Projet de Programmation C : Motifs et automates

Programmation C Licence 2 Maths-Info - UE 4TTI305U

Introduction: Recherche de motifs

Le problème - Première version

- ▶ ENTRÉE : Deux chaînes de caractères : texte et motif.
- ▶ OBJECTIF: Trouver toutes les occurrences de motif dans texte.

Le problème - Première version

- ▶ ENTRÉE : Deux chaînes de caractères : texte et motif.
- ▶ OBJECTIF: Trouver toutes les occurrences de motif dans texte.

Exemple

Chercher toutes les occurences du \mathtt{motif} « ananas » dans le texte suivant :

« Un jour, un ananas tomba du ciel. Let petit andré le ramassa. Il décida de bâtir un village : anana-ville. Là-bas, tout le monde célébrait chaque fête avec un énorme ananas au milieu de la place. »

Le problème - Première version

- ▶ ENTRÉE : Deux chaînes de caractères : texte et motif.
- ▶ OBJECTIF: Trouver toutes les occurrences de motif dans texte.

Exemple

Chercher toutes les occurences du motif « ananas » dans le texte suivant :

« Un jour, un **ananas** tomba du ciel. Le petit andré le ramassa. Il décida de bâtir un village : anana-ville. Là-bas, tout le monde célébrait chaque fête avec un énorme **ananas** au milieu de la place. »

Le problème - Première version - Approche naïve Objectif simplifié : Tester si motif apparaît dans texte.

Objectif simplifié: Tester si motif apparaît dans texte.

```
bool rech pos(char* texte, char* motif, int i) { // O(|motif|)
 for (int j = 0; motif[j] != '\0'; j++) {
   if (texte[i+j] == '\0' || motif[j] != texte[i+j])
     return false;
 return true;
bool rech(char* texte, char* motif){
                                                 // 0(|motif| * |texte|)
 for (int i = 0; texte[i] != '\0'; i++)
    if (rech pos(texte,motif,i))
     return true:
 return false;
```

Reprenons le motif « ananas ».

Reprenons le motif « ananas ».

On le cherche dans le texte « aasanaaanananasn ».

Notre algorithme

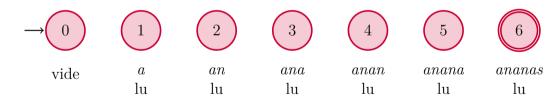
Lire texte de gauche à droite en **mémorisant une information clé** : Quel est le plus grand préfixe de *ananas* qu'on vient de lire?

Reprenons le motif « ananas ».

On le cherche dans le texte « aasanaaanananasn ».

Notre algorithme

Lire texte de gauche à droite en **mémorisant une information clé** : Quel est le plus grand préfixe de *ananas* qu'on vient de lire?



7 états mémoire suffisent

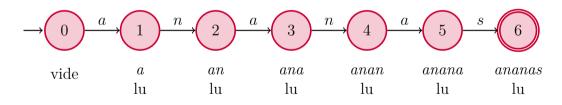
On change d'état à chaque nouvelle lettre lue.

Reprenons le motif « ananas ».

On le cherche dans le texte « aasanaaanananasn ».

Notre algorithme

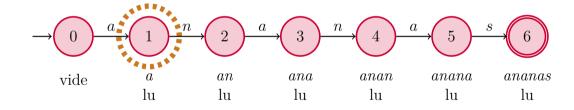
Lire texte de gauche à droite en **mémorisant une information clé** : Quel est le plus grand préfixe de *ananas* qu'on vient de lire?



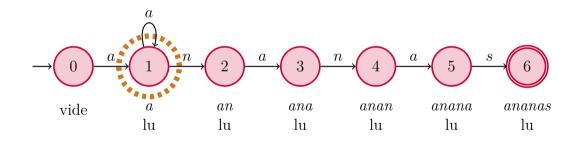
7 états mémoire suffisent

On change d'état à chaque nouvelle lettre lue.

Reprenons le motif « ananas ».

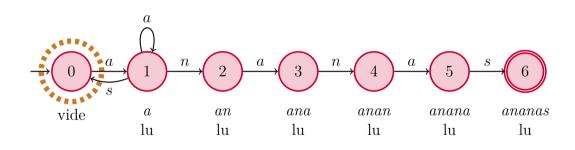


Reprenons le motif « ananas ».

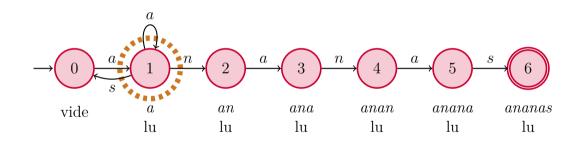


Reprenons le motif « ananas ».

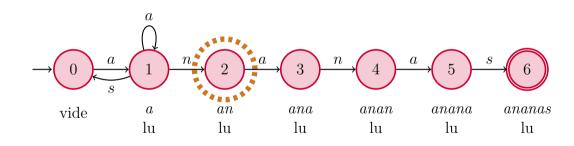
On le cherche dans le $\verb"texte" < aasanaaanananas
n ».$



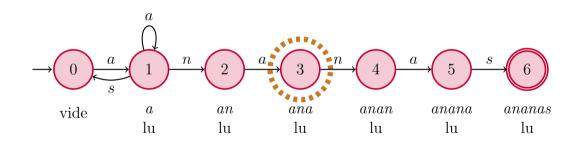
Reprenons le motif « ananas ».



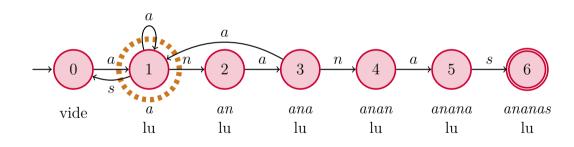
Reprenons le motif « ananas ».



Reprenons le motif « ananas ».

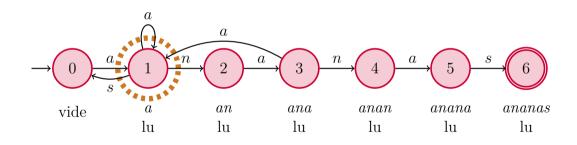


Reprenons le motif « ananas ».

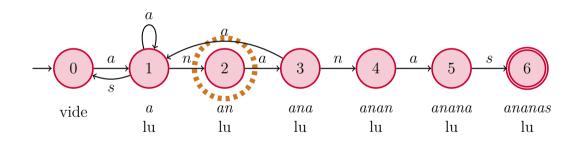


Reprenons le motif « ananas ».

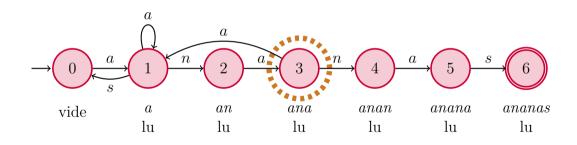
On le cherche dans le texte_{\cdot} « aasanaaanananasn ».



Reprenons le motif « ananas ».

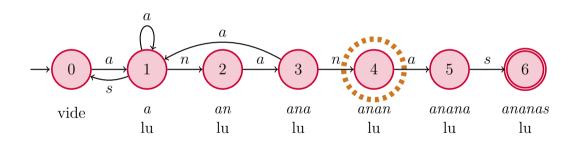


Reprenons le motif « ananas ».

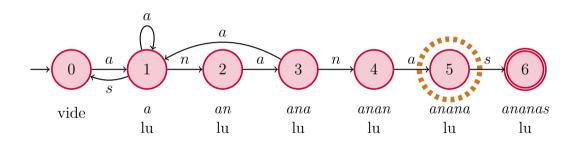


Reprenons le motif « ananas ».

On le cherche dans le $\mathsf{texte} \ \, \langle \, \, aasanaaananananan \, \rangle$.

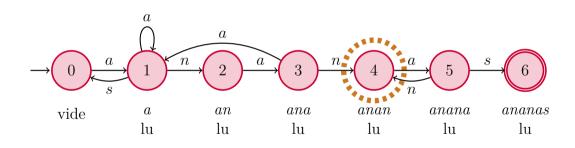


Reprenons le motif « ananas ».



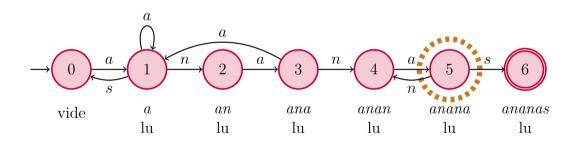
Reprenons le motif « ananas ».

On le cherche dans le $\mathsf{texte} \ll aasanaaanananasn \gg$.



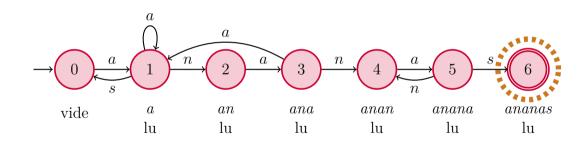
Reprenons le motif « ananas ».

On le cherche dans le $\mathsf{texte} \, \ll \, aasanaaanananasn \,$ ».



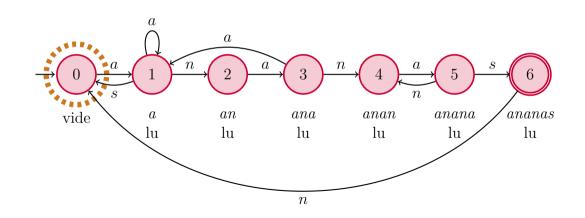
Reprenons le motif « ananas ».

On le cherche dans le $\mathsf{texte} \, \ll \, aasan aanananasn \,$ ».

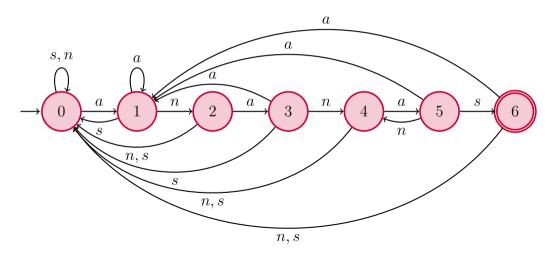


Reprenons le motif « ananas ».

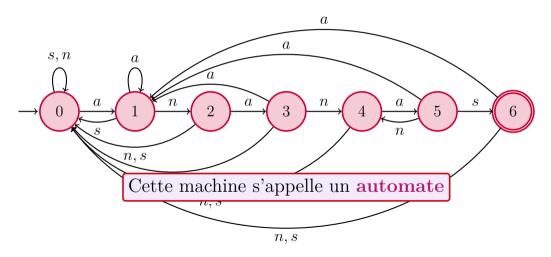
On le cherche dans le $\mathsf{texte} \ll aasanaaanananasn \gg$.



Reprenons le motif « ananas ».



Reprenons le motif « ananas ».



Deux questions

1. Les automates c'est super. Je dois tout savoir sur eux!

Deux questions

- 1. Les automates c'est super. Je dois tout savoir sur eux!
- 2. Les automates c'est génial. Comment puis-je les construire?

Partie I: Automates déterministes

Chaque programme est composé de :

Chaque programme est composé de :

1. Alphabet fini A.

 $A = \{a, b\}$

 $\mathbf{ENTR}\mathbf{\acute{E}E}$: chaîne sur les caractères de A. (on parle d'un mot sur l'alphabet A)

Chaque programme est composé de :

- 1. Alphabet fini A.
- 2. Ensemble fini d'états Q.

 $A = \{a, b\} \qquad Q = \{q_0, q_1, q_2\}$

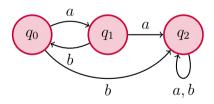
 $\mathbf{ENTR\acute{E}E}$: chaîne sur les caractères de A. (on parle d'un \mathbf{mot} \mathbf{sur} l'alphabet \mathbf{A})

Chaque programme est composé de :

- 1. Alphabet fini A.
- 2. Ensemble fini d'états Q.
- 3. Fonction de transition $\delta: \mathbf{Q} \times \mathbf{A} \to \mathbf{Q}$.

 $\mathbf{ENTR\acute{E}E}$: chaîne sur les caractères de A. (on parle d'un \mathbf{mot} \mathbf{sur} l'alphabet \mathbf{A})

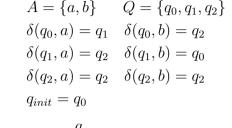
 $A = \{a, b\} \qquad Q = \{q_0, q_1, q_2\}$ $\delta(q_0, a) = q_1 \quad \delta(q_0, b) = q_2$ $\delta(q_1, a) = q_2 \quad \delta(q_1, b) = q_0$ $\delta(q_2, a) = q_2 \quad \delta(q_2, b) = q_2$

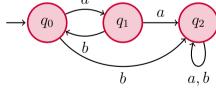


Chaque programme est composé de :

- 1. Alphabet fini A.
- 2. Ensemble fini d'états Q.
- 3. Fonction de transition $\delta: \mathbf{Q} \times \mathbf{A} \to \mathbf{Q}$.
- 4. État initial $q_{init} \in Q$.

 $\mathbf{ENTR\acute{E}E}$: chaîne sur les caractères de A. (on parle d'un \mathbf{mot} sur l'alphabet \mathbf{A})

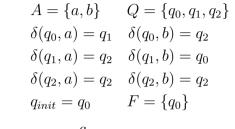


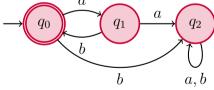


Chaque programme est composé de :

- 1. Alphabet fini A.
- 2. Ensemble fini d'états Q.
- 3. Fonction de transition $\delta: \mathbf{Q} \times \mathbf{A} \to \mathbf{Q}$.
- 4. État initial $q_{init} \in Q$.
- 5. Ensemble d'états finaux $F \subseteq Q$.

ENTRÉE : chaîne sur les caractères de A. (on parle d'un **mot sur l'alphabet A**)



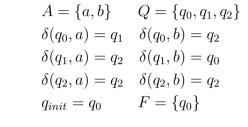


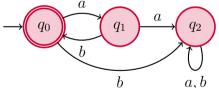
Chaque programme est composé de :

- 1. Alphabet fini A.
- 2. Ensemble fini d'états Q.
- 3. Fonction de transition $\delta : \mathbf{Q} \times \mathbf{A} \to \mathbf{Q}$.
- 4. État initial $q_{init} \in Q$.
- 5. Ensemble d'états finaux $F \subseteq Q$.

ENTRÉE : chaîne sur les caractères de A. (on parle d'un mot sur l'alphabet A)

Un mot est **accepté** ou **rejeté** par l'automate.





Chaque programme est composé de :

- 1. Alphabet fini A.
- 2. Ensemble fini d'états Q.
- 3. Fonction de transition $\delta : \mathbf{Q} \times \mathbf{A} \to \mathbf{Q}$.
- 4. État initial $q_{init} \in Q$.
- 5. Ensemble d'états finaux $F \subseteq Q$.

ENTRÉE : chaîne sur les caractères de A. (on parle d'un **mot sur l'alphabet A**)

Un mot est **accepté** ou **rejeté** par l'automate.

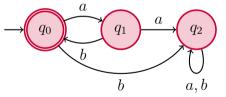
$$A = \{a, b\} \qquad Q = \{q_0, q_1, q_2\}$$

$$\delta(q_0, a) = q_1 \qquad \delta(q_0, b) = q_2$$

$$\delta(q_1, a) = q_2 \qquad \delta(q_1, b) = q_0$$

$$\delta(q_2, a) = q_2 \qquad \delta(q_2, b) = q_2$$

$$q_{init} = q_0 \qquad F = \{q_0\}$$



Accepte les mots de la forme : « ababab · · · ab »

Chaque programme est composé de :

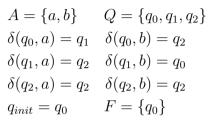
- 1. Alphabet fini A.
- 2. Ensemble fini d'états Q.
- 3. Fonction de transition $\delta : \mathbf{Q} \times \mathbf{A} \to \mathbf{Q}$.
- 4. État initial $q_{init} \in Q$.
- 5. Ensemble d'états finaux $F \subseteq Q$.

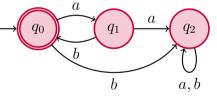
 $\mathbf{ENTR\acute{E}E}$: chaîne sur les caractères de A. (on parle d'un \mathbf{mot} sur l'alphabet \mathbf{A})

Un mot est **accepté** ou **rejeté** par l'automate.

Ensemble des mots acceptés :

langage reconnu par l'automate.





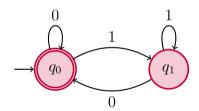
Accepte les mots de la forme : « ababab · · · ab »

Nombres pairs

- ightharpoonup Alphabet $A = \{0, 1\}$. On code des entiers en binaire.
- ▶ Écrire un automate qui reconnaît le langage des mots codant un entier pair.

Nombres pairs

- ightharpoonup Alphabet $A = \{0, 1\}$. On code des entiers en binaire.
- ▶ Écrire un automate qui reconnaît le langage des mots codant un entier pair.

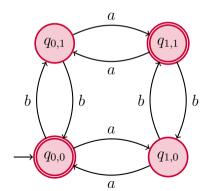


Parité

- ightharpoonup Alphabet $A = \{a, b\}$.
- ▶ Écrire un automate qui reconnaît le langage des mots qui contiennent :
 - ightharpoonup soit un nombre pair de a et un nombre pair de b,
 - ightharpoonup soit un nombre impair de a et un nombre impair de b.

Parité

- ightharpoonup Alphabet $A = \{a, b\}$.
- ▶ Écrire un automate qui reconnaît le langage des mots qui contiennent :
 - ightharpoonup soit un nombre pair de a et un nombre pair de b,
 - ightharpoonup soit un nombre impair de a et un nombre impair de b.

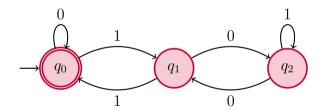


Multiples de 3

- ightharpoonup Alphabet $A = \{0, 1\}$. On code des entiers en binaire.
- ▶ Écrire un automate qui reconnaît le langage des mots codant un multiple de 3.

Multiples de 3

- ightharpoonup Alphabet $A = \{0, 1\}$. On code des entiers en binaire.
- ▶ Écrire un automate qui reconnaît le langage des mots codant un multiple de 3.



Langages reconnaissables

Pour un alphabet A, on appelle **langage** un ensemble de mots écrits avec A.

- ightharpoonup On note A^* le langage de **tous les mots** sur l'alphabet A.
- ▶ Un langage peut être infini (par exemple, A^*).

Langages reconnaissables

Pour un alphabet A, on appelle **langage** un ensemble de mots écrits avec A.

- ightharpoonup On note A^* le langage de tous les mots sur l'alphabet A.
- ▶ Un langage peut être infini (par exemple, A^*).

Les langages reconnaissables (REC)

Un langage est **reconnaissable** si il existe un automate qui le reconnaît.

Langages reconnaissables

Pour un alphabet A, on appelle **langage** un ensemble de mots écrits avec A.

- ightharpoonup On note A^* le langage de **tous les mots** sur l'alphabet A.
- ▶ Un langage peut être infini (par exemple, A^*).

Les langages reconnaissables (REC)

Un langage est **reconnaissable** si il existe un automate qui le reconnaît.

Attention: Les langages ne sont pas tous reconnaissables

Prenons $A = \{a, b\}$:

Le langage des mots qui contiennent autant de a que de b n'est **pas** reconnaissable.

Nous en savons maintenant un peu plus sur les automates.

Nous en savons maintenant un peu plus sur les automates.

Notre Objectif: Nous en servir pour de la reconnaissance de motifs.

- ▶ On a commencé avec des motifs simples (souvenons-nous du mot « <u>ananas</u> »).
- Les automates permettent de rechercher des motifs plus complexes.

Nous en savons maintenant un peu plus sur les automates.

Notre Objectif: Nous en servir pour de la reconnaissance de motifs.

- ▶ On a commencé avec des motifs simples (souvenons-nous du mot « <u>ananas</u> »).
- Les automates permettent de rechercher des motifs plus complexes.

Exemple : recherche de fichiers dans un dossier

Recherche de tous les fichiers « $\underline{.c}$ » qui commencent par le préfixe « \underline{algo} ».

Nous en savons maintenant un peu plus sur les automates.

Notre Objectif: Nous en servir pour de la reconnaissance de motifs.

- ▶ On a commencé avec des motifs simples (souvenons-nous du mot « <u>ananas</u> »).
- Les automates permettent de rechercher des motifs plus complexes.

Exemple : recherche de fichiers dans un dossier

Recherche de tous les fichiers « .c » qui commencent par le préfixe « algo ».

Problème

Les automates sont bien pour l'algorithmique, pas pour décrire les motifs.

 \Rightarrow On a besoin d'une syntaxe pratique pour décrire nos motifs.

Partie II: Expressions régulières

Chaque expression régulière représente un langage.

Chaque expression régulière représente un langage.

Quelques exemples pour commencer

- Expression $\langle ananas + banane \rangle$: langage (contenant deux mots) $\{ananas, banane\}$.
- Expression $(ab)^*$: langage (infini) des mots de la forme $ababab \cdots ab$.
- Expression « $(b + ab)^*$ » : langage (infini) des mots où tout « a » est suivi d'un « b ».

On note A l'alphabet.

Expressions régulières basiques

 \triangleright Expression « \emptyset ».

Définit le langage vide : $L(\emptyset) = \emptyset$.

On note A l'alphabet.

Expressions régulières basiques

- \triangleright Expression « \emptyset ».
 - Définit le langage vide : $L(\emptyset) = \emptyset$.
- Expression « a » (avec $a \in A$ une lettre de l'alphabet). Définit le langage $L(a) = \{a\}$.

Expressions régulières : règles récursives On peut combiner des expressions pour en former des nouvelles :

Expressions régulières : règles récursives

On peut combiner des expressions pour en former des nouvelles :

▶ Si E_1 et E_2 sont des expressions, alors $E_1 + E_2$ est une expression. Définit le langage $L(E_1 + E_2) = L(E_1) \cup L(E_2)$.

Exemple: $L(a + b + e) = \{a, b, e\}$ (3 mots).

Expressions régulières : règles récursives

On peut combiner des expressions pour en former des nouvelles :

- ▶ Si E_1 et E_2 sont des expressions, alors $E_1 + E_2$ est une expression. Définit le langage $L(E_1 + E_2) = L(E_1) \cup L(E_2)$. Exemple : $L(a + b + e) = \{a, b, e\}$ (3 mots).
- Si E_1 et E_2 sont des régulières, alors E_1E_2 est une expression. Langage $L(E_1E_2) = \{w_1w_2 \mid w_1 \in L(E_1) \text{ et } w_2 \in L_2\}$. Exemple: $L((a+b)(aa+ba+b)) = \{aaa, aba, ab, baa, bba, bb\}$ (6 mots).

Expressions régulières : règles récursives

On peut combiner des expressions pour en former des nouvelles :

- ▶ Si E_1 et E_2 sont des expressions, alors $E_1 + E_2$ est une expression. Définit le langage $L(E_1 + E_2) = L(E_1) \cup L(E_2)$. Exemple : $L(a + b + e) = \{a, b, e\}$ (3 mots).
- Si E_1 et E_2 sont des régulières, alors E_1E_2 est une expression. Langage $L(E_1E_2) = \{w_1w_2 \mid w_1 \in L(E_1) \text{ et } w_2 \in L_2\}$. Exemple: $L((a+b)(aa+ba+b)) = \{aaa, aba, ab, baa, bba, bb\}$ (6 mots).
- ▶ si E est une expression, alors E^* est une expression régulière. Langage $L(E^*) = \{w_1 \cdots w_n \mid n \in \mathbb{N} \text{ et } w_1, \dots, w_n \in L(E)\}$. Exemple : $L((ab)^*) = \{\varepsilon, ab, abab, ababab, abababab, \dots\}$ (infini).

Décrire les langages suivants (sur l'alphabet $A=\{a,b\}$) en français :

Expression $(a+b)^*a(a+b)^*a(a+b)^*b(a+b)^*$.

Décrire les langages suivants (sur l'alphabet $A=\{a,b\})$ en français :

Expression $(a + b)^*a(a + b)^*a(a + b)^*b(a + b)^*$. Langage des mots qui contiennent le sous-mot aab.

Décrire les langages suivants (sur l'alphabet $A=\{a,b\}$) en français :

- Expression $(a + b)^*a(a + b)^*a(a + b)^*b(a + b)^*$. Langage des mots qui contiennent le <u>sous-mot</u> aab.
- ightharpoonup Expression $((a+b)(a+b))^*$:

Décrire les langages suivants (sur l'alphabet $A=\{a,b\}$) en français :

- Expression $(a + b)^*a(a + b)^*a(a + b)^*b(a + b)^*$. Langage des mots qui contiennent le <u>sous-mot</u> aab.
- Expression $((a+b)(a+b))^*$: Langage des mots de longueur paire.

Décrire les langages suivants (sur l'alphabet $A = \{a, b\}$) en français :

- Expression $(a + b)^*a(a + b)^*a(a + b)^*b(a + b)^*$. Langage des mots qui contiennent le sous-mot aab.
- Expression $((a+b)(a+b))^*$: Langage des mots de longueur paire.
- ightharpoonup Expression $a^*(b(aa)^*)^*a^*$:

Décrire les langages suivants (sur l'alphabet $A=\{a,b\}$) en français :

- Expression $(a + b)^*a(a + b)^*a(a + b)^*b(a + b)^*$. Langage des mots qui contiennent le <u>sous-mot</u> aab.
- Expression $((a+b)(a+b))^*$: Langage des mots de longueur paire.
- Expression $a^*(b(aa)^*)^*a^*$:
 Langage des mots tels que le nombre de a entre deux b est toujours pair.

Décrire les langages suivants (sur l'alphabet $A = \{a, b\}$) en français :

- Expression $(a + b)^*a(a + b)^*a(a + b)^*b(a + b)^*$. Langage des mots qui contiennent le <u>sous-mot</u> aab.
- Expression $((a+b)(a+b))^*$: Langage des mots de longueur paire.
- Expression $a^*(b(aa)^*)^*a^*$: Langage des mots tels que le nombre de a entre deux b est toujours pair.
- Expression $(b(a+b)^* + (a+b)^*aa(a+b)^* + (a+b)^*bb(a+b)^* + (a+b)^*a)$:

Décrire les langages suivants (sur l'alphabet $A=\{a,b\}$) en français :

- Expression $(a + b)^*a(a + b)^*a(a + b)^*b(a + b)^*$. Langage des mots qui contiennent le sous-mot aab.
- Expression $((a+b)(a+b))^*$: Langage des mots de longueur paire.
- Expression $a^*(b(aa)^*)^*a^*$: Langage des mots tels que le nombre de a entre deux b est toujours pair.
- Expression $(b(a+b)^* + (a+b)^*aa(a+b)^* + (a+b)^*bb(a+b)^* + (a+b)^*a)$: Mots qui ne sont **pas** de la forme $abab \cdots ab$.

Théorème de Kleene (1956)

Les langages réguliers (REG)

Un langage est **régulier** si il existe une expression régulière qui le définit.

Théorème de Kleene (1956)

Les langages réguliers (REG)

Un langage est **régulier** si il existe une expression régulière qui le définit.

Théorème de Kleene : REG = REC

Pour tout langage L les deux propriétés suivantes sont équivalentes :

- 1. L est régulier (défini par une expression régulière).
- 2. L est reconnaissable (reconnu par un automate).

Théorème de Kleene (1956)

Les langages réguliers (REG)

Un langage est **régulier** si il existe une expression régulière qui le définit.

Théorème de Kleene : REG = REC

Pour tout langage L les deux propriétés suivantes sont équivalentes :

- 1. L est régulier (défini par une expression régulière).
- $2.\ L$ est reconnaissable (reconnu par un automate).

On connaît de plusieurs algorithmes de « traduction » dans les deux sens.

On part de l'expression $E_{\text{orig}} = a(ab+b)^*a^*$.

On part de l'expression $E_{\text{orig}} = a(ab+b)^*a^*$.

Étape 1 : On renomme les lettres $E_{\text{renamed}} = a_1(a_2b_1 + b_2)^*a_3^*$.

On part de l'expression $E_{\text{orig}} = a(ab+b)^*a^*$.

Étape 1 : On renomme les lettres $E_{\text{renamed}} = a_1(a_2b_1 + b_2)^*a_3^*$.

Étape 2 : On crée un état par lettre plus un état initial ε .

 a_3

On part de l'expression $E_{\text{orig}} = a(ab+b)^*a^*$.

Étape 1 : On renomme les lettres $E_{\text{renamed}} = a_1(a_2b_1 + b_2)^*a_3^*$.

Étape 2 : On crée un état par lettre plus un état initial ε .

Étape 3 : Calcul des transitions et des états finaux.

 a_3

On part de l'expression $E_{\text{orig}} = a(ab + b)^*a^*$.

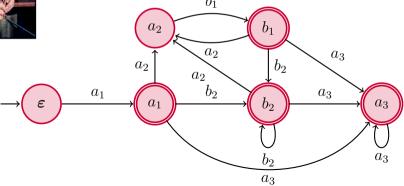
Étape 1: On renomme les lettres $E_{\text{renamed}} = a_1(a_2b_1 + b_2)^*a_3^*$.

Étape 2 : On crée un état par lettre plus un état initial ε .

On part de l'expression $E_{\text{orig}} = a(ab+b)^*a^*$.

Étape 1 : On renomme les lettres $E_{\text{renamed}} = a_1(a_2b_1 + b_2)^*a_3^*$.

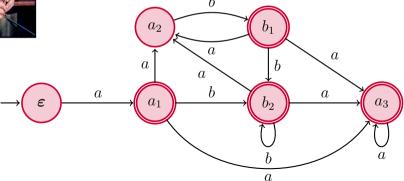
Étape 2 : On crée un état par lettre plus un état initial ε .



On part de l'expression $E_{\text{orig}} = a(ab+b)^*a^*$.

Étape 1 : On renomme les lettres $E_{\text{renamed}} = a_1(a_2b_1 + b_2)^*a_3^*$.

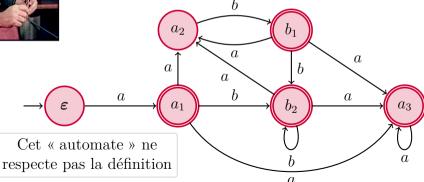
Étape 2 : On crée un état par lettre plus un état initial ε .



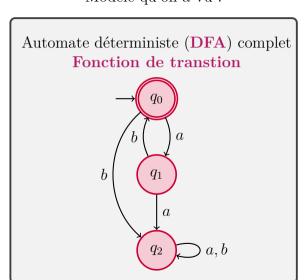
On part de l'expression $E_{\text{orig}} = a(ab+b)^*a^*$.

Étape 1 : On renomme les lettres $E_{\text{renamed}} = a_1(a_2b_1 + b_2)^*a_3^*$.

Étape 2 : On crée un état par lettre plus un état initial ε .



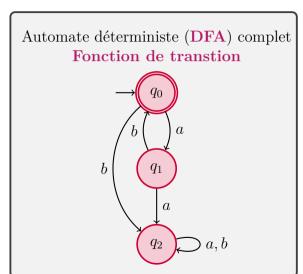
Déterminisme et non-déterminisme Modèle qu'on a vu :

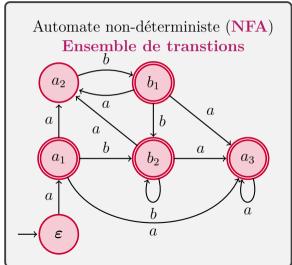


Déterminisme et non-déterminisme

Modèle qu'on a vu :

Modèle utilisé par Glushkov :

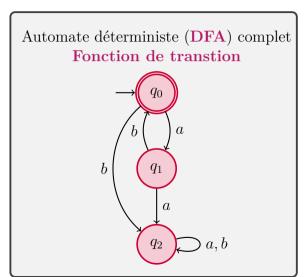


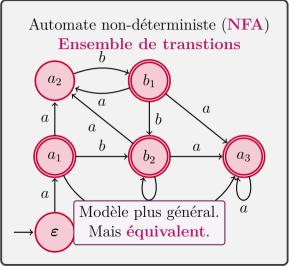


Déterminisme et non-déterminisme

Modèle qu'on a vu :

Modèle utilisé par Glushkov :





Pour tout **NFA**, on peut construire un **DFA** complet qui reconnaît le même langage.

Algorithme: Construction des sous-ensembles.

Pour tout **NFA**, on peut construire un **DFA** complet qui reconnaît le même langage.

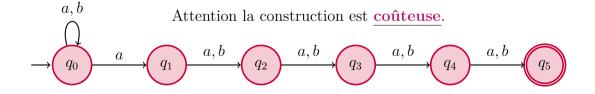
Algorithme: Construction des sous-ensembles.

Attention la construction est <u>coûteuse</u>.

Théorème (Rabin-Scott 1959)

Pour tout **NFA**, on peut construire un **DFA** complet qui reconnaît le même langage.

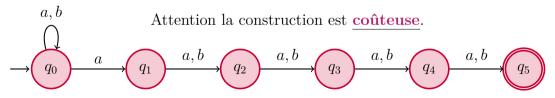
Algorithme: Construction des sous-ensembles.



Théorème (Rabin-Scott 1959)

Pour tout **NFA**, on peut construire un **DFA** complet qui reconnaît le même langage.

Algorithme: Construction des sous-ensembles.

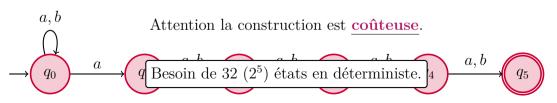


Mots dont la 5ème lettre avant la fin est un « a »

Théorème (Rabin-Scott 1959)

Pour tout **NFA**, on peut construire un **DFA** complet qui reconnaît le même langage.

Algorithme: Construction des sous-ensembles.



Mots dont la 5ème lettre avant la fin est un « a »

Le projet Que va-t'on faire?

Programmation C Licence 2 Maths-Info - UE 4TTI305U

Objectif principal

Recherche de motifs spécifiés avec une expression régulière.

Objectif principal

Recherche de motifs spécifiés avec une expression régulière.

Partie 1 : Implémentation des automates (le plus gros du travail) :

- ► Fonctions de base (expressions).
- ► Fonctions de base (automates).
- ▶ Traduction expressions \Rightarrow automates.
- ightharpoonup Traduction automates \Rightarrow expressions.

- ► Lecture d'un mot dans un automate.
- ▶ Opérations sur les automates.
- ► Déterminisation.

Objectif principal

Recherche de motifs spécifiés avec une expression régulière.

Partie 1 : Implémentation des automates (le plus gros du travail) :

- Fonctions de base (expressions).
- Fonctions de base (automates).
- ightharpoonup Traduction expressions \Rightarrow automates.
- ightharpoonup Traduction automates \Rightarrow expressions.

- Lecture d'un mot dans un automate.
- ► Opérations sur les automates.
- ▶ Déterminisation.

Partie 2 : Implémentation des algorithmes de recherche eux-mêmes. (basés sur la partie I).

Objectif principal

Recherche de motifs spécifiés avec une expression régulière.

Partie 1 : Implémentation des automates (le plus gros du travail) :

- Fonctions de base (expressions).
 - Fonctions de base (automates).
 - ightharpoonup Traduction expressions \Rightarrow automates.
 - ightharpoonup Traduction automates \Rightarrow expressions.

Lecture d'un mot dans un automate.

- ► Opérations sur les automates.
- ▶ Déterminisation.

Partie 2: Implémentation des algorithmes de recherche eux-mêmes. (basés sur la partie I).

La partie « interface utilisateur » vous est donnée.