. References

[ActiveBPEL] ActiveBPEL at http://www.active-endpoints.com/active-
bpel-engine-overview.htm, last time page visit: February 2007
 [ATL 06] Atlas Group LINA and INRIA Nantes, Atl: Atlas
transformation language. atl user manual, February 2006.
[Bendraou 05] Bendraou R., Gervais M.P, Blanc X. "UML4SPM: A
UML2.0-Based Metamodel for Software Process Modelling". In Proc. of
the ACM/IEEE 8th Intern. Conf. on Model-Driven Engineering
Languages and Systems (MoDELS'05), Montego Bay, Jamaica, Oct.
2005, LNCS, Vol. 3713, 17-38
[Bendraou 06] Bendraou R., Gervais M.P, Blanc X., “UML4SPM: An
Executable Software Process Modeling Language Providing High-Level
Abstractions”, Tenth IEEE Intern. EDOC Conf. (EDOC 2006), IEEE
Computer Society Press, Oct. 2006, pp. 297-306
Bordbar B., Staikopoulos A.: "On Behavioural Model Transformation in
Web Services", Proc. of the ER 2004 Workshops CoMoGIS, COMWIM,
ECDM, CoMoA, DGOV, and ECOMO, Shanghai, China 2004, Springer.
[Chou 02] S.-C. Chou, "A process modeling language consisting of high
level UML diagrams and low level process language", Journal of Object
Technology 1, 2002, 4, pp. 137–163
[Di Nitto 02] Di Nitto E. et at. "Deriving executable process descriptions
from UML", in Proc. of the 24th Inter. Conf. on Software Engineering
(ICSE'02), Florida, USA, 2002, ACM Press.
[Dobson 06] Dobson G., "Using WS-BPEL to Implement Software Fault
Tolerance for Web Services", in Proceedings of the 32nd EUROMICRO-
SEAA'06 conference, IEEE Computer Society, 2006.
[Jäger 98] Dirk Jäger, Ansgar Schleicher, and Bernhard Westfechtel.
"Using UML for Software Process Modeling". Number 1687 in LNCS,
pages 91-108, 1998.
[Kloppmann 05] Kloppmann, M. et al. "WS-BPEL Extension for People
BPEL4People", Joint white paper, IBM and SAP, July 2005.
[Korherr 06] Korherr B. and List B. "Extending the UML 2 Activity
Diagram with Business Process Goals and Performance Measures and
the Mapping to BPEL" in Proc. Of UML (BP-UML'06), Nov. 2006.
[Mantell 05] Mantell, K. "From UML to BPEL". URL:
http://www.ibm.com/developerworks/webservices/library/ws-uml2bpel,
September 2005.
[MODELPLEX 06] MODELPLEX IST European Project, Contract N°
IST-3408 at http://www.modelplex-ist.org, page last visit: Feb. 20, 2007
[OMG 02] OMG SPEM1.1, “Software Process Engineering
Metamodel”, OMG document formal/02-11/14, November 2002, at
http://www.omg.org.
[OMG 05a] OMG UML2..1.1 Superstructure, "Unified Modelling
Language", OMG document formal/07-02-03, Feb. 2007.
[OMG 05b] OMG MOF QVT final adapted specification, ptc 05-11-01
(2005).
[Ouyang 06] Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.H.M.:
"Translating Standard Process Models to BPEL". In Pohl, K., ed.: 18th
Conf. on Advanced Information Systems Engineering, Luxembourg,
Springer (2006) forthcoming
[Rumpe 02] Rumpe, B.: "Executable Modeling with UML. A Vision or a
Nightmare?" In: Issues & Trends of Information Technology
Management in Contemporary Associations, Seattle. Idea Group
Publishing, Hershey, London, pp. 697-701. 2002.
[Van der Aalst 03]Van der Aalst W.M.P. "Don't go with the flow: Web
services composition standards exposed". IEEE Intelligent Systems,
18(1):72-76, 2003.
[Van der Aalst 03] Van der Aalst, W.M.P., ter Hofstede, A.H.M., et al..:
"Workflow Patterns". Distributed and Parallel Databases 14 (2003) 5–51
[WSBPEL 07] Web Services Business Process Execution Language
Version 2.0. Working Draft. WS-BPEL TC OASIS, January 2007. URL:
http://www.oasis-open.org/committees/download.php/12791/
[WfP] Workflow Patterns at www.workflowpatterns.com
[Wohed 04] Wohed P. et al.., "Pattern-based Analysis of the Control-
Flow Perspective of UML Activity Diagrams", in L. Delcambre et al.,
editors, Proc. of the 24th Int. Conf. on Conceptual Modeling (ER 2005),
volume 3716 of LNCS, pages 63-78. Springer-Verlag, Berlin, 2005

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

