
Find your Library Experts

Cédric Teyton, Jean-Rémy Falleri, Floréal Morandat and Xavier Blanc
Univ. Bordeaux, LaBRI, UMR 5800

F-33400 Talence, France
E-Mail: {cteyton,falleri,fmoranda,xblanc}@labri.fr

Abstract—Heavy usage of third-party libraries is almost
mandatory in modern software systems. The knowledge of these
libraries is generally scattered across the development team.
When a development or a maintenance task involving specific
libraries arises, finding the relevant experts would simplify its
completion. However there is no automatic approach to identify
these experts. In this article we propose LIBTIC, a search engine
of library experts automatically populated by mining software
repositories. We show that LIBTIC finds relevant experts of
common Java libraries among the GitHub developers. We also
illustrate its usefulness through a case study on the Apache HBase
project where several maintenance and development use-cases are
carried out.

I. INTRODUCTION

Open Source Software communities become larger and turn
to be real social networks. One famous example is GitHub that
not only provides a dedicated development environment for
each of its projects but also offers global facilities to all of
its members allowing them to communicate together and to
exchange about their software practices [1].

In such software social networks any member has a role
that depends on the contributions she makes. Ye and Kishida
have defined the roles (project leaders, core developers, active
developers, bug fixers, etc.), which have a major impact on the
structure of the community and then on software quality [2]. In
particular, Robles et al. have observed that it is recommended
for an OSS project to keep its core developers during its
lifetime [3].

Even if these roles are primary to measure how a software
project is organized, there are other roles, such as technological
guru or expert, that worth to be defined for measuring the
technological strengths or weaknesses of a community or a
project and for optimizing the technical communications that
occur between its members. Further, by knowing the experts
of a given technology, any developer can think about being
connected to them to follow their advice or to directly contact
them to solve an issue.

In this paper we propose to automate the identification of
experts within OSS communities. As there exist several domains
of expertise, we choose to focus on third party library experts.
Our motivation is driven by the fact that software nowadays
depends on many third party libraries [4]. For instance, Apache
Struts depends on 35 libraries and Hibernate on 42. As a
consequence, software developers must master the libraries
used by the project they contribute to, otherwise they will not
be able to ensure their maintenance.

Our contribution is twofold. First we propose an abstract
model for library expert identification. This model is based

on a syntactical analysis of the commits performed by the
developers to measure their library usages. The main idea is
that a developer is an expert of a library if she introduces
source code that uses this library. Our second contribution is
a query language that can be used to identify library experts
within large communities.

Our contributions come with a tool, named LIBTIC, that
is intended to be used by project leaders in at least the three
following situations. First LIBTIC can be used to evaluate the
library knowledge among the developers of a given project.
Second it can be used to identify developers of a given project
that are experts of a given library with the objective to ask
them to perform tasks that require such an expertise. Third
it can be used on a whole community to identify if there are
experts that can be contacted to answer some very specific
questions about libraries.

The remainder of this paper is structured as follows. Sec-
tion II presents the abstract model of our approach. Section III
describes our implementation to extract and query developer
expertise. Section IV presents how we used our implementation
to validate our approach. Related work is presented in Section V.
Finally perspectives and conclusion seal the paper.

Our tool and data are freely available at:

http://www.labri.fr/∼cteyton/libtic/

II. LIBRARY USAGE

This section starts by providing definitions for library and
developer usage. Based on these definitions it then presents
how expertise is measured and how library experts can be
identified.

A. Library and developer usage

A software library is a software component that provides
facilities designed to be invoked through well defined interfaces.
For the sake of simplicity, we consider that each facility
provided by a library (such as a function, a type or a class) is
identified by a syntactic symbol.

Definition 1 (Library): Let L be the set of libraries. A
library l ∈ L has an associated set of exported symbols Sl

that identify all facilities provided by the library. The notion
of exported symbol depends on the considered language. For
instance in Java, the exported symbols are the public types,
methods and attributes.

Software developers contribute to the source code by
frequently committing their changes. We consider that a
developer uses a library if one of her commits introduces

at least a symbol of the library. Moreover, we also track the
version of the library that is being used by the developer. For
the sake of simplicity, we consider that versions of libraries
are totally ordered.

Definition 2 (Developer usage): Let D be the set of devel-
opers. A developer d ∈ D uses a symbol s ∈ Sl of a library
l ∈ L, if one of the commits she performed introduces s in
the source code. The version of library used at the time of the
commit is noted v. We note (d, l, s, v) the tuple that defines
the usage of a library by a developer. We note U the union of
all the usages of libraries performed by all the developers that
contribute to a set of software projects.

As an example, we consider that L contains one library
h2 that proposes the symbols load, start and stop. Alice, a
software developer, performs a commit introducing load from
the version 1 of h2 and another commit that introduces start
from the version 2 of h2. The developer usage U is then noted
U = {(alice, h2, load, 1), (alice, h2, start, 2)}.

B. Library expertise

We propose to identify library experts according to library
dimensions. A library dimension defines some requirements on
an expertise. For our concern, a library dimension must target
one library and can optionally define some filters that limit the
set of symbols and/or versions of the library.

The identification of experts can be done against one or
several library dimensions and will return experts that have
used the symbols defined by the dimensions. With our example,
we can define a library dimension that targets the h2 library
and that considers all of its symbols and all of its versions.
Changes performed by Alice will then be considered when
identifying experts of h2. We can define another dimension
that targets the h2 library but that considers only the version 2.
For such a dimension, only the second usage of Alice will be
considered.

Definition 3 (Library dimension): An expertise dimension
(l, dims, dimv) targets one library l ∈ L and optionally defines
a filter function for symbols dims : Sl → B and a filter
function for versions dimv : Vl → B of the library. We note
Dim the set of dimensions.

To measure the expertise that a developer d has regarding a
given library dimension dim, we compute the ratio between the
number of symbols he uses (u(d, dim)) with the total number
of symbols provided by the dimension (p(dim)).

Definition 4 (Symbols usage): Given a library dimension
dim = (l, dims, dimv) ∈ Dim, the set of symbols of l used
by a developer d ∈ D is:

u(d, dim) = {s ∈ Sl|∃v(d, l, s, v) ∈ U ∧ dims(s)∧ dimv(v)}

Definition 5 (Provided symbols): Given a library dimen-
sion dim = (l, dims, dimv) ∈ Dim, the set of provided
symbols is:

p(dim) = {s ∈ Sl|dims(s)}

The expertise a developer has regarding a given library
dimension is a real value between 0 and 1 that expresses the
percentage of used symbols among the provided ones.

Definition 6 (Library expertise): The expertise that a de-
veloper d ∈ D has for a given library dimension dim =
(l, dims, dimv) ∈ Dim is:

e(d, dim) =
|u(d, dim)|
|p(dim)|

Our approach takes into account the number of symbols
used by each developer and not the number of times they are
used. We argue that as soon as a developer has introduced a
symbol in the code, he can be considered to know the symbol.
As a consequence, we argue that the number of known symbols
is a better indicator that the number of times they are used to
identify experts. For instance a developer may use several times
the same pattern while alternative, i.e. other symbol, where
available. Moreover taking into account duplicates would not
lead to single number between 0 and 1 thus would be harder
to interpret. Further our approach considers that all symbols
of a library have the same importance. This obviously does
not correspond to the reality as all libraries have important
symbols as well as minor ones. However our approach aims
to be automated and independent of any library, and therefore
cannot assign weight to library symbols.

With our example, e(alice, h2) = 2/3 as Alice uses two
of the three symbols provided by h2. If now we consider that
Bob has introduced stop from the version 1 of h2 in a commit
and stop from the version 2 of h2 in another commit, then
e(bob, h2) = 1/3 as Bob uses only one symbol of h2.

C. Expertise distance

To compare the difference of expertise among developers,
we use the classical Euclidean distance. To that extent, we define
the reference point > that corresponds to a complete expertise
for every library dimension (∀dim ∈ Dim, e(>, dim) = 1).
For each developer considered by the comparison, we then
compute a vector of expertise. With our example, we now
consider a second library slf4j where e(alice, slf4j) = 1/2
and e(bob, slf4j) = 1. If we consider the dimensions that target
h2 and slf4j without any filters, we then have the following
vector v> = (1, 1), valice = (2/3, 1/2) and vbob = (1/3, 1).
Using the Euclidean distance, we obtain that Alice is again a
better expert as her distance with > is 0.60 whereas it is 0.66
for Bob.

III. LIBTIC PROTOTYPE

This section presents LIBTIC that implements our approach.
The first component of LIBTIC aims at building the developer
usage database (DUD) that contains all usages of libraries made
by developers (all u ∈ U as defined in Section II). The second
component of LIBTIC executes the identification of library
experts. This component is a kind of query engine, where
queries specify the library dimensions of the identification.
Figure 1 presents the user interface of this component where
queries can be defined and where the list of corresponding
experts are returned.

While our approach is not restricted to any particular
language, LIBTIC is only a proof of concept and hence has
some restrictions. Currently it only supports projects in the Java
language. Projects also need to be managed through Apache

Fig. 1: Screenshot of LIBTIC.

Maven. Finally projects should be stored on a version control
system such as Git or SVN.

A. Building the developer usage database

Building the developer usage database (DUD) requires two
components: a symbol index which maps symbols of a project
to a library and a version, and a usage extractor which collects
the developer usage of a project.

1) Symbol index: The symbol index aims at identifying
which library defines a given symbol and at which version.
It is a function which maps symbols either to both a library
and a version or to ∅ if it cannot identify the library or the
version. To build this index, we have performed a two step
process. The first step consists in analyzing all libraries in all
their versions to build the complete set of symbols they provide.
This step ends with a huge set of tuples (s, l, v) indicating that
the symbol s is provided by the library l at version v. The
second step aims at transforming this set to an index where
symbols are the keys and where (l, v) are the values.

As many libraries provide similar symbols at different
versions and as it may appear that different libraries provide
same symbols, it is difficult to assign each symbol to only
one library at one version. To overcome this issue, we decided
to use dependency information from the project where the
symbol is being found. This dependency information (depsp)
is a set that contains all the couples (l, v) on which the project
depends. As a consequence, the keys of the symbol index are
now couples (s, depsp). The index then only retains tuples
(s, l, v) where (l, v) ∈ depsp. Finally if s is unique among the
remaining tuples, its corresponding tuple is returned. Otherwise,
if s does not exist in the index or if it is contained in several
tuples, the index returns ∅.

For our Java prototype we define symbols as fully Java
qualified names of methods including the types of all arguments.
This allows to deal trivially with method overloading. Even
though this is not perfect, fully qualified names of methods
avoid most of names conflict of symbols coming from different
libraries. On the other hand method overriding is ignore since
this task fall to the library designer.

The first step of our process has been populated by extract-
ing symbols of libraries managed by the Maven repository,
which stores a huge number of libraries at many versions. The
jar files of all the libraries have been downloaded and symbols
have been automatically extracted by using the Javassist
bytecode analyzer [5]. This process is straightforward since the

bytecode contains already fully qualified names. In practice
only public methods were extracted. For the second step of our
process, the index has been computed thanks to information
provided by Maven configuration files that defines the library
dependencies of each project.

2) Usage extractor: The usage extractor is the keystone
of the DUD extraction process. It assumes that for any
project version, dependencies are known, i.e. library names
and versions1, and that the symbol index is built accordingly.

For any given project it analyzes each version recorded in
the VCS in any order. Files reported as added or modified by
the VCS are further analyzed. Deleted files are discarded as they
cannot be a location of a symbol introduction. In particular, we
consider that a symbol is used only when it is first introduced
in a particular location of a source code file. Each added or
modified file is then parsed, resulting in an abstract syntax tree
(AST) that contains nodes having a type, a value (text), and a
position in the source file. This step works for any language
where a parser exists. Then a text diff is computed between
each analyzed file with all of its parent versions.

As a final step the usage extractor walks through AST
nodes that refer to a symbol. Obviously this knowledge is
language dependent and a node filter has to be provided for
each programming language. Whenever such a node is found
and if its position is in the scope of added lines (+) in all the
diffs, the value of the node is searched in the symbol index.

Finally, each symbol s that maps to a library l at the version
v is added in the DUD as a usage (committer, l, s, v), while
each symbol mapping to ∅ is discarded.

This whole process can be applied incrementally, processing
new projects or revisions as they appear to keep the DUD up-
to-date.

In our prototype, we rely on the Eclipse Java Development
Tools (JDT) for the Java parser and the node filter.2 JDT
is capable of extracting an AST from a Java source code.
Unfortunately symbols in the Java source code are usually
referred using a short name while fully qualified names are
required for the index. Even if sometimes qualified names of
symbols can be deduced from the import statements, it is not
possible when two or more imports use wildcards. Moreover,
JDT allows to resolve names as long as the Java classpath
is configured correctly, which can be easily done thanks to
Maven. After source code parsing, the Java node filters accept
only the following nodes from the AST: class definitions, field
definitions, method definitions, variable definitions and method
calls.

3) Limitations: While being mostly language agnostic, this
approach has a few limitations. Some are due to the simplicity
of the prototype, others are more open research questions.

a) Libraries and versions: As previously explained we
assume that we know for any project revision the exact libraries
and versions they use. While this is fairly easy to retrieve
when a dependency manager is used, it can be very difficult
for a project that does not use any automated dependency
management. To have a symbol index that works without any

1If the version is unavailable, a wildcard is used.
2http://www.eclipse.org/jdt/

information on the project dependencies, we could investigate
techniques to detect automatically the provenance of an entity,
such as [6].

b) False symbol introduction: We obtain symbol intro-
ductions by applying a text differencing algorithm (described
in [7]) between two successive versions of a source code file.
However this algorithm is not robust to several situations.
The symbols contained in the following elements are seen
as introduced: a renamed source file, a copy-pasted code
snippet, a code snippet moved across files. In these cases,
a false symbol usage is added in the DUD. However the
number of these false positives could be reduced by using
origin analysis techniques (such as [8]) or more powerful
differencing algorithms. While the technique is proposed with
text differencing, it is not restricted to it, any other technique
which is able to provide added or removed symbol should work,
e.g. structural differencing [?].

c) Multiple identities: When committing a revision to a
VCS, users can usually choose freely their names. It is therefore
not uncommon that a same developer has several distinct
names on the repositories he commits on. This phenomenon
can decrease the quality of the results obtained by our tool.
Therefore we highly recommend to apply an identity merging
algorithm on the names (such as the ones explained in [9])
gathered from the VCS.

B. Querying the model

Collecting data is only a first step, analyzing it efficiently
and easily represents another challenge. The DUD is stored in
a relational database, however we remarked that using SQL to
query it leads to cumbersome, hard-to-write and error prone
queries. Since being able to quickly find the library experts is the
most important feature of our tool, LIBTIC introduces a simple
domain specific language (DSL) over SQL to query the database.
Even if this DSL is only composed of two main operators, it is
powerful enough in a lot of use cases (Section IV). Additionally
a few more constructs are added to our DSL to ease data
manipulation. Without being exhaustive this section contains a
quick overview of the LIBTIC DSL that should be enough to
reproduce the results provided in Section IV of this article.

Who, who*, how and how*: Quickly finding library
experts enforcing a set of constraints is the main purpose
of LIBTIC. Therefore writing such a query should be as
short as possible. This is the goal of the who operator,
which is the main operator of our DSL. This operator takes
as a mandatory argument a set of library constraints, each
representing a library dimension. It returns all the developers
having a distance strictly lesser than 1 on every dimension,
ranked by their distance to the set of library dimensions. A
library constraint is expressed as a library name, an optional
version filter and an optional symbol filter. A symbol filter is
a set of simplified regular expressions. A symbol matching
any of the simplified regular expressions is retained by a filter.
For instance the query who guava {*.html.* *.io.*
} guava{*.math.*} guava >4 returns all developers
knowing at least the version 4 of guava and one or more
symbols in the io or html packages and one or more symbols
from the math package. The only special characters of our
simplified regular expressions are the classical * and ? shell

wildcards, with their usual semantics. The who operator also
accepts a simplified regular expression as a library name. In this
case, all libraries matching this pattern are aggregated as if they
were the same library. Additionally, an optional set of simple
regular expressions can be given as a first argument to the who
operator. It will restrict the results of the query to developers
having a name matching at least one pattern. For instance the
query who {alice bob*} guava{*.math.*} returns
the developers that know at least one symbol of the math
package of the guava library and that have alice as name or
any name starting by bob.

Since who returns developers having a distance lesser
than 1 for all dimensions, it might be too restrictive in some
situations. The who* can be used to relax constraints by
returning developers having a distance lesser than 1 in at least
one dimension of the query. It can be noticed that this starred
version returns a superset of the classical who, and when a
developer is returned by both query the distance remains the
same.

Since in several cases it is interesting to know the distance
of the developers for each library instead of the distance to the
query, we have also defined the how operator and a starred
version. These operators consider each library as independent
for the computation of the distance. Finally both who and how
have the same syntax.

Describe and find: Another common operation per-
formed in LIBTIC is searching for details of libraries, symbols
or developers. This is why we introduced the desc and find
operators. desc is used to consult the details of a particular
user. Basically it returns the symbols he used together with
their version and libraries. Results may be restricted to some
libraries by appending library constraints (with the same syntax
than who). find is used to look for the exact name of libraries,
symbols or developers. All these operations are done with find
user|lib|sym followed by a name which may contain

wildcards. Additionally symbols lookup may also be restricted
to a set of libraries, e.g., find sym *.io.* guava*.

Variables: Finally, a simple mechanism of variables is
provided by this language to deal with complex or repetitive
constraints. Variables can represent constraints (@var), or
set of users or symbols ($var). Both are stored in different
namespaces and may contain wildcards which will be expanded
in their respective context, e.g., the snippet set $o {*o*}
; set @g guava ; who $o @g $o returns only devel-
opers having a “o” in their names and knowing a symbol of
guava which also contains a “o”.

IV. EVALUATION

This section presents the two experiments we made with
LIBTIC. The first one aims to demonstrate that LIBTIC does
identify library experts. The second one aims to highlight how
LIBTIC can be used by project leaders to manage their software
projects. These two experiments have been performed on a
corpus of software projects that has been extracted from GitHub.
To respect the privacy of the GitHub developers, the results of
all our experiments contain fake developers names.

1 − 5 5 − 10 10 − 20 > 20

Distribution of Librairies per Developers

of Libraries

%
 o

f D
ev

el
op

er
s

0
20

40
60

80
10

0

Fig. 2: Distribution of the number of known libraries per
developer

A. Extracting the corpus from GitHub

Our two experiments have been done on a large developer
user database (DUD). We choose to extract this DUD from
the GitHub software project hosting platform because GitHub
contains a huge amount of software projects and developers
and because it defines an easy-to-use REST API3.

To that extent, we queried the REST API of GitHub to get
a list of Java projects using Maven and managed to collect
6330 projects. As explained in Section III, for each project
we downloaded all of its library dependencies using Maven to
populate the set of libraries and symbols. Then, we browse the
source code of each project, revision by revision, to populate
the set of developers and the DUD.

Since GitHub developers are free to give any name when
they commit some source code, they can appear with several
names. To reduce the fragmentation of the developer names
explained in Section III, we applied the following simple
identity merging technique, relying on the GitHub REST API.
We search for the committer name in GitHub and if GitHub
returns a user we take its login, if not we take the committer
name.

Collecting libraries and symbols of our corpus has taken
about 50 hours. Populating the developers and symbol usage
has taken about 150 hours. The DUD contains 3705 authors,
1026 libraries, 51585 symbols and 161917 symbols usage.
Figure 2 shows the distribution of the number of libraries
known per developers. According to this chart, a vast majority
of programmers (77%) only use very few libraries (between 1
and 5 libraries), and less than 2% use more than 20 libraries.

3http://developer.github.com/v3/

B. Looking for library experts

In this experiment, we want to show that LIBTIC is able to
find true library experts among a large number of developers.
We are interested in two situations: finding experts of one
library and finding experts of several libraries at the same time.
To find experts of one library, we randomly selected 3 libraries
(guava, servlet-api and jackson-core-asl) that are used in at
least 20 projects from our corpus. For each such library, we
executed a query to find the related experts. To ensure that the
highest ranked developers returned by LIBTIC are true experts
of the library, we first manually investigated the two highest
ranked developers. Second, we sent a mail to these developers
where they are presented a list of 4 random libraries from our
corpus and the library for which they have been identified as
experts. In the mail, they are asked to rate from 0 (don’t know
the library) to 5 (expert of the library) their expertise in the
libraries from the list. To find experts of several libraries, we
apply the same process, but we arbitrarily chose the junit and
testng libraries as target libraries since we have shown that
they are often replaced in software projects [10]. Globally, we
had a 50% response rate, with a mean response time of 2 days.

To find experts of guava, we use the following query: who
guava. The highest ranked developer is guava-expert-1 with

55 used symbols, and the second is guava-expert-2, with 41
used symbols. We analyzed the profile page of guava-expert-1
on GitHub. Among his public repositories, there are four Java
projects. We looked at the source code of these projects, and
three are using the guava library. Moreover, this user is the
only committer on these repositories. We can therefore assume
that he has a good knowledge of guava and that our prototype
was right. We also looked at the guava-expert-2 profile, and he
is also using extensively guava in his personal projects. Only
guava-expert-1 answered to our mail. He attributed himself a
score of 4/5, the highest one from the list we furnished.

For servlet-api, we use the following query: who
servlet-api. The highest ranked developers returned are
servlet-expert-1 and servlet-expert-2, who used respectively
106 and 72 symbols of the library. By looking at the GitHub
page of servlet-expert-1 we see that he is the creator of Jenkins,
a continuous integration server programmed in Java. Since
Jenkins defines many servlets, our prototype seems once again
to be right. Regarding the user servlet-expert-2, his web page
states that he is a “Web Architecture Consultant specialized
in open source frameworks”. His GitHub profile page shows
that he is very active in a lot of Java projects. It is therefore
very likely that he is an expert of Java servlets which are a
classical web component in Java applications. Only servlet-
expert-2 answered to our mail. He attributed himself a score
of 5/5, the highest one from the list we furnished.

For jackson-core-asl, we use the following query: who
jackson-core-asl. We identified jackson-expert-1 as

the highest ranked expert with 68 used symbols. In second
position, jackson-expert-2 used 31 symbols, but contrary to the
aforementioned developer, he uses more recent versions of the
library, ranging from 1.8.2 to 1.9 instead of 1.1.1 and 1.5.5
for jackson-expert-1. As indicated by his web page, jackson-
expert-1 is a very active developer of Jersey, a Java platform
to build REST services. Since JSON is the main output format
of REST services, it is very likely that jackson-expert-1 is an
expert of this library. We looked the page of jackson-expert-2,

and we saw that this developer maintains an online tool to
validate JSON documents. This tool uses the Jackson library
as backend. Once again, our prototype seems to have found
two relevant experts for this library. jackson-expert-1 did not
answered to our mail, but jackson-expert-2 attributed himself a
score of 4/5 , the highest score in the list we furnished.

For junit and testng, we use the following query: who
junit* testng. This query returns 25 developers. The high-
est ranked developer is test-expert-1. By using the query desc
test-expert-1 junit* testng, we can see that he

knows 26 symbols of junit and 85 symbols of testng. The
second developer is test-expert-2 and knows respectively 14
and 31 symbols of junit and testng. The resume of test-expert-
1, available on his web page, states that he has worked as a
“software quality engineer (writing tests, executing, creating
automated tests, preparing CI environments, analyzing source
code and writing tools to assist developers and testers)”. In
the answer to our mail, he attributed himself 3/5 and 3/5 for
these libraries, the highest scores in the list we furnished. We
can therefore conclude that he seems a good candidate to
explain the differences between junit and testng. test-expert-2
did not answer to our mail, and no additional results by manual
searching could be found to confirm his skills.

C. Using LIBTIC in a software project

In this experiment we conduct a two case studies on a
software project to show the usefulness of LIBTIC. We chose
the Apache HBase project to perform this case study because
it was one of the most active projects in our corpus. There
are 33 developers on its source code repository, and it uses 29
libraries. In the first case study, we use LIBTIC to assess the
library knowledge of the HBase developers. In the second case
study, we use LIBTIC as a task recommendation system for the
issues involving the guava library in HBase issue tracker. The
two queries shown in Listing 1 define two variables containing
respectively the HBase developers and the libraries used by
HBase. This information is used in both case studies.

1) Assessing library knowledge: From a management point
of view, we argue that having a global view of the library
expertise of all developers is very important. For instance,
developers that have a good expertise on many of the libraries
of a project are very important to the project. These developers
should be kept in the development team. Also, it is dangerous
to have libraries for which there is only one expert in the team.
In this case training a few more developers on these libraries
would be recommended.

By using LIBTIC we can easily compute what we call
a library expertise matrix that indicates which developers are
expert of which libraries. Such a matrix for the HBase project is
easily built using the following query: how* $hbase_devs
@hbase_libs.

The library expertise matrix of HBase, shown in Table I,
reveals that there are only 21 developers out of 33 that are
expert of at least one library. It is clear from this matrix that
the different libraries have different number of experts. For
instance 8 libraries out of 29 (in bold) have only one expert
developer. Developers should be trained on these libraries, and
their usage in the project should be reconsidered. Moreover,
we see that 3 developers out of 33 (in bold) are expert of more

than a half of the libraries of the project. They are therefore
very important to the project.

2) Recommending tasks: We now investigate if LIBTIC
can be used to identify candidate members to realize software
maintenance or development tasks that require an expertise on
some libraries. To that extent, we sought for tasks involving
libraries in the issue tracker of HBase4. We focused on tasks
related to guava library as an example, and went through
each issue report containing the keyword guava either in the
summary, description or comment field. We looked into the
issue description and comments to ensure that the issues were
actually in relation with the guava library. Using this process,
we gathered a total of 11 issues.

Then, we used LIBTIC to retrieve the HBase developers
that are experts of guava using the following query: who
$hbase_devs guava. To ensure that developers would

have been recommended only using information from LIBTIC
at the time of the issue creation, we run this query on a DUD
extracted from the HBase repository until the creation date of
the issue. Therefore, the number of guava experts increase with
the date of the issue creation, from 1 to 10 experts for the last
issue. Then, we manually found the logins on the issue tracker
corresponding to these developers.

For each issue involving guava, we manually collected
the list of the HBase developers that were involved in the
resolution process of the issue. We discarded all the developers
that appeared in the issue but whose only role is to report
the bug or change the issue status. We also discarded users
that did not correspond to a HBase developer (such as HBase-
QA or Hudson). Finally we partitioned the set of the retained
developers in two: experts (for developers knowing guava),
and non-experts (for developers with no expertise of guava).
The results obtained using this process are shown in Table II.
Additionally, we show in this table the precision and recall
of a recommendation system that would have recommended
the issues to all the experts of guava at the time of the issue
creation.

In Table II we can see that the recall of such a recom-
mandation system increases with time. For the first issues, the
precision is good, but the recall is low. For the last issues, the
recall is very good and the precision lower, which is interesting
for such a recommandation system. Moreover, even if the
precision seems low, the other experts might have participated
to the issue if they had been notified of its existence, improving
the precision. In summary, LIBTIC seems to be, after a training
time, a recommendation system with a high recall value for
issues involving libraries.

V. RELATED WORK

Repository mining has already been used to exhibit profiles
in the usage of source code [11], [12], [13]. All these
approaches however focus on elements (such as a file, class
or method) contained in the projects, but not on the external
libraries. It should be noted that Ma et al. already shown that
usage and implementation expertise have a similar accuracy
to find developers [11]. They argue that developers who use a
method at least know what the method does, without any idea

4https://issues.apache.org/jira/issues/?jql=project%20%3D%20HBASE

Listing 1: Variables used by queries of Section IV-C
s e t $hbase devs {hbase−dev−1 . . . hbase−dev−21} ; # HBase d e v e l o p e r s

s e t @hbase l ib s j axb−ap i hadoop−core h i g h− s c a l e− l i b j e r s e y− c o r e m o c k i t o−a l l l i b t h r i f t
j e r s e y− s e r v e r jackson−mapper−as l commons−lang s t a x−a p i av ro p r o t o b u f− j a v a j e r s e y− j s o n j e t t y
commons−cli j u n i t j s r 3 1 1− a p i s l f 4 j− a p i m e t r i c s− c o r e s e r v l e t− a p i−2 . 5 j sp−2 .1 commons−logging
guava h t r a c e t h r i f t hadoop− t e s t z o o k e e p e r l o g 4 j j s o n ; # HBase l i b r a r i e s

about the implementation. Our approach is based on the same
assumption that considers that a developer knows a library
symbol as soon as he uses it.

Developer profile has been studied in bug triaging. Nguyen
et Al. propose profiles of developers based on bug reports [14].
DREX recommends developers for bug resolution based on
previous expertise on similar bugs [15]. Servant et al. propose a
tool to assign to developers the fixing of test case failures based
on fault localization and history of the related source code [16].
Our approach is related to these triaging approaches as it
proposes a model for library usage. Our case study shows that
it could be used to improve the identification of the developer
that would best fix library-related bugs.

Surian et al. propose a recommendation system of collab-
orators in Sourceforge [17]. Developer profiles are yielded
based on projects properties and keywords, which are too
coarse-grained to target specific libraries. Similarly, CARES is
a Microsoft project standing as a Visual Studio extension that
exposes developers profiles who have contributed to a given
file [18]. These two approaches cannot be used to capture the
library usage of developers.

Ye et al. propose a tool that helps developers to learn about
usage of Java APIs [19]. The tool inputs developers code and
records which Java API are used by it and how. Further, one
can ask the tool to return all developers that have used the API
in a specific way to show examples. This approach focuses
on library API learning. On the contrary, our approach on
retrieving skilled developers on libraries. Also, their tool does
not work with version control systems, since when developers
submit their binary Java program, they have knowledge of any
method called in the program. Therefore, this system lacks
accuracy and is unsuited for collaborative development.

Understand API usage has been investigated in past years.
Ekoko et al. explain how developers face unfamiliar APIs [20].
Zhong et al. propose MAPO, an approach that queries source
code repository to extract API usage patterns as sequences of
operations [21]. Zhang et al. propose an approach to recommend
API parameters [22]. Our approach may be used to improve
the understanding of API usage. However, our main goal is to
provide relevant developers based on a static analysis of API
usage.

Lämmel et al. propose a large-scale study on API usage
over a large set of open source projects [23]. Their approach
is different from ours as it is manual and based on the import
headers of source code file. Using a set of 77 libraries, they
evaluate how much of their symbols are used. Moreover, this
approach does not consider the temporal aspect but just a
snapshot of each project (the last one), not its history, and
not developers contributions. Bauer et al. assess library usage

of Java projects thanks to a static analysis that is based on
JAR files located in the projects code base [24]. They attach a
visualization to understand and evaluate where each library is
used in the project, but they do not propose developer profiles.

Okur et al. performed a large scale experiment to study
how programmers use parallel libraries from Microsoft [25].
They observed that most often the libraries are misused or
not exploited as efficient as they could be. They also noticed
that usage patterns follow a Pareto rule meaning that few
library elements are used most of the time. This kind of study
targets mainly library designers. Our approach is useful in this
context to identify experts having a wide coverage of API
usage for a given library. They become candidate of interest to
communicate with library designers.

The API evolution problem has been widely studied in
various manners to update client code when an API evolves.
Dig et al. have studied manually the changes through several
versions of four libraries and showed that 80% of the changes
are refactoring [26]. A technique to address this problem is to
mine source code that already performed an API update, as
Schafer et al. suggested [27]. Similarly, Dagenais et al proposed
SemDiff [28], a client-server connected to a framework source
code repository that mines its modifications to generate recom-
mendations to clients. Another technique consists in analyzing
the API internal structural changes to determine origin of
new elements. Some promising results have been achieved
in this area [29], [30]. It should be noted that a recent study
from Cossette performs a retroactive study on several library
updates performed manually [31]. They listed the different
changes and adaptations they had to make. They argue that
existing automatic approach such as the ones exposed above
are not enough satisfying, since the problem of API evolution
is too complex and requires inevitably human intervention. In
our context, our approach can identify developers that have
experimented several versions of an API and thus can advice
for on evolution task.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose to automate the identification
of third party library experts. Our motivation is driven by the
fact that software nowadays depends on third party libraries.
Our contribution is twofold. First, we propose a theoretical
definition for a library expert. This definition is based on a
syntactical analysis of the commits performed by the developers.
The main idea is that a developer is an expert of a library if
he has committed changes to the source code that uses the
library. Second, we provide a query language that can be used
to identify library experts within large communities.

We demonstrated the feasibility of our approach by col-
lecting developers expertise on a large set of Java projects

TABLE I: Library expertise of the HBase developers. Libraries are the rows and developers the columns. Libraries in bold are
libraries for which there is only one expert. Developers in bold are the developers that have expertise on more than a half of the
libraries.

hb
as

e-
de

v-
1

hb
as

e-
de

v-
2

hb
as

e-
de

v-
3

hb
as

e-
de

v-
4

hb
as

e-
de

v-
5

hb
as

e-
de

v-
6

hb
as

e-
de

v-
7

hb
as

e-
de

v-
8

hb
as

e-
de

v-
9

hb
as

e-
de

v-
10

hb
as

e-
de

v-
11

hb
as

e-
de

v-
12

hb
as

e-
de

v-
13

hb
as

e-
de

v-
14

hb
as

e-
de

v-
15

hb
as

e-
de

v-
16

hb
as

e-
de

v-
17

hb
as

e-
de

v-
18

hb
as

e-
de

v-
19

hb
as

e-
de

v-
20

hb
as

e-
de

v-
21

avro
commons-cli

commons-lang
commons-logging

guava
hadoop-core
hadoop-test

high-scale-lib
htrace

jackson-mapper-asl
jaxb-api

jersey-core
jersey-json

jersey-server
jetty
json

jsp-2.1
jsr311-api

junit
libthrift

log4j
metrics-core
mockito-all

protobuf-java
servlet-api-2.5

slf4j-api
stax-api

thrift
zookeeper

TABLE II: Classification of the developers involved in the resolution of guava related issues, and precision/recall of a
recommendation system that would have recommended the issues to all the guava experts.

Issue number Date #Experts #Experts in issue #Non-experts in issue Precision Recall

2714 11/06/10 1 1 2 1 0.33
2724 14/07/10 1 1 2 1 0.33
3264 23/11/10 4 2 2 0.5 0.5
3609 07/03/11 6 1 1 0.17 0.5
3952 04/06/11 6 2 1 0.33 0.67
4012 21/06/11 6 2 2 0.33 0.5
4385 13/09/11 7 1 1 0.14 0.5
4569 10/10/11 7 2 0 0.29 1
5739 06/04/12 9 3 0 0.33 1
5955 08/05/12 9 4 0 0.44 1
6368 10/07/12 10 5 0 0.5 1

hosted on GitHub. These projects were managed by Apache
Maven. To that extent, we designed a prototype, named LIBTIC,
that extracts developers library usages and supports our query
language. We however claim that our approach is language
independent as it is only based on static source code analysis.

LIBTIC is intended to be used by project leaders. We
evaluated its effectiveness in three situations related to software
maintenance. First, it can be used to evaluate the library
knowledge among the developers of a given project. Second,
it can be used to identify developers of a given project that
are experts of a given library with the objective to ask them
to perform tasks that require such an expertise. Third, it can
be used on a whole community to identify if there are experts
that can be contacted to answer some very specific questions
about libraries. In all these scenarios, LIBTIC was able to return
relevant developers profiles. Main conclusion of our study is
that library expertise is a promising concept to integrate in any
software environment.

While very promising, this approach is still underused. We
plan to extend it to provide benefits for library providers. Since
our approach helps to best understand how developers use
libraries, such knowledge can be used by library providers to
identify missing services or to measure the impact of a library
update on projects that depend on it. Moreover mining results
reported by the tool with machine learning techniques may
also provide interesting pattern. For instance if some library
expert is likely to require expertise on another one.

Validation of this tool is also a long and hard task. We plan
to set up a controlled experiment to validate the tool in real
conditions to avoid subjectivity in the evaluation process. When
applied to other field, e.g. bug triaging, this approach should
have more validation and comparison with already existing
dedicated tools.

Finally we think about improving our approach to make it
supporting any kind of technological expertise. We do think
that not only library expertise can be measured by looking at
the symbol usage made by developers. For instance, we think
about measuring the expertise in a programming language by
looking at the use of several symbols such as annotations or
generics for Java or C#.

REFERENCES

[1] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, ser. CSCW ’12. New York, NY, USA: ACM, 2012,
p. 1277–1286. Available: http://doi.acm.org/10.1145/2145204.2145396

[2] Y. Ye and K. Kishida, “Toward an understanding of the motivation
of open source software developers,” in Proceedings of the 25th
International Conference on Software Engineering, May 3-10, 2003,
Portland, Oregon, USA, 2003, pp. 419–429.

[3] G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution
of the core team of developers in libre software projects,” in
Proceedings of the 2009 6th IEEE International Working Conference
on Mining Software Repositories, ser. MSR ’09. Washington,
DC, USA: IEEE Computer Society, 2009, p. 167–170. Available:
http://dx.doi.org/10.1109/MSR.2009.5069497

[4] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and
M. Irlbeck, “On the extent and nature of software reuse in open
source java projects,” in Proceedings of the 12th international
conference on Top productivity through software reuse, ser. ICSR’11.
Berlin, Heidelberg: Springer-Verlag, 2011, p. 207–222. Available:
http://dl.acm.org/citation.cfm?id=2022115.2022138

[5] S. Chiba, “Javassist – a reflection-based programming wizard for
java,” in Proceedings of the ACM OOPSLA’98 Workshop on Reflective
Programming in C++ and Java, Oct. 1998.

[6] J. Davies, D. M. Germán, M. W. Godfrey, and A. Hindle, “Software
bertillonage: finding the provenance of an entity,” in Proceedings of the
8th International Working Conference on Mining Software Repositories,
MSR 2011 (Co-located with ICSE), Waikiki, Honolulu, HI, USA, May
21-28, 2011, Proceedings. IEEE, 2011, pp. 183–192.

[7] E. W. Myers, “An o(ND) difference algorithm and its variations.” in
Algorithmica, 1986, pp. 251–266.

[8] M. W. Godfrey and L. Zou, “Using origin analysis to detect merging and
splitting of source code entities,” IEEE Trans. Softw. Eng., vol. 31, no. 2,
p. 166–181, Feb. 2005. Available: http://dx.doi.org/10.1109/TSE.2005.28

[9] M. Goeminne and T. Mens, “A comparison of identity merge algorithms
for software repositories,” Science of Computer Programming, no. 0,
pp. –, 2011. Available: http://www.sciencedirect.com/science/article/pii/
S0167642311002048

[10] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration
graphs,” in 19th Working Conference on Reverse Engineering 2012,
15th-18th October 2012, Kingston, Ontario, Canada, IEEE, Ed.,
Kingston, Ontario, Canada, Oct. 2012, pp. 289–298. Available:
http://hal.archives-ouvertes.fr/hal-00761204

[11] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito, “Expert recommenda-
tion with usage expertise,” in Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on, 2009, pp. 535–538.

[12] D. Schuler and T. Zimmermann, “Mining usage expertise from
version archives,” in Proceedings of the 2008 international working
conference on Mining software repositories, ser. MSR ’08. New
York, NY, USA: ACM, 2008, p. 121–124. Available: http:
//doi.acm.org/10.1145/1370750.1370779

[13] H. Kagdi, M. Hammad, and J. Maletic, “Who can help me with this
source code change?” in Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on, 2008, pp. 157–166.

[14] T. T. Nguyen, T. Nguyen, E. Duesterwald, T. Klinger, and P. Santhanam,
“Inferring developer expertise through defect analysis,” in Software
Engineering (ICSE), 2012 34th International Conference on, 2012, pp.
1297–1300.

[15] W. Wu, W. Zhang, Y. Yang, and Q. Wang, “DREX: developer
recommendation with k-nearest-neighbor search and expertise ranking,”
in Software Engineering Conference (APSEC), 2011 18th Asia Pacific,
2011, pp. 389–396.

[16] F. Servant and J. A. Jones, “WhoseFault: automatic developer-to-fault
assignment through fault localization,” in Proceedings of the 2012
International Conference on Software Engineering, ser. ICSE 2012.
Piscataway, NJ, USA: IEEE Press, 2012, p. 36–46. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337228

[17] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and C. Faloutsos,
“Recommending people in developers’ collaboration network,” in
Proceedings of the 2011 18th Working Conference on Reverse
Engineering, ser. WCRE ’11. Washington, DC, USA: IEEE Computer
Society, 2011, p. 379–388. Available: http://dx.doi.org/10.1109/WCRE.
2011.53

[18] A. Guzzi and A. Begel, “Facilitating communication between
engineers with CARES,” in Proceedings of the 2012 International
Conference on Software Engineering, ser. ICSE 2012. Piscataway,
NJ, USA: IEEE Press, 2012, p. 1367–1370. Available: http:
//dl.acm.org/citation.cfm?id=2337223.2337420

[19] Y. Ye, Y. Yamamoto, K. Nakakoji, Y. Nishinaka, and M. Asada,
“Searching the library and asking the peers: learning to use java
APIs on demand,” in Proceedings of the 5th international symposium
on Principles and practice of programming in Java, ser. PPPJ
’07. New York, NY, USA: ACM, 2007, p. 41–50. Available:
http://doi.acm.org/10.1145/1294325.1294332

[20] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar APIs: an exploratory study,” in Proceedings of the
2012 International Conference on Software Engineering, ser. ICSE
2012. Piscataway, NJ, USA: IEEE Press, 2012, p. 266–276. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337255

[21] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: mining
and recommending API usage patterns,” in Proceedings of the
23rd European Conference on ECOOP 2009 — Object-Oriented

Programming, ser. Genoa. Berlin, Heidelberg: Springer-Verlag, 2009,
p. 318–343. Available: http://dx.doi.org/10.1007/978-3-642-03013-0 15

[22] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and
P. Ou, “Automatic parameter recommendation for practical API usage,”
in Proceedings of the 2012 International Conference on Software
Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, p.
826–836. Available: http://dl.acm.org/citation.cfm?id=2337223.2337321

[23] R. Lämmel, E. Pek, and J. Starek, “Large-scale, AST-based
API-usage analysis of open-source java projects,” in Proceedings
of the 2011 ACM Symposium on Applied Computing, ser. SAC
’11. New York, NY, USA: ACM, 2011, p. 1317–1324. Available:
http://doi.acm.org/10.1145/1982185.1982471

[24] V. Bauer and L. Heinemann, “Understanding API usage to
support informed decision making in software maintenance,” in
Proceedings of the 2012 16th European Conference on Software
Maintenance and Reengineering, ser. CSMR ’12. Washington,
DC, USA: IEEE Computer Society, 2012, p. 435–440. Available:
http://dx.doi.org/10.1109/CSMR.2012.55

[25] S. Okur and D. Dig, “How do developers use parallel libraries?” in
Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, ser. FSE ’12.
New York, NY, USA: ACM, 2012, p. 54:1–54:11. Available:
http://doi.acm.org/10.1145/2393596.2393660

[26] D. Dig and R. Johnson, “How do APIs evolve? a story of
refactoring,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 18, no. 2, pp. 83–107, 2006. Available:

http://dx.doi.org/10.1002/smr.328
[27] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes

from instantiation code,” in Proceedings of the 13th international
conference on Software engineering - ICSE ’08, 2008, p. 471. Available:
http://portal.acm.org/citation.cfm?doid=1368088.1368153

[28] B. Dagenais and M. Robillard, “SemDiff: analysis and recommendation
support for API evolution,” in IEEE 31st International Conference on
Software Engineering, 2009. ICSE 2009, 2009, pp. 599–602.

[29] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “AURA: a hybrid
approach to identify framework evolution,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, p. 325–334.
Available: http://doi.acm.org/10.1145/1806799.1806848

[30] H. A. Nguyen, T. T. Nguyen, G. Wilson,Jr., A. T. Nguyen, M. Kim,
and T. N. Nguyen, “A graph-based approach to API usage adaptation,”
in Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, ser. OOPSLA
’10. New York, NY, USA: ACM, 2010, p. 302–321. Available:
http://doi.acm.org/10.1145/1869459.1869486

[31] B. E. Cossette and R. J. Walker, “Seeking the ground truth:
a retroactive study on the evolution and migration of software
libraries,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ser. FSE
’12. New York, NY, USA: ACM, 2012, p. 55:1–55:11. Available:
http://doi.acm.org/10.1145/2393596.2393661

