
Automatic Discovery of Function Mappings
between Similar Libraries

Cédric Teyton, Jean-Rémy Falleri, Xavier Blanc
Univ. Bordeaux, LaBRI, UMR 5800

F-33400 Talence, France
{cteyton,falleri,xblanc}@labri.fr

Abstract—Library migration is the process of replacing a third-
party library in favor of a competing one during software
maintenance. The process of transforming a software source
code to become compliant with a new library is cumbersome
and error-prone. Indeed, developers have to understand a new
Application Programming Interface (API) and search for the
right replacements for the functions they use from the old
library. As the two libraries are independent, the functions
may have totally different structures and names, making the
search of mappings very difficult. To assist the developers in this
difficult task, we introduce an approach that analyzes source
code changes from software projects that already underwent a
given library migration to extract mappings between functions.
We demonstrate the applicability of our approach on several
library migrations performed on the Java open source software
projects.

I. INTRODUCTION

Software systems depend more and more on third party
libraries that provide robust and efficient functionalities [1].
Using libraries saves development time as it prevents developers
to redevelop existing features. However, as both software
systems and libraries irremediably evolve in their own direction,
developers sometime need to replace some used libraries by
another ones, for maintenance reasons. This phenomenon is
known as library migration and has been studied and observed
on Open Source Software (OSS) projects [2], [17].

When a developer has to perform a migration between two
libraries LA and LB , she has to translate all the dependencies
of LA into dependencies of LB . In other words, if we consider
that a library provides a set of functions, she has to find for
each function she use in LA the corresponding function(s) in
LB . Such a task is known to be tedious and error prone, in
particular if she does not know any of the function of LB [3].
The main challenge is then to identify the mappings between
the functions provided by the libraries.

When a migration is done between two versions of a same
library, this challenge can be faced by a syntactic analysis of the
two versions as they often only slightly differ on their syntax
and/or structure [4], [5], [6], [13], [8]. When a migration is
done between two different libraries, then the challenge cannot
be faced with the same techniques as the structure and syntax
of the libraries are significantly different.

In this paper, we propose to address the problem of the
identification of mappings between two different libraries. We
assume that libraries LA and LB respectively provide N and

M functions. Our goal is then to identify for each function
of LA the set of corresponding functions of LB , if it exists.
As no hypothesis can be established regarding the existence of
mappings between LA and LB , there may be functions of LA

that have no corresponding function in LB . Moreover, some
functions of LA may have several corresponding functions
in LB . In particular, a function f in LA may have two
corresponding functions g and h in LB but with different
constraints (g AND h, g OR h).

Our proposal consists in extracting function mappings by
mining existing software projects that have already performed
library migrations. The main idea is to identify commits
where the migrations have been done and then to analyze
the changes that have been performed to extract function
mappings. For instance, Listing 1 presents a commit where
a migration has been performed between the libraries com-
mons.lang and guava. An analysis of the commit can infer
a mapping between the function Validate.notNull(int) and
Preconditions.checkArgument(boolean).

Listing 1: An example of migration commons.lang → guava.lang.
−i m p o r t o rg . apache . commons . l a n g . V a l i d a t e ;
+ i m p o r t com . g oo g l e . common . base . P r e c o n d i t i o n s ;

p u b l i c l ong g e t P r o b l e m V e r s i o n (S t r i n g i d) {
− V a l i d a t e . n o t N u l l (i d) ;
+ P r e c o n d i t i o n s . checkArgument (i d != n u l l) ;
}

Several issues have to be faced to achieve our proposal.
First, software projects that replaced their libraries have to
be identified as well as their commits where migrations have
been performed. Second, an analysis of the commits have to
be performed to detect library migrations. Third, a process of
knowledge extraction has to be deployed to reveal the existence
of mappings.

The contribution of this paper is then threefold. First, we
provide an efficient approach to identify any library migration
through a project history. The library migration is localized
in a period of time referred as a migration segment. Secondly,
within such segment we use textual differencing between edited
source code files to identify with precision changed parts of
code. We search for hunks that contain both removed and added
function invocations from the source and target libraries of
the migration. The functions extracted in these hunks form
candidate function mappings. The mappings are then manually

reviewed to evaluate the efficiency of our approach. Finally, we
propose a lightweight filtering method to improve the precision
of the approach.

We applied our approach on a huge corpus of Java OSS
projects, looking for migrations between five pairs of commonly
used Java libraries. The quality and the precision of the results
are discussed in this paper, and show that our approach is
promising and produces valuable information.

The remainder of this paper is structured as follows.
Section II presents the related work. Section III describes
the abstract model of our approach and its general process.
Section IV describes how we applied our approach for the Java
programming language and OSS projects. Section V discusses
the results obtained from the experiments. Finally Section VI
seals the paper.

II. RELATED WORK

To the best of our knowledge, no existing approach tackles
the problem of thoroughly finding mappings between the
functions of two independent libraries (the library migration
problem), however there are many approaches that find map-
pings between the functions from two different versions of
a same library (the library update problem). Therefore we
divide the related work in three parts. In the first one we
describe the library update approaches while in the second
one we describe the few approaches that considered the library
migration problem. In a last part, we introduce the problem of
discovering similar libraries.

A. Library Update

A large number of approaches use only the source code of
the concerned library to deduce mappings. They use several
techniques to extract the mappings. Textual similarity of
methods signatures is commonly used [5], [9], [10], [11].
Computing the similarity of the sets of callers of the functions
is also a very common technique [5], [8], [11]. Computing the
similarity of the source code of the functions has also been
tried [12], [11]. Finally inferring refactorings from changes
of the library structure has also been investigated [13], [9].
Several approaches use a combination of these techniques [5],
[11], [9].

All these techniques are pointless in our context. Indeed,
since the libraries are independent, their names, source codes,
and structures are likely to be significantly different. Also,
comparing the similarity of the callers of the functions of the
libraries is not possible.

Cossette et al. [14] performed a retroactive study on several
library updates manually identified. They recorded the different
adaptations they had to make. They show that there is no silver
bullet because each of the different techniques described above
fails in some situations. They also show that for a significant
number of situations, none of the above technique work.

Two approaches of this line of work paved the way of our
approach, because they use client code of the libraries to deduce
mappings. Nguyen et al. [9] relies first on mappings extracted
using textual and structure similarities of the functions and then

on usage graphs extracted from the client. Unfortunately, this
approach is not applicable in our context because it strongly
relies on the first step which uses structure and textual similarity.
Schäfer et al. [6] analyses changes of the call sites in the
client projects of the library to extract transactions of removed
functions and added functions. Then, they compute association
rules from these transactions. Finally they filter the produced
rules by using the textual similarity of the function signatures.
The first step of this approach has largely inspired us, but in
their work they consider a whole method as a single call site,
which can generate a lot of false positives for large methods.
It can also miss a lot of mappings in case of renaming of the
enclosing methods. We improved this part of the process by
computing the call sites using textual differencing techniques.
Also, the filtering process they apply is not adapted to our
context where the names are very different, therefore we
introduced a filtering process that does not use this information.

The library update problem has also been studied in a
context where the system used differs. Winter et al. shown
that Java Libraries that run on standard Java Virtual Machine
(JVM) may be incompatible on JVM running on embedded
systems [?]. They propose program transformation to eliminate
parts of the API that are incompatible on such systems, like
floating points operations or multi-threading. This approach
is nonetheless not enough related to our context to provide
elements of comparison.

Finally, in a similar context Kapur et al. propose Trident, a
IDE plugin to assist references refactoring in a library update
context [?]. Their work addresses the process of transforming a
project source code assuming that the list of changes between
two library versions are known. This tool could be investigated
to evaluate its convenience with two independent API. The
main impediment is to preliminary compute all the equivalence
between such two libraries, which is highly complex as shown
in this paper.

B. Library Migration

Two existing techniques have considered the problem of
library migration. First, Zheng et al. proposed a cross-library
recommendation tool based on Web queries using search
engines such as Google [?]. The idea is to leverage the large
database of knowledge over the Web to search for mappings
between two API. An instance of query could be "HashMap
C#" if looking for the equivalent for standard Java HashMap
for C#. In our context, this approach can hardly be automatized
since queries should be constructed from method signatures.
It is thus unlikely to get satisfying results with such queries.
Moreover, deriving a human readable query from a method
signature, e.g. "Check string is not empty Guava", is not
straightforward. Therefore, it is orthogonal to our approach.

Secondly, Bartolomei et al. [15], [16] introduced an approach
that consists in never calling directly a library but instead
using a “wrapper” that calls the functions of the library. Then,
migrating to another library requires to write a new wrapper
with the same interface as the previous one but that calls the
functions of the new library instead. The main drawback of this

approach is that it requires to have anticipated the migration
of the library from the beginning, which is not often the case.
On the other hand, it can be used to safely migrate from one
library to the other when the need for the migration has been
identified, by constructing a wrapper before the migration. Then
writing the wrapper for the new library can be easier with our
approach.

In a previous work, we studied the general phenomenon
of library migration on open source projects [2], [17]. We
performed a large scale mining of the evolution of the projects
of the Maven repository to identify common library migrations.
We leveraged on this work to gather a corpus of projects that
performed library migrations, and to set the thresholds used in
our approach.

C. Similar Libraries

The general approach presented in this paper takes as
input two similar but independent libraries. However, selecting
a satisfying library to migrate to is not a trivial task. In
this context, discovering existing similar libraries can be a
requirement for a developer that consider library migration.
In addition to our previous work [2], we mention CLAN, an
approach that categorizes a set of software systems based on
their internal content and API calls [?]. Similar software are
likely to be used in a same context, and this provide libraries
to migrate to.

III. APPROACH

This section describes our approach to identify function
mappings between two similar libraries by observing software
projects that already underwent the migration. We start by
describing an abstract model of projects having multiple
versions and using several libraries. Then we explain how
we efficiently search in the versions of a project to discover
which library migrations it underwent. We then describe the
fine-grained analysis we perform on the source code to extract
the function mappings. Finally, we describe a filtering technique
to improve the precision of the extracted mappings.

A. Preliminary Definitions

We abstract the data needed to perform our analysis in
a simple model, a set of software projects and their list of
versions, and for each version the associated set of library
dependencies.

Definition 1 (Library): Let L be the set of libraries. Each
library l ∈ L provides a set of exported functions Fl. For any
libraries l, l′ ∈ L with l 6= l′, we have Fl ∩ Fl′ = ∅.

For instance, assume two logging libraries log4j and slf4j
that both provide 3 functions, shown in Table I.

Definition 2 (Project, versions and dependencies): Let P be
the set of analyzed software projects. For each project p ∈ P
there is an associated totally ordered set of versions Vp ⊂ N.
Versions are sorted chronologically according to their date. In
our context, the versions of a project are the commits from the
version control system. For a project p ∈ P at version i ∈ Vp,
we define its library dependencies depp(i) : Vp → P(L).

Table II illustrates this model with 3 versions of a project
Foo and their associated libraries. We have thus depp(0) =
{junit, log4j} or depp(2) = {log4j, slf4j, junit}.

The next part of our model defines migration rules and
migrations.

Definition 3 (Migration rule): Let M be the set of valid
migration rules. M ⊆ L2 is a set of pairs (s, t). Such a pair
indicates that the library t can replace the library s. Note
that this relation is symmetric, i.e. (t, s) ∈M iff (s, t) ∈M .
Therefore, we will denote such a rule s↔ t. Finally lib(M)
denote all the libraries that can be replaced (i.e. contained in
a rule of M).

Definition 4 (Migration): A migration s→ t with s, t ∈ L,
is performed by a software project p between two versions
i, j ∈ Vp with i < j when the following condition holds:

s↔ t ∈M ∧ s ∈ depp(i) ∧ t 6∈ depp(i)

∧ s 6∈ depp(j) ∧ t ∈ depp(j) (1)

In other words, p uses a subset of Fs at version vi. At
version vj , p uses functions from Ft but does not use functions
from Fs any longer. Additionally, we require that (s, t) is a
valid library migration. In our example, this situation holds
since log4j ∈ depp(1), slf4j 6∈ depp(1), log4j 6∈ depp(3) and
slf4j ∈ depp(3). Since slf4j↔ log4j is a valid migration rule,
we have therefore a migration log4j→ slf4j between version
the versions 1 and 3.

Definition 5 (Migration segment): A migration segment is
a pair of versions (i, j) with i, j ∈ Vp and i < j where a
migration s→ t has been observed. A migration segment is
the shortest interval where a given migration can be observed.

For instance, in our example, (1, 3) is a migration segment
for the migration log4j→ slf4j, while (1, 4) is not whereas it
contains the migration.

B. Extracting Function Mappings

To extract mappings between functions of two libraries, we
use a two-step process. First we apply an efficient search
algorithm to find the migration segments. Then, within a
migration segment, we apply a fine-grained code analysis,
based on textual differencing, to extract the mappings between
the functions of the libraries.

1) Extracting Migration Segments: The first step of our
approach consists in identifying migration segments from
a set of versions Vp of a project p. When searching for
migration segments, the longest operation is to extract the

TABLE I: Two libraries that provide 3 public functions.

Library Symbols

log4j
Logger.debug(String)
Logger.error(String)
Logger.getLogger(Class)

slf4j
Log.debug(Object)
Log.fatal(Object)
Log.getLog(Class)

TABLE II: A sample project Foo with its versions and dependencies.

Version Dependencies

0 {junit}
1 {log4j, junit}
2 {log4j, slf4j, junit}
3 {slf4j, junit}
4 {slf4j, junit}

set of libraries depp(i) of the project’s versions, because it
requires the downloading and the analysis of the source code of
the whole version. Extracting all migrations segments contained
in a set of versions requires the analysis of the dependencies of
each version, which is very expensive in term of computation
time, as shown in Section IV. To reduce this computation time,
we introduce an approximate divide and conquer algorithm.

Our algorithm is based on several hypotheses. The first one
is that libraries can be replaced but never dropped. Therefore
if there is a migration contained in an interval of versions, the
target library has to be a dependency of the last version of
the interval. We also assume that in a project, there are many
intervals of versions where the dependencies do not change,
as it is not very common to introduce or replace a library.
Another hypothesis is that it is very unlikely to have more than
one migration in a short time span (i.e la → lb → lc) and that
rollback of libraries (i.e la → lb → la) almost never happens.
. Finally, the last hypothesis is that there are few migration
segments in a project history, with short lengths.

Algorithm 1 shows our divide and conquer algorithm to
extract migration segments based upon our hypotheses. It takes
as input two versions i and j with i < j and a set of segments.
It works as follows: if depp(i) = depp(j) or depp(j)∩ lib(M)
is empty, the search ends between i and j. Else, if j−i ≤ tmin

we check if a valid rule can be inferred from the dependencies
of i and j. If it is the case, we use a binary search algorithm
to find the exact bounds of the segment and we add it into the
set of segments. If j − i > tmin, the algorithm is recursively
applied on the intervals (i, i+j

2) and (i+j
2 , j). The drawback of

our algorithm is that it can miss migration segments when there
are rollbacks, or when the splitting point of the interval vm is
located within a migration segment. However we have shown
that in practice, there are few segments in a set of versions,
and they have a short length [17]. Therefore the probability of
these situations is very low.

To better understand this algorithm, assume the example of
Figure 1 with a project p having 7 versions. We use a distance
threshold tmin of 3.The libraries associated to version v0 and v6
are different and there are two libraries at v6 that are possible
migration targets, so we divide the interval in two and apply the
search on (v0, v3) and (v3, v6). Since depp(v3) = depp(v6),
the recursion ends. Since depp(v0) 6= depp(v3) and 3− 0 ≤
tmin we compute rem = {log4j} and add = {slf4j}. We have
log4j ↔ slf4j ∈ M , therefore extract is called with the
parameters v0, v3, log4j and slf4j. Finally the segment (2, 3)
is extracted. In this example, 4 versions have been analyzed

Algorithm 1 Migration segment extraction

Require: p : a project
Require: Vp : the set of versions of p
Require: tmin : a minimal length
Require: M : the set of valid library migration rules

Seg← ∅
FIND_SEGMENT(v0, vhead,Seg)
return Seg
function FIND_SEGMENT(vi,vj ,Seg)

if depp(vj) ∩ lib(M) = ∅ ∨ depp(vi) = depp(vj) then
return

else if (j − i) ≤ tmin then
rem = depp(vi) \ depp(vj)
add = depp(vj) \ depp(vi)
for all s ∈ rem do

for all t ∈ add do
if s↔ t ∈M then

Seg← Seg ∪ EXTRACT(vi, vj , s, t)
return

end if
end for

end for
else

vm ←
vi + vj

2
FIND_SEGMENT(vi, vm,Seg)
FIND_SEGMENT(vm, vj ,Seg)

end if
end function

(including the one analyzed by the extract procedure). The
exact approach to detect migrations would need to analyze the
7 versions. The performances of our approximate algorithm
compared to the exact algorithm are discussed in Section IV.

2) Extracting Function Mappings: A migration segment is
delimited by a couple (i, j) of project versions and targets
a migration s → t. To extract function mappings, we use a
fine-grained analysis of the source code changes between each
pairs of successive versions between i and j. The technique
proposed below is based on the assumptions that during a
library migration task, developers are likely to replace the calls
of functions of Fs by calls functions from Ft.

Consequently, we compute the textual differences between
two versions of an edited source code file. We assume that for
every pair of versions (k, k + 1) with i ≤ k ≤ (j − 1), the
list of edited source code files of the version k + 1 can be
retrieved. We use the standard Unix diff tool [18] to compare
two source files and extract a list of hunks that summarize the
changes that produce the file at version k + 1 from the file at
version k. A hunk is a sequence of either removed, added, or
removed and added lines of code. It contains a header with the
line positions of both the removed lines in the old version of
the file and added lines in the new file. Note that either a line
number or a range of two lines can be specified in the hunk
header. Listing 2c shows the hunks computed from the source

code of Listing 2a and Listing 2b. We only retain the hunks
containing both removed and added lines, and we record the
position of the removed (resp. added) lines in the old (resp.
new) version of the file.

Then we parse the two versions of the source code file at
vk and vk+1 to collect the line positions of functions calls to
Fs and Ft respectively. We retain only hunks h for which 1)
the removed lines contain at least one call to a function of
Fs 2) the added lines contain at least one call to a function
of Ft. We denote rem(h) (resp. add(h)) the list of functions
of Fs that were removed (resp. added) in h. For such a hunk,
we extract as the function mappings the Cartesian product
rem(h)× add(h).

Definition 6 (Function mapping): Given a migration rule
s↔ t ∈M , a function mapping x↔ y, with x ∈ Fs and y ∈
Ft, indicates that a similarity exists between x and y. Thus, y
is a possible replacement for x. Similarly to the migration rules,
this relation is symmetric. The score sc(x, y) of a mapping
rule is the number of hunks where the rule has been observed.

To illustrate, let us assume two versions 1 and 2 of the file
Bar.java shown in Listing 2a and Listing 2b. The corresponding
diff is composed of 3 hunks and is shown in Listing 2c (they are
indicated by the @@ symbols). The three hunks are retained
because they contain removed calls to functions from Fs and
added calls to functions from Ft. They generate the mappings
Log.getLog(String) ↔ Logger.getLogger(String) (first and
second hunks) and Log.fatal(String) ↔ Log.error(String)
(third hunk). This example shows the benefit of using hunks
to extract function mappings. For the last hunks, the function
something(int) has been renamed, but we are still able
to extract mappings. Also, it prevented to extract mappings
Log.getLog(String)↔ Log.error(String) in the last method
because it was separated into two different hunks (the second
and the third).

V0 V2 V3 V4 V5 V6V1

junit

log4j

junit

slf4j

V0 V2 V3 V4 V5 V6V1

junit

log4j

junit

slf4j

FindSegment(V0,V6)

V0 V2 V3 V4 V5 V6V1

junit

log4j

junit

slf4j

junit

slf4j

junit

log4j

junit

log4j {
{FindSegment(V0,V3)

FindSegment(V3,V6)

junit

slf4j

junit

slf4j

junit

log4j

{Extract(V0,V3,log4j,slf4j)

Segment : (V2,V3)

Fig. 1: Illustration of Algorithm 1 on the versions of our sample
project of Table II. Here, tmin = 3.

C. Function Mappings Filtering

Computing the Cartesian product has the drawback to
generate false positives. In addition, textual differencing cannot
guarantee an optimal precision, since the modifications may
involve many consecutive lines. We thus propose a lightweight
filtering technique that aims to reduce the number of false
positives. We use the technique proposed by Melnik et al. [19]
based on relative similarities, because it can cope with n:m
mappings. The idea is to identify elements that have a strong
mutual similarity when considering the whole population. We
assume a set of function mappings. Each mapping s ↔ t is
assigned the sc(s, t) similarity score, also referred as their
absolute similarity.

Next, the set of rules is transformed into an undirected graph
where each node is a function. There is an edge between two
nodes s and t if a candidate mapping rule s↔ t exists. Then,
for each node n in the graph, we record the best absolute
similarity score maxn it has with its connected nodes. A new
graph is constructed by labeling an edge (s, t) with the two
relatives scores for sc(s,t)

maxs
and sc(s,t)

maxt
, denoted respectively

α(s, t) and α(t, s). The final graph is composed of relative
similarity scores that are values between 0 and 1.

To better clarify how this process operates, let us consider
the example shown in Figure 3. There are 4 candidate mapping
rules associated with their absolute similarities. The top right
graph represents the relative similarities computed by fractions
for each node and its respective best absolute similarity. The
resulting new values are displayed in the bottom graph. At this
step, each mapping rule is associated to two relative similarity
scores.

To finish, we process the candidate mappings to select pairs
(s, t) of elements having a relative similarity of at least a
threshold value trel ∈ [0, 1]. This means that both α(s, t) and
α(t, s) have to be greater or equal to trel to validate the
candidate mapping s ↔ t. The threshold has to be set up
between 0 and 1.

In our example, setting a threshold trel to 0.5 will retain only
the mappings log4j.a()↔ slf4j.x() and log4j.b()↔ slf4j.y().
Inversely, fixing a value of 0.25 will validate all the candidate
mappings, while only the mapping log4j.a() ↔ slf4j.y() is
filtered if trel is set to 0.3. The impact of the choice of trel is
evaluated in Section IV.

log4.a()

log4.b()

slf4j.x()

slf4j.y()

8

12

4

3

log4.a()

log4.b()

slf4j.x()

slf4j.y()

Fig. 3: Computing relative similarities for candidate mappings.

p u b l i c c l a s s Bar {

p u b l i c vo id t e s t () {
Log . ge tLog (" MyLogger ") ;
some th ing (3) ;

}

p u b l i c vo id some th ing (i n t i) {
Log . ge tLog (" MyLogger ") ;
i f (i > 0) {
Log . f a t a l (" E r r o r ") ;

}
}

}

(a) Bar.java - version 1

p u b l i c c l a s s Bar {

p u b l i c vo id t e s t () {
Logger . g e t L o g g e r (" MyLogger ") ;
o t h e r (3) ;

}

p u b l i c vo id o t h e r (i n t i) {
Logger . g e t L o g g e r (" MyLogger ") ;
i f (i > 0) {

Logger . e r r o r (" E r r o r ") ;
}

}
}

(b) Bar.java - version 2

@@ −4,2 +4 ,2 @@
− Log . ge tLog (" MyLogger ") ;
− some th ing (3) ;
+ Logger . g e t L o g g e r (" MyLogger ") ;
+ o t h e r (3) ;
@@ −8,2 +8 ,2 @@
− p u b l i c vo id some th ing (i n t i) {
− Log . ge tLog (" MyLogger ") ;
+ p u b l i c vo id o t h e r (i n t i) {
+ Logger . g e t L o g g e r (" MyLogger ") ;
@@ −11 +11 @@
− Log . f a t a l (" E r r o r ") ;
+ Logger . e r r o r (" E r r o r ") ;

(c) Diff Bar.java 1-2

Fig. 2: A sample class Bar that migrates from slf4j to log4j.

IV. EMPIRICAL EVALUATION

In this section we apply our approach on several open
source software projects written in Java to answer the following
research questions:
• Does our segment extraction algorithm find similar results

in comparison with an exact algorithm and is it faster?
(RQ1)

• Does our function mapping extraction technique using
hunks as call sites give better results than the one using
methods as call sites? (RQ2)

• What is the name similarity and the amount of multi-
mappings within the function mappings? (RQ3)

• Does our filtering technique improve the precision of the
results? (RQ4)

We first present our corpus of projects and library migration
rules. Then we describe our tool implementation. Finally we
present how we extracted a set of manually checked function
mappings.

A. Setup

1) Library Migration Rules and Projects: We choose the
Java programming language for this study for two reasons.
First, library usage is common in Java software development.
Second, library usage detection is a trivial process using a static
source code analysis. For this survey we selected four popular
migration rules, as shown in our previous study [2]. This subset
covers different domains of usage and their popularity increases
the likeliness to observe data for our study. The first two ones
are included in the well-known projects Apache Commons
and Google Guava. Apache Commons “is an Apache project
focused on all aspects of reusable Java components”, while
Google Guava “contains several of Google’s core libraries that
we rely on in Java-based projects”. In other words, Commons
and Guava extend or re-implement functionalities provided by
the Java standard library. We focus on two migration rules
within these projects: guava.io ↔ commons.io (called I/O)
and guava.lang ↔ commons.lang (called Lang). The third
migration rule is between two libraries that manipulate JSON
documents: the standard org.json library, and the Google gson
library. This rule, org.json ↔ gson is called JSON. Finally,

the last migration rule is called Mock and is between two
testing libraries that support the writing of tests containing
mock objects: jmock and mockito (jmock↔ mockito).

To perform our study, we also need a large set of projects
that already performed the migrations described above. To
retrieve such a set, we queried the Github, GoogleCode and
Sourceforge open-source project hosting platforms for Java
projects. We then randomly selected 14,000 projects from
which discarded 2,402 empty projects, leading to a corpus of
11,598 Java projects.

2) Instrumentation: We used the framework HARMONY [?]
to extract the versions of the projects from our corpus. It
supports Git, SVN and Mercurial version control systems and
constructs the history of any project in a suitable way for any
type of analysis on the history.

We used the tool SCANLIB1 to discover the set of third-
party libraries used by a project. SCANLIB extracts an Abstract
Syntax Tree (AST) for each Java file of a project (using
Eclipse JDT), and traverses it to look for qualified names in
the source code. Whenever it finds a qualified name, it checks
in its internal database if the qualified name matches a regular
expression of a known library. For instance, the library mockito
is attached to the regular expression org.mockito.*. The
internal database of SCANLIB has been carefully designed
in order to have at most one library for a given qualified
name. Additional details on the construction on the database
construction are discussed in [17].

We use the standard Unix diff tool to compute the hunks
between the two versions of a modified file. We record the lines
corresponding to the hunks, and use Eclipse JDT to extract the
function calls contained in these lines with an AST traversal.

B. Function Mappings

We now detail how we constituted a set of function mappings
by executing our approach on the corpus of libraries and
projects.

1) Extracting Migration Segments: To identify migration
segments, a minimum distance value of tmin = 25 for the
migration segments has been set up for all the experiments

1https://code.google.com/p/scanlib-java/

TABLE III: Number of segments, hunks and functions extracted from
the corpus of projects.

Rule #Segments #Hunks #Functions

I/O 12 33 31
Lang 14 66 55

JSON 4 99 48
Mock 6 87 35

TABLE IV: Number of functions in the hunks.

Number of hunks containing n functions

Rule 0-2 Func. 3 Func. 4-6 Func. 7-10 Func.

I/O 31 2 0 0
Lang 39 8 19 0
JSON 51 7 32 9
Mock 9 6 12 60

performed in this paper. Binary search have been then executed
within each segment to determine the exact bounds of the
migrations. This value has been chosen thanks to our previous
study on the subject [17] where we did not find a migration
segment longer than 10 on a very large corpus of projects.
We applied the algorithm described in Section III-B1 on our
corpus to extract the migration segments corresponding to
our migration rules. This operation took about three days of
computation. The number of migration segments we extracted
is shown in Table III.

2) Extracting the Migration Hunks: We retained 285 hunks
from the migration segments. The number of functions we
found in the hunks is shown in Table III. The number of
software projects and the number of functions involved per
migrations is also displayed. Only 36 migration segments
were identified despite the large initial corpus of projects and
the commonly used libraries. This reflects the difficulty to
find software projects to apply our approach. The fact that
library migration is an occasional practice constitutes the main
impediment to the research of function mappings. Table IV
shows the distribution of the hunks according to the number
of functions they contain.

The number of functions involved within a hunk differ
according to the migration rule. Indeed, all the hunks for
the I/O migration rule have either 2 or 3 functions. This low
value allows us to expect a good precision and many 1 : 1
mappings. Inversely, the number of functions is greater for the
JSON and Mock migration rules. Indeed, they have respectively
9 and 60 hunks containing between 7 and 10 functions. We
expect the precision of our approach to suffer from such a
number, and to extract many n : m mappings.

3) Extracting the Function Mappings: To answer later
RQ2, we decided to compare our approach with a similar
technique proposed by Schäfer et al., that we will name method
context [6]. Additional details will come in Section V-A2.

Two persons spent about one day to manually review the
function mappings extracted using the two techniques. The two
persons both practice Java development for respectively 4 and

TABLE V: Migration segment extraction performance. P is the project
number in our list. #KLOC is the number of kilo lines of Java code at
the project latest version. #V is the number of the versions. Texact and
Tours are resp. the extraction time in seconds of the exact approach
and our approach. ΓT is the time gain in percentage of Tours with
respect to the Texact and ∆S is the number of migration segments
missed by our algorithm.

P #KLOC #V Texact Tour ΓT ∆S

1 0.8 56 1.2 1.5 +25.7% 0
2 4.5 199 6.8 1.2 -82.4% 0
3 39 528 88 2.9 -96.7% 0
4 53 1095 442 7.5 -98.3% 0
5 1.1 106 2 0.2 -90.0% 0
6 2.9 76 3 0.5 -83.3% 0
7 2.9 56 2 0.3 -85.0% 0
8 3.4 116 10 0.8 -92.0% 0
9 29 4411 1643 13 -99.2% 0

10 9.1 453 30 3 -90.0% 0

8 years, but had no experience with the studied libraries. The
Javadoc of the library functions and the textual diffs of the client
project source code files were used as material for the review.
Difficult cases were all discussed and decided in agreement.
Our technique extracts 228 function mappings. Among them,
we validated 115 function mappings and discarded 113 wrong
ones. The precision of the approach is thus about 0.50%, which
is fair. The union of the results of both techniques lead to a total
of 135 correct rules that constitute our set of function mappings.
The mappings extracted by our technique are available on-line
on our Web page2.

V. RESULTS AND DISCUSSIONS

In this section we answer the four research questions listed
in Section IV. Then, we discuss the threats to validity and
limits of our approach.

A. Empirical Results

1) Segment Extraction Algorithm (RQ1): We compare our
migration segment extraction algorithm against a technique we
call exact that computes, for a given project p, the dependencies
of each version vi ∈ Vp. It then browses the history to identify
migration segments for any migration rules m ∈M . We call
it exact since no library migration can be missed using this
algorithm.

We applied the two algorithms on a similar corpus of 10
randomly selected projects where migrations were observed
during our experiments. We measured the number of versions
computed, the number of segments found and the running time.
The time does not include the initial repositories cloning but
only the segment extractions. The gains of our algorithm are
also computed. In addition, we measured the average time
required to extract the function within the detected migration
segments. The results are displayed in Table V.

Three observations arise from these results. First, the two
algorithm have detected a similar number of migration segments

2http://www.labri.fr/perso/cteyton/Matching/

TABLE VI: Precision and recall of the function mappings extracted
by our approach (hunk context) and the method context approach
of Schäfer et al. [6]. The recall is computed using the union of the
correct mappings found by the two approaches.

hunk context method context

Rule #Correct #Wrong #Correct #Wrong

I/O 21 1 18 10
Lang 40 7 38 30

JSON 29 64 25 163
Mock 25 41 11 42

Total 115 113 92 245

Precision 0.50 % 0.27 %

Recall 0.85 % 0.68 %

in these projects. After manual inspection, we found that the
segments were associated to the same migrations. Our technique
is thus able to detect migration segments. Second, the execution
time is significantly lower and this clearly proves the efficiency
and interest to use our algorithm to detect migration segments.
Indeed, the time never reaches more than 13 seconds, and is
on average around 80% faster than the exact algorithm. The
value of 13 seconds in project #9 is simply due to a higher
number of versions computed in this project compared to the
others. Note that the computation time to extract the function
rules is negligible so we do not enhance this point.

2) Migration Hunks vs. Methods (RQ2): To show that our
technique based on hunks is relevant, we propose to compare
the results we obtained with an implementation of the approach
used by Schäfer et al [6]. In their work, they look for function
replacements in a whole class method at once. Therefore we call
their approach method context and ours hunk context. Within a
segment and for a given method that appears in both versions
of a file, we compute the set of added and removed method
calls to functions of the libraries. Then, using a similar process
to ours, we extract function mappings using the Cartesian
product of added and removed methods. Note that methods are
identified by their full signature. This approach is thus more
robust to source code moves within a file, but inefficient when
method names are changed.

The distribution of function mappings found per migration
rule is shown in Table VI. We observe that the method context
approach produced 337 function mappings, from which 92
were validated and 245 marked as false. The precision of this
technique is 27% which is much less than ours. Our technique
found 115 correct function mappings and 113 mappings were
wrong. The proposed recall is computed according to the union
of 135 correct rules extracted by both approach. The recall of
our approach is significantly higher with our technique.

We observe that most of the validated mappings are part
of Lang, as it contains the highest number of functions in
its hunks. The precision is disparate since we obtain a very
good value for I/O with only 1 wrong mapping. It confirms
the expectation of the reported low number of functions in
the hunks for this migration rule. The precision for the Lang

mappings also reaches a good score with 40 correct mappings
out of the 47 found. On the contrary, the precision is below
50% for the JSON and Mock. It confirms that the precision
is impacted by the high number of functions in the hunks for
this migration rule.

We explain the divergence of precision with the characteris-
tics of library usage. Indeed, most of the mapped functions in
Lang are static utility methods that have very specific purposes,
and whose semantic is trivial to understand. Inversely, usage
of jmock and mockito are quite different and reflects well the
complexity of library migration. The manual inspection of the
mappings for this migration rule was very tedious to perform.
There were frequent functions from jmock that could not be
mapped to any function from mockito or functions that could
be mapped to many other functions.

We explain the differences of precision and recall between
our approach and the method context approach by the nature
of the library update problem addressed by Schäfer et al.
Indeed, there is a small number of changes to detect between
two versions of a library. Thus, considering the changes at
the method level is sufficient. In our context, all the used
functions of a library are totally replaced at once. As many
library functions are often used in the same method, it produces
a lot of false positives. Using hunks computed from textual
differencing significantly reduces the number of false positives.
The recall is also improved because of the ability to deal with
renamed methods.

We show that our approach identified a fair number of func-
tion mappings. It also shows that analyzing hunks computed
using textual differencing is a relevant solution. We obtain
better results compared to the method context approach. The
precision of the approach is hard to predict and depends on the
library usage. If a typical library usage requires a combination
of several methods, the cartesian product of the functions in
the hunk is likely to generate many false mappings.

3) Textual Similarity and Multi-mappings (RQ3):
a) Function Multi-mappings: We now analyze the 135

function mappings to count the functions that are mapped to
more than one function. Our goal is to understand if such a
scenario exists in practice. In case it does not we could apply a
greedy filtering technique that ensure mappings of cardinality 1
to 1. To obtain this result, we simply count how many functions
are mapped to only one function (mono-mapped) and how
many are mapped to more than one (multi-mapped). Table VII
presents the results. It shows that the number of multi-mapped
functions is stable for all migration rules: about 33% of the
functions are multi-mapped. As it is a significant number, any
1 to 1 filtering technique will significantly decrease the recall.

b) Textual Similarity of Function Mappings: One moti-
vation of our approach is that the textual similarity between
the name of functions in the context of a library migration
cannot be used. We use the set of 135 correct mapping to
verify this hypothesis. To that extent, we compute the n-
gram similarity [20] between the names of each mapped
function. Then we filter out the function mappings for which the
similarity is below a threshold tn. Table VIII shows the effect

TABLE VII: Number of mono and multi mapped functions. A function
is mono mapped if it appears in only one mapping. It is multi mapped
if it appears in more than one mappings.

Rule #Mono-mapped functions #Multi-mapped functions

I/O 23 10
Lang 42 21
JSON 33 17
Mock 20 10

of this filtering on the number of discarded correct mappings.
Our hypothesis is confirmed since only a minor subset of
the function mappings are kept using textual similarity. I/O
mappings have the most similar names, as our technique keeps
17 out of 23 mappings. However, the results on the other
migration rules are poor. Assuming a tn value of 0.5, only
27.1% of the Lang mappings are detected, 43.2% for JSON
and 22.2% for Mock.

4) Filtering Technique Evaluation (RQ4): To improve the
precision of our approach, we evaluate the filtering technique
we described to assess if a satisfying trade-off between precision
and recall is reached. We measure the impact of the trel
threshold on the precision and recall of the extracted mappings.
The recall is computed on the correct mappings detected right
after the extraction from the hunks. We set trel to 10 values
between 0 and 1. Table IX presents the different results obtained
with these thresholds.

The filtering has not the same impact according to the
migration rule. Indeed, for the I/O and Lang functions, it
does not improve the precision of the results. On the contrary,
it decreases the precision and recall. This is the case because
the raw results of our approach were satisfying enough on these
migration rules. On the other hand, the filtering has a positive
impact on the JSON and Mock precisions. If we set trel = 0.6,
the precision and recall reach respectively 81.8% and 62.1%
for JSON. As expected, it also has the effect to reduce the
recall. Moreover choosing the good threshold value seems hard
because it depends on the migration rule. Nevertheless, this
filtering step can be used when the precision of the results is
poor to improve it.

B. Threats to Validity and Limits

Our approach has been tested on a subset of common Java
migration rules. However, our corpus is not large enough for our
results to be generalized on any migration rule. A larger corpus
of libraries could be considered in a future experiment. The two

TABLE VIII: Evaluation of syntactic similarity for the function
mappings.

tn I/O Lang JSON Mock

0.5 82,6% 27,1% 43,2% 22,2%
0.6 73,9% 16,7% 37,8% 18,5%
0.7 73,9% 12,5% 29,7% 18,5%
0.8 73,9% 12,5% 27% 18,5%
0.9 73,9% 12,5% 27% 18,5%
1.0 73,9% 12,5% 27% 18,5%

persons that performed the manual review might have made
mistakes when evaluating the correctness of the mappings. We
performed a comparison of our migration segment extraction
technique on only 10 projects with an exact technique, because
of its long computation time. Therefore we cannot generalize
the efficiency of our algorithm.

We can not discuss situations where our technique misses to
detect migration segments as we did not encounter one, but the
drawbacks of our algorithm are explained in Section III-B1.
Also, we did not manually verified the migration segments to
assess their correctness. Our mapping extraction technique
based on the hunks fails when functions are extensively
modified. In this case many false positives are generated. Our
technique can also fail if the replaced functions are exactly
the same in the old and new libraries, as we rely on textual
differencing. While we did not compute the recall, as manually
finding the mappings between all the functions of two libraries
is very long and difficult, it is obvious to see that it highly
depends on the number of projects that already performed the
migration. The more projects there are, the more it is likely
to see how a function is replaced. If only few projects using
few functions performed the migration, our approach fails to
extract mappings.

Our technique analyzes each project version recorded on
their repositories. This level of granularity may be too low
since bugs can be introduced during software development, and
thus the quality of the code analyzed is not always guaranteed.
This aspect has to more discussed in a future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we tackle the challenge of assisting library
migrations. We propose to ease this process by automatically
extracting function mappings from the analysis of software
projects that already performed the library migration.

Our contributions are the following. We propose an efficient
algorithm to identify migration segment through the set of
versions of a project. A migration segment is the shortest
interval where a migration can be observed. Within such
segments, we extract the source code transformations involved
in the migration by analyzing hunks containing removed call
of functions of the old library, and added calls to functions
of the new library. These hunks are obtained using textual
differencing between the old and new version of a modified
file. The removed and added functions of such hunks are likely
to be equivalent. This operation extracts functions mappings.
We provide a filtering technique based on relative similarities to
reduce the number of false positives. We deployed a large-scale
analysis of Java open source projects to evaluate our approach
in practice.

The conclusions of our survey are as follows. First, we show
that our approach is promising since function mappings are
identified for a small set of common Java migration rules.
Second, we show the efficiency of our migration segment
extraction technique, which is significantly faster than an exact
approach while having similar results. Third, the hunk-based
function mappings extraction works well in the context of

TABLE IX: Correct rules detected and precision of the approach with severals trel values.

I/O Lang JSON Mock

trel Prec Rec Prec Rec Prec Rec Prec Rec

0.0 95.5% 100% 85.1% 100% 31.2% 100% 37.9% 100%
0.2 95,5% 100% 84,8% 97,5% 39,1% 93,1% 46,4% 52%
0.4 94,7% 85,7% 83,7% 90% 61,9% 89,7% 64,7% 44%
0.6 93,3% 66,7% 82,4% 70% 81,8% 62,1% 60% 24%
0.8 92,9% 61,9% 81,8% 67,5% 81,8% 62,1% 50% 16%
1.0 92,9% 61,9% 79,3% 57,5% 81% 58,6% 50% 8%

library migration. It generates mappings with a very good
precision in two cases out of four. Finally, our filtering
technique can improve the precision in the cases where the
initial precision is bad.

In a future work, a study in collaboration with real developers
could help us find the most suitable format to report the function
mappings. In addition, we are willing to replicate our study on
larger open source and industrial systems so that the results
can be generalized. We also want to investigate several hunk
and function mappings filtering techniques, such as computing
function bodies similarity. Finally, we want to evaluate the
effect of our approach on the development effort and quality
by asking developers to perform migrations with and without
our mappings.

REFERENCES

[1] M. T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio, “An
industrial case study on reuse oriented development,” in Proceedings of
the 21st IEEE International Conference on Software Maintenance, ser.
ICSM ’05. Washington, DC, USA: IEEE Computer Society, 2005, p.
283–292.

[2] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration graphs,”
in 19th Working Conference on Reverse Engineering 2012, 15th-18th
October 2012, Kingston, Ontario, Canada, IEEE, Ed., Kingston, Ontario,
Canada, Oct. 2012, pp. 289–298.

[3] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar APIs: an exploratory study,” in Proceedings of the
2012 International Conference on Software Engineering, ser. ICSE 2012.
Piscataway, NJ, USA: IEEE Press, 2012, p. 266–276.

[4] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in Proceedings of
the 20th European conference on Object-Oriented Programming, ser.
ECOOP’06. Berlin, Heidelberg: Springer-Verlag, 2006, p. 404–428.

[5] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “AURA: a hybrid
approach to identify framework evolution,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, p. 325–334.

[6] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes
from instantiation code,” in Proceedings of the 13th international
conference on Software engineering - ICSE ’08, 2008, p. 471.

[7] Z. Xing and E. Stroulia, “UMLDiff: an algorithm for object-oriented
design differencing,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, ser. ASE ’05. New
York, NY, USA: ACM, 2005, p. 54–65.

[8] B. Dagenais and M. Robillard, “SemDiff: analysis and recommendation
support for API evolution,” in IEEE 31st International Conference on
Software Engineering, 2009. ICSE 2009, 2009, pp. 599–602.

[9] H. A. Nguyen, T. T. Nguyen, G. Wilson,Jr., A. T. Nguyen, M. Kim, and
T. N. Nguyen, “A graph-based approach to API usage adaptation,” in
Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, ser. OOPSLA ’10.
New York, NY, USA: ACM, 2010, p. 302–321.

[10] M. Kim, D. Notkin, and D. Grossman, “Automatic inference of structural
changes for matching across program versions,” in Proceedings of the
29th international conference on Software Engineering, ser. ICSE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, p. 333–343.

[11] S. Kim, K. Pan, and E. J. Whitehead,Jr., “When functions change their
names: Automatic detection of origin relationships,” in Proceedings of
the 12th Working Conference on Reverse Engineering, ser. WCRE ’05.
Washington, DC, USA: IEEE Computer Society, 2005, p. 143–152.

[12] P. Weissgerber and S. Diehl, “Identifying refactorings from source-code
changes,” in Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’06. Washington, DC,
USA: IEEE Computer Society, 2006, p. 231–240.

[13] Z. Xing and E. Stroulia, “API-Evolution support with diff-CatchUp,”
IEEE Trans. Softw. Eng., vol. 33, no. 12, p. 818–836, Dec. 2007.

[14] B. E. Cossette and R. J. Walker, “Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries,” in Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, ser. FSE ’12. New York, NY, USA: ACM,
2012, p. 55:1–55:11.

[15] T. Tonelli Bartolomei, K. Czarnecki, R. Lämmel, and T. v. d. Storm,
“Study of an API migration for two XML APIs,” in 2nd International
Conference on Software Language Engineering (SLE), vol. 5969/2010,
Denver, USA, Oct. 2009, pp. 42–61.

[16] T. Tonelli Bartolomei, K. Czarnecki, and R. Lämmel, “Swing to SWT and
back: Patterns for API migration by wrapping,” in 26th IEEE International
Conference on Software Maintenance (ICSM), Timisoara, Romania, Sep.
2010.

[17] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, A Study of Library
Migration in Java Software, 2013.

[18] E. W. Myers, “An o(ND) difference algorithm and its variations.” in
Algorithmica, 1986, pp. 251–266.

[19] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding:
A versatile graph matching algorithm and its application to schema
matching,” in ICDE, 2002, pp. 117–128.

[20] C. E. Shannon, “A mathematical theory of communication,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 5, no. 1, p. 3–55, Jan. 2001.

[21] S. Okur and D. Dig, “How do developers use parallel libraries?” in
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New York, NY,
USA: ACM, 2012, p. 54:1–54:11.

[22] S. Thummalapenta and T. Xie, “SpotWeb: detecting framework hotspots
and coldspots via mining open source code on the web,” in Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’08. Washington, DC, USA: IEEE
Computer Society, 2008, p. 327–336.

