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Abstract We present new efficient deterministic and randomized distributed algo-
rithms for decomposing a graph with n nodes into a disjoint set of connected clusters
with radius at most k − 1 and having O(n1+1/k) intercluster edges. We show how
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1 Introduction

Due to the constant growth of networks, it becomes necessary to find new techniques
to handle related global information, to maintain and to update this information in an
efficient way. A Locality-Preserving (LP) network representation [36] can be consid-
ered as an efficient data structure that captures topological properties of the underly-
ing network and helps to design distributed algorithms for many fundamental prob-
lems: synchronization [6, 34, 41], Maximal Independent Set (MIS) [4], routing [7],
mobile users [8], coloring [35] and other related applications [1, 13, 24, 25, 28]. In
order to provide efficient solutions for these problems, it is important to construct
LP-representations in a distributed way while maintaining good complexity mea-
sures.

The main purpose of this paper is to give an overview of some LP-representations
of special interest and to show how to construct them efficiently in the distributed
setting. More precisely, we focus on one important type of LP-representations called
clustered representations. The main idea of a clustered representation is to decom-
pose the nodes of a graph into many possibly overlapping regions called clusters.
This decomposition allows us to organize the graph in a particular way that satisfies
some desired properties. In general, the clusters satisfy two types of qualitative cri-
teria. The first criterion attempts to measure the locality level of the clusters. Some
parameters like the radius or the size of a cluster are usually used to measure the
locality level of a clustered representation. The second criterion attempts to measure
the sparsity level. This criterion gives an idea about how the clusters are connected to
each others. For instance, in the case of disjoint clusters, the number of intercluster
edges is usually used to express the sparsity level. In the case of overlapping clusters,
the average/maximum number of occurrences of a node in the clusters is usually used
to express the sparsity (or the overlap) of the clustered representation.

In general, the locality and the sparsity levels of a clustered representation are
tightly related and often go in an opposite way. For instance, one can take the whole
graph to be one cluster C. In this case, the sparsity level is good (the degree of C

is 0), but the locality level is bad (the radius of C is the radius of the whole graph).
In opposite, one can take a representation in which each node forms a cluster. In this
case, the locality level is good (the radius of each cluster is 0), but the sparsity level is
bad (the degree of a cluster may be Δ where Δ is the maximum degree of the graph).

The complexity of many applications (using clustered representations as a com-
munication structure) is also tightly related to the sparsity and locality levels. In fact,
a good locality level implies in general a low time complexity, and a low sparsity level
implies low message/memory complexity. All the clustered representations one can
find always attempt to find a good compromise between the sparsity and the locality
levels.

1.1 Goals and Related Works

In this paper, we focus on an important clustered representation called Basic Partition
[36, Chap. 11]. Our interest in this Basic Partition comes from its good sparsity-
locality compromise. In fact, given an n-node graph, the Basic Partition provides a
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set of disjoint connected clusters such that the radius of a cluster is at most k − 1 and

the number of intercluster edges is O(n1+ 1
k ) where k is a given integer parameter.

Our goal is to design time efficient algorithms for constructing a Basic Partition of a
graph in a distributed model of computation where nodes can only communicate with
their neighbors by exchanging messages of limited size.

The Basic Partition was first used in [3] in order to design efficient network syn-
chronizers. The idea of producing a clustered representation satisfying a good com-
promise between the locality level and the sparsity level was then studied in [5]. The
results of [5] inspired many other applications and generalizations [9, 10, 17]. In par-
ticular, Awerbuch et al. [9] studied two important types of clustered representations:

1. The first one called network decomposition aims at partitioning the network into
disjoint colored clusters with either weak or strong small radius and using a small
number of colors. For weak-network decompositions, a cluster does not necessar-
ily need to be connected and its radius is computed using paths which may shortcut
through neighboring clusters. For strong-network decompositions, a cluster must
be connected and its radius is computed in the network induced by this cluster.

2. The second one called network covers constructs a set of possibly overlapping
clusters with the property that for any node v, there exists a cluster which contains
the t-neighborhood of v, i.e., the neighbors at distance at most t from v where t

is an integer parameter. The quality of such covers is measured using the strong
radius of clusters and the cluster overlap, i.e., the maximum number of clusters a
node belongs to.

In addition to design new network decompositions satisfying some desirable prop-
erties, many works studied the problem of distributively constructing these rep-
resentations in an efficient way. For instance, Awerbuch et al. [9] gave a deter-
ministic (resp. randomized) distributed algorithm to construct a (k, t,O(kn1/k))-
neighborhood cover in O(tk · 2c

√
logn + tk2 · 24

√
logn · n1/k) (resp. O(tk2 · log2 n ·

n1/k)) time for some constant c > 0. A (k, t, d)-neighborhood is a set of possibly
overlapping clusters such that (i) the strong radius of a cluster is O(kt), (ii) each node
belongs to at most d clusters, and (iii) the t-neighborhood of each node is covered by
at least one cluster. Moreover, a remark in [9] claims that it is possible to translate this
neighborhood cover into a strong-network decomposition of comparable parameters
by using some techniques from [5, 17].

On one hand, the strong radius of the cover constructed in [9] is 2k − 1 which
is worse (by a factor 2) than the one of the Basic Partition. On the other hand, the
distributed model considered there does not take into account the congestion created
at various bottlenecks in the network (see Sect. 3.4 of [9]). In fact, the network model
used in [9] is the Linial’s free model [29, 30] also known as the LO C AL model
(see [36, Chap. 2]). The LO C AL model assumes that nodes can communicate by ex-
changing messages of unlimited size. This assumption focuses on the locality nature
of distributed problems, i.e., what can be computed distributively provided that every
node knows its whole neighborhood at some distance?

From a practical point of view, since clustered representations are in the basis of
many applications, it is crucial to design fast algorithms to construct such represen-
tations in practical distributed models. From a more theoretical point of view, it is
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also interesting and challenging to design fast algorithms assuming only some weak
distributed assumptions, e.g., see [37].

In [34], Moran and Snir gave a distributed algorithm that computes a Basic Par-
tition in O(n) time in a distributed model where the size of a message is at most
O(logn) bits, i.e., C O N G E S T model (see [36, Chap. 2]). The algorithm of [34] im-
proves the previous constructions of [3, 41], and allows us to obtain more efficient
algorithms for designing network synchronizers γ , γ1 and γ2. The algorithm of [34]
is semi-sequential: Each cluster is constructed around some node in a distributed
and layered fashion. Nevertheless, the clusters are constructed sequentially. In other
words, the clusters are constructed one after the other: at each iteration, a new node
is selected and the next cluster is constructed.

Moran and Snir end their paper [34] saying:

[34] Question:
Are there truly parallel algorithms which construct a Basic
Partition in polylogarithmic or sublinear time complexity in
the C O N G E S T model?

1.2 Contribution

In the following, we answer the [34] question. In fact, we give new sparse partition al-
gorithms with O(n1−1/k) time complexity, using messages of size at most O(logn).

More precisely, we give a fully distributed deterministic algorithm DIST_PART

with no precomputation step. The idea is to let the clusters grow spontaneously in
parallel in different regions of the graph, breaking ties using node identities. We give
a detailed implementation of algorithm DIST_PART using small messages and we
analyze its efficiency. The time complexity of algorithm DIST_PART is only linear.
However, the technique of algorithm DIST_PART is used as a black box in order
to design a new synchronous deterministic algorithm (SYNC_PART) with sublinear
time complexity. The main idea to break the linear time barrier is to privilege the
construction of clusters in the dense region of the graph which allows us to finish the
distributed construction in constant time once the graph becomes sparse. This idea
is then adapted in order to run in an asynchronous setting and we obtain algorithm
FAST_PART. Our new asynchronous algorithm is even faster than the synchronous
one for many particular graphs.

We also give a randomized distributed algorithm (ELECT_PART) which is based
on a local election technique (LEk) in balls of radius k. This k-local election tech-
nique is a generalization of the algorithms given in [33] and can be of an independent
interest. For general graphs, our randomized construction has the same sublinear time
complexity as the deterministic one, but it provides improved bounds for many par-
ticular graphs. In fact, the analysis of algorithm ELECT_PART enables us to express
analytically the degree of parallelism of our construction and to compute the expected
number of clusters constructed in parallel.

The basic partition can be applied for designing network covers, network syn-
chronizers and also graph spanners. Hence, we obtain new fast algorithms for all
of these applications. For instance, we obtain new O(n1−1/k) time deterministic al-
gorithm for constructing optimal spanners with size O(n1+1/k) and stretch 2k − 1
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which improves on previous constructions. Fast construction of sparse spanners is a
real challenge and has been intensively studied over many years and are of special
interest for many useful graph structures such as shortest paths, distance oracles and
routing [2, 11, 12, 15, 21–23, 40, 42]. We should note that the best known distrib-
uted algorithms for constructing graph spanners with optimal stretch-size tradeoffs
are either randomized [12] or use unbounded size messages [20].

One should finally note that at each round of our distributed constructions the
number of messages exchanged by nodes can be order of the number of edges which
is rather large. In this paper, we focus only on providing time efficient constructions.
Improving the message complexity of our algorithms remains an open research field
as it will be pointed later.

Outline

In Sects. 2 and 3, we give some definitions and we review the BASIC_PART algo-
rithm for constructing the Basic Partition in a semi-sequential manner. In Sect. 4,
we give a detailed implementation and analysis of the fully distributed algorithm
DIST_PART. In Sects. 5 and 6, we describe algorithms SYNC_PART, FAST_PART

and ELECT_PART, and we analyze their time complexity. In Sect. 7, we apply our
algorithms to construct sparse graph spanners.

The application of the basic partition to network covers and network synchronizers
γ , γ1 and γ2 is given in Appendix A. In Appendix B, we also give a constructive
analysis of our algorithms in the case of Circulant graphs and we obtain logarithmic
time complexity.

2 Model and Definitions

We represent a network of n processes by an unweighted undirected connected graph
G = (V ,E) where V represents the set of processes (|V | = n) and E the set of links
between them. We consider the distributed model of computation used in [3, 34] and
known as the C O N G E S T model. More precisely, we assume that a node can only
communicate with its neighbors by sending and receiving messages of size O(log(n))

bits. Each node processes messages received from its neighbors, performs local com-
putations, and sends messages to its neighbors in negligible time. In a synchronous
network, all nodes have access to a global clock which generates pulses. A message
which has been sent in a given pulse arrives before the next pulse. In a synchronous
network, the time complexity of an algorithm is defined as the worst-case number of
pulses from the start of the algorithm to its termination. In an asynchronous network,
there is no global clock and a message delay is arbitrary but finite. In the latter case,
the time complexity is defined as the worst-case number of time units from the start
of the algorithm to its termination, assuming that a message delay is at most one time
unit (this assumption is introduced only for the purpose of performance evaluation).

A cluster C is a subset of V such that the subgraph induced by C is connected.
A cluster is always considered with a leader node and a BFS spanning tree rooted at
the leader. We also assume that each node v of a graph G has a unique identity Idv
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Fig. 1 Algorithm
BASIC_PART [36]

1: Set C := ∅
2: while V �= ∅ do
3: Select an arbitrary vertex v ∈ V

4: Set C := {v}
5: while |�(C)| > n1/k|C| do
6: C := �(C)

7: end while
8: Set C := C ∪ C and V := V − C

9: end while
10: return C

(of O(log(n)) bits). The identity IdC of a cluster C is defined as the identity of its
leader.

For every pair of nodes u and v of a graph G, dG(u, v) denotes the distance be-
tween u and v in G (we also write d(u, v) when G is clear from the context). For any
node v of a graph G, N (v) = {u ∈ V | dG(u, v) ≤ 1} denotes the neighborhood of v.
For any cluster C of a graph G, Γ (C) = ⋃

v∈C N (v) denotes the neighborhood of
C. For any cluster C of a graph G, Rad(C) denotes the radius of the cluster C, i.e.,
the radius of the subgraph induced by C in G. Similarly, for any set C of clusters,
Rad(C) = maxC∈C Rad(C) denotes the radius of C.

In all our algorithms, clusters are constructed in a layered and concurrent fashion.
In other words, a cluster may grow and explore a new layer but it may also lose its
last layer. Some clusters may disappear because they lost all their layers and some
others may be newly formed. A cluster is called finished if it belongs to the final
decomposition that we are constructing. A node belonging to a finished cluster is
also called finished. A node is called active if it does not belong to a finished cluster.

3 A Basic Algorithm for Constructing a Sparse Partition

Let k ≥ 1 be an integer parameter. Typically, k is taken to be small compared with
n (k ≤ logn). Let us consider algorithm BASIC_PART (Fig. 1) as given in Peleg’s
book [36, Chap. 11, p. 130]. Algorithm BASIC_PART was first used in [3] as a data
structure for synchronizer γ , then some improvements were given in [34, 41]. The
algorithm operates in many phases. At each phase, a node is selected from the set of
nodes which are not yet covered by a cluster. Then a new cluster is constructed in
many iterations according to the sparsity condition of line 5, i.e., |Γ (C)| > n1/k|C|.
It is important to note that the graph G changes in line 8 of the algorithm and the
notations in the while loop correspond to the new graph G obtained after the deletion
of the corresponding nodes.

Algorithm BASIC_PART constructs a Basic Partition. In fact, we have the follow-
ing:

Theorem 1 [36] The output C of algorithm BASIC_PART is a partition of G which
satisfies the following properties:
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1. Rad(C) ≤ k − 1 (locality level)
2. There are at most n1+1/k intercluster edges (sparsity level)

Proof On one hand, once the construction of a cluster C is finished, the nodes of
C are definitely removed from the graph G. Thus, the clusters constructed by the
algorithm are disjoint. On the other hand, the algorithm terminates once no node
remains uncovered. Thus, the final output C is a partition of G.

Using the sparsity condition, if a cluster C adds i layers, then the size of C satisfies
|C| > ni/k . Hence, a cluster cannot add more than k − 1 layers and the first property
of the partition holds.

Let GC be the graph induced by the clusters of the partition C: the nodes of GC
are the clusters of C and there is an intercluster edge between two clusters if the
clusters are at distance 1 from each others. Now, consider a cluster C ∈ C. Once the
construction of C is finished, there are at most n1/k|C| nodes in G at distance 1. Thus,
there will be at most n1/k|C| neighboring clusters that will be constructed after C.
Thus, there are at most n1/k|C| intercluster edges that can be added to the graph
GC after the construction of C is finished. Thus, the number of intercluster edges
is bounded by

∑
C∈C n1/k|C|. Since C is a partition,

∑
C∈C |C| = n and the second

property of the partition holds. �

There are many distributed implementations of the BASIC_PART algorithm. All
of these implementations are semi-sequential. First, they distributively elect a new
leader in the network which corresponds to the center of a new cluster. Then, the
cluster is constructed in a distributed way by adding the layers in many iterations.
The construction of the cluster ends when there are no new layers to add or when
the sparsity condition is no longer satisfied. Once the construction of the cluster is
finished, a new leader is elected from unprocessed nodes and a new cluster grows up
around this leader.

The main difficulty in these algorithms is to distributively elect the next leader.
In [34], a preprocessing is used to overcome this difficulty. First, a spanning tree T

of the graph G is constructed. Then, the next leader is elected by achieving a DFS
traversal of T . This technique allows us to improve the complexity bounds of the
decomposition: O(|E|) messages and O(|V |) time.

In the next sections, we introduce a new algorithm with no precomputation step
and no next leader election step.

4 A Deterministic Fully Distributed Basic Partition Algorithm

4.1 Overview of the Algorithm

The main idea of algorithm DIST_PART is to allow clusters to grow in parallel in
different regions. In fact, consider two nodes u and v such that dG(u, v) ≥ 2k where
k is the same parameter as that in algorithm BASIC_PART. Then, it is possible to
grow two clusters respectively around u and v without any interference. Based on
this observation, we initially let each node of the graph be a singleton cluster. Then,
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Fig. 2 An example of conflicts between clusters at distance 1 or 2

we allow the clusters to grow spontaneously. The main difficulty here is to guarantee
that the clusters do not share any nodes.

We do not avoid cluster collisions but we try to manage the conflicts that can oc-
cur. For instance, consider some region of the graph and suppose that some clusters
have independently grown as shown in Fig. 2. The clusters cannot add a new layer
simultaneously without overlapping. Thus, we make each cluster compete against its
neighbors in order to win a new layer. There are two critical situations. Either, a clus-
ter enters in conflict with an adjacent one or with another cluster at distance two. For
instance, in the example of Fig. 2, cluster C1 tries to invade some nodes that belong
to cluster C3 and C2 at distance 1. Thus, the neighboring cluster C1, C2 and C3 are in
conflicts. Similarly, cluster C4 tries to invade some nodes in cluster C3. Nevertheless,
these nodes are also required for the new layer of cluster C1. Thus, the two clusters
C1 and C4 (at distance 2) are also in conflict. To resume, each cluster must compete
against all clusters at distance 1 or 2 in order to add a layer. In addition, a layer not
satisfying the sparsity condition of algorithm BASIC_PART must be rejected.

In order to manage the conflicts and the cluster growth, we use the following rules:

1. Exploration Rule: a cluster is able to add a new layer if its identifier is bigger than
those of not finished neighboring clusters at distance one or two. If a cluster wins
in exploring a new layer then it must apply the Growth Rule, otherwise it must
apply the Battle Rule.

2. Growth Rule: If the sparsity condition is satisfied then a cluster adds the last ex-
plored layer and tries to apply the Exploration Rule once again. Otherwise, the
cluster construction is finished and the cluster rejects the last explored layer. The
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Fig. 3 Algorithm DIST_PART:
code for a cluster

1: continue := True
2: while continue do
3: execute the Exploration Rule
4: if success of the Exploration Rule then
5: add the new layer
6: execute the Growth Rule
7: if Non success of the Growth Rule then
8: reject the last explored layer
9: switch to a finished cluster

10: continue := False
11: end if
12: else
13: execute the Battle Rule
14: end if
15: end while

nodes in the rejected layer are re-initialized to singleton clusters with their initial
identifiers.

3. Battle Rule: a cluster loses its whole last layer if at least one neighboring cluster
at distance one has successfully applied the Exploration Rule. The nodes lost by a
cluster are re-initialized to singleton clusters with their initial identifiers.

Based on the three previous rules, we obtain the fully distributed algorithm
DIST_PART described in a high level way in Fig. 3.

Remark 1 It is important to choose a unique identifier for each cluster. For instance,
the identifier of a cluster can be chosen to be the identity of its leader. This is im-
plicitly assumed in the rest of this section. However, we can also choose the couple
(|C|, Idv) as the identifier of a cluster C with a root v, and the lexicographical order
to compare cluster identifiers.

Example Let us consider the concrete example of Fig. 4. We have five clusters 1, 2,
3, 4 and 5 with identities Id1 > Id2 > Id3 > Id4 > Id5. Assume that the identifier of
each clusters corresponds to the identity of its leader node. When a new exploration
begins, cluster 1 wins against clusters 5 and 3. Cluster 2 wins against clusters 4 and 5
but loses against cluster 1 which is at distance two. Thus, cluster 2 cannot add a new
layer. Cluster 4 loses against both clusters 2 and 3 but it will not be invaded because
both clusters 2 and 3 cannot grow. Cluster 3 wins against cluster 4 but loses against
cluster 1. Cluster 3 will be invaded by cluster 1 which wins against all clusters at
distance two (cluster 5, 2 and 3). Thus, cluster 3 will lose its last layer. The node con-
necting it with cluster 4 becomes a singleton cluster with its initial identity Id6. The
node connecting cluster 3 with cluster 1 becomes a leaf in cluster 1. Now, suppose
that the sparsity condition for the new enlarged cluster 1 is not satisfied. Then, clus-
ter 1 rejects the last explored layer and its construction is finished. Hence, the nodes
in the rejected layer become singleton clusters. Then, the remaining active clusters
spontaneously continue new explorations. In our example, both cluster 2 and cluster 3
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will succeed their explorations and add a layers. Note that in the other regions of the
graph, there are other clusters which are fighting against each others. Hence, many
clusters can grow in parallel.

4.2 Detailed Description and Implementation

In this section, we give a complete description of how to implement the three rules of
the DIST_PART algorithm using message passing. For the clarity of our algorithm,
we assume that the identifier of a cluster is the identity of its root. The main difficulty
when implementing the three rules of algorithm DIST_PART is to coordinate the
center of a cluster with its leaves, i.e., nodes at the border of the cluster. On one hand,
the center of a cluster cannot see what is happening on the borders of its cluster.
Hence, it must always wait for pieces of information from the leaves before making a
decision. Symmetrically, the leaves cannot see the global state of their cluster. Hence,
they must also wait for information from the center of their cluster.

To apply the three rules, the nodes in a cluster must collaborate. Each node can be
in five states root, leaf, relay, orphan or final. At the beginning, all nodes are orphans
and they form orphan clusters, i.e., cluster with only one node. If a node is in a final
state, then it belongs to a finished cluster and thus it does not make any computation.
Roughly speaking, if a node v is in a root state, then it is the leader and it makes
decisions for its cluster. If v is in a leaf state, then it tries to invade new nodes and it
informs its root. If v is in a relay state, then it forwards information from the leaves
to the root.

As long as new layers are added (resp., removed) to (resp., from) a cluster, the
nodes in the cluster maintain a layered BFS spanning tree. The root of the tree cor-
responds to the root of the cluster, the leaves of the tree correspond to the leaves of
the cluster and the nodes in the interior of the tree correspond to relay nodes. The
decisions of adding or removing a layer are broadcasted by the root node according
to the information forwarded by the leaves all along the constructed BFS tree. Each
time that some new nodes join a cluster, the BFS spanning tree is enlarged by making
each new node choose a parent among the leaves of the already constructed tree.

In next paragraphs, we detail the actions to be performed by each node according
to its state. Notice that the state of a node can change several times. For instance, the
state of a node can be relay at some time, then becomes leaf, after that orphan, and at
last final.

Remark 2 In the pseudo-code of our algorithms, a node uses the function Send to
send a message to a (or some) neighbor(s). The function Receive allows a node to
receive a message from a (or some) neighbor(s). The receive function is blocking,
that is, a node cannot execute the next instruction in the algorithm unless the receive
action is terminated, i.e., all messages were arrived.

Root Nodes The algorithm executed by a root node is given in Fig. 5. First, the root
verifies if the sparsity condition is satisfied and it informs the leaves (Growth rule).
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Fig. 4 An example of algorithm DIST_PART

More specifically, if the sparsity condition is satisfied, then the root broadcasts a no-
tification message NEW to the leaves in order to begin a new exploration. Otherwise,
it broadcasts a REJECT message saying that the construction is finished.
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Fig. 5 DIST_PART: high level code for the root node of a cluster C

After broadcasting a NEW message, the root waits the response from its leaves.
There are three possible cases:

1. The root receives only STOPPED messages from its leaves. This means that the
leaves did not find new nodes to explore. In this case, the root broadcasts a STOP
message informing all the nodes that the cluster construction is finished.

2. The root does not receive any LOST message, i.e., only WIN (or STOPPED) mes-
sages. This means that the exploration was globally successful. Thus, the root
broadcasts a SUCCESS message to the leaves. Then, the root waits to learn the
size of the new enlarged cluster.

3. The root receives at least one LOST message. This means that the exploration was
not successful (at least one leaf has lost against a neighboring cluster). Thus, the
root informs the leaves by broadcasting a FAILURE message. Then, the root waits
for the leaves responses. There are two cases:
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– At least one leaf is invaded by another cluster. Thus, the root must receive at
least one BYE message. In this case, the cluster must reject its last layer (Bat-
tle rule). Hence, it broadcasts a DOWN message asking the leaves to become
orphans.

– All leaves have resisted to neighbor’s attacks. Thus, the root must receive only
SAFE messages, i.e., no neighboring cluster has succeeded in invading the cur-
rent cluster. In this case, the root broadcasts an OK message saying that the
cluster is not invaded and asking for a new exploration.

Leaf Nodes The algorithm executed by a leaf is given in Fig. 6.

Remark 3 We remark that a leaf does not always belong to the last layer of a cluster.
For instance, a leaf node may have only final neighbors belonging to finished clusters.
Hence, it cannot add new nodes to its cluster. Nevertheless, other leaves belonging to
the same cluster can continue exploring new nodes. Therefore, the construction of the
cluster can continue even if some leaves cannot locally explore new nodes. In order
to handle this situation, for each node we use a local variable h which corresponds to
its depth in the BFS-spanning tree of its cluster. If h = 1 then the leaf belongs to the
last layer and it can compete to add new layers, otherwise the leaf cannot explore any
new layer.

Since the exploration of a new layer is done before verifying the sparsity condition,
whenever a node u becomes a leaf in a new cluster, it sends 1 to its parent v in the
new cluster and waits for a message from its parent. The parent node v sends back
the number of its children and so on. Thus, by a convergecast process, the root will be
able to compute the size of the new cluster and to broadcast its decision to the leaves.

If the leaf u receives a REJECT message from its parent, then u leaves its new
cluster (Growth rule) and it becomes an orphan cluster. Otherwise, u receives a NEW
message from its parent. This means that a new layer must be explored. If u cannot
explore new regions, then u sends back a STOPPED message. Otherwise, u begins
a new exploration using an election technique in a ball of radius two: First, u sends
its cluster identifier to its neighbors. Symmetrically, it waits for the identifiers of the
neighboring clusters. Second, u computes the maximum of the neighbor identifiers
(including the identifier of its own cluster) and sends it again to the neighbors. Sym-
metrically, it waits for the maximum identifiers sent by neighboring leaves. If all the
identifiers received by u are equal to the identifier of u’s cluster, then u has locally
succeed its exploration and it sends back a WIN message. Otherwise, u sends back a
LOST message.

Remark 4 Since the clusters have unique identifiers, then two neighboring leaves can
easily decide whether they belong to the same cluster, e.g., when exchanging their
identifiers in a new exploration.

Once the exploration is finished, the leaf node u waits for the decision of its root.
There are three cases:
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Fig. 6 DIST_PART: high level code for a leaf node in a cluster C

1. If u receives a STOP message from the root, then none of the leaves can explore
new nodes. Thus, u becomes a final node, i.e., the construction of the cluster is
finished.

2. If u receives an SUCCESS message from the root, then all leaves have succeeded
their local explorations, i.e., they won against all neighbors at distance 1 or 2.
Thus, u sends a JOIN message to neighboring leaves asking them to join its clus-
ter. Then, u switches to a relay state.
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3. If u receives a FAILURE message from the root, then at least one leaf has not
succeeded the exploration. Thus, u sends a STAY message to neighboring leaves
informing them that they will not be invaded by u’s cluster. Then, u waits to know
if the neighboring clusters succeeded their explorations. There are two cases:

– If u receives at least a JOIN message from a neighboring leaf (in a different
cluster), then it sends back a BYE message to its root, waits for an acknowledg-
ment (DOWN message) and it joins the new cluster.

– Otherwise, if none of the neighboring cluster has succeeded in invading the leaf
(STAY message), the leaf sends back to its root a SAFE message. At this stage of
the algorithm, the leaves (except those who have received a JOIN message) do
not know whether their cluster is being invaded or not (only the root globally
knows what is happening at its frontiers). Thus, the leaves wait for either an
OK or a DOWN message from the root. If a leaf receives an OK message,
then it remains in the same cluster and it begins a new exploration once again.
Otherwise, it receives a DOWN message and it becomes an orphan node.

Orphan Nodes An orphan node acts like a root and like a leaf node. In fact, it
makes decisions for its singleton cluster and it fights against neighboring nodes. If
an orphan node succeeds an exploration, it becomes a root node in a new cluster
of radius 1. If it is invaded by a cluster, it becomes a leaf. Otherwise, it re-tries to
invade its neighbors (new exploration). If it has only neighbors belonging to finished
clusters, then it switches to a final state. The type of messages that must be sent by
an orphan node to neighbors can be deduced from the previous discussion.

Relay Nodes The main role of a relay node is to forward information from the root
to the leaves. If a relay node receives a message from its parent, it simply forwards it
to its children. If the message is a REJECT or a STOP message, then the node knows
that the cluster construction is finished and it switches to a final state. If the message
is a SUCCESS message, then the node knows that there is a new layer that will join
the cluster. Thus, the depth of the node is incremented by one. If the message is a
DOWN message then the relay node knows that its cluster was invaded and lost the
last layer. In this case, if a relay node belongs to the layer before the last one (h = 2)
then the relay node becomes a leaf.

On the other hand, if a relay node receives a message from its children, it can
deduce which step the leaves are executing (exploration of a new layer: WIN, LOST
or STOPPED messages, resistance against neighbors attacks: OK or BYE messages,
and computation of the sparsity condition: integer message). In all cases, the relay
node can easily compute what kind of message it must forward to its root.

Remark 5 Each node can easily know which of its neighbors belongs to a finished
cluster. It is sufficient to make each node (which becomes final) send a message to
its neighbors to inform them. However, we can avoid these extra communication
messages as following. When a node v is explored by a cluster C, it uses the Ids
sent by neighbors in order to compute a set FC of neighbors belonging to the layer
before the last one. Then, if v receives a REJECT message from the root of C, i.e., the
sparsity condition for the last layer of C is not satisfied, then v marks its neighbors in
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FC as finished. Now, consider any edge (u, v). Suppose that u and v do not belong
to the same cluster at the end of the algorithm. W.l.o.g., suppose that u becomes in
a final state before v. Thus, the cluster containing u must have explored v. Thus, v

must have received a REJECT message from its parent. Thus, v can decide that u

switched to a final state. The case where nodes u and v ends up in the same cluster is
trivial since both the two nodes stop communicating.

Remark 6 Although our algorithm is completely asynchronous, we remark that there
is a kind of synchronization in our implementation which is close to the one used in
synchronizer γ (see Appendix A). On one hand, the root nodes control the execution
of the algorithm and give the starting signal to all the actions of the leaves using the
relay nodes. Hence, the actions of nodes inside one cluster are synchronized. On the
other hand, the decisions made by the roots in neighboring clusters are synchronized
since a root must wait for some information concerning those neighboring clusters.
The leaves in different clusters synchronize also their actions to execute the decisions
of their roots.

4.3 Analysis of the Algorithm

Theorem 2 Algorithm DIST_PART terminates.

Proof From the algorithm description, the cluster having the biggest identifier in the
graph always succeeds the Exploration rule. Thus, it always succeeds adding new
layers until the sparsity condition is violated. Thus, after at most k − 1 layers, the
nodes in the biggest cluster are in final states. Now, the remaining cluster with the
biggest identifier always succeeds its new explorations and so on until all the nodes
are in final states. �

Theorem 3 Algorithm DIST_PART emulates the BASIC_PART algorithm.

Proof From the algorithm description, once the construction of a cluster is finished,
the cluster cannot be invaded by any other active cluster. Hence, the constructed clus-
ters are disjoint.

In addition, a new layer is added if and only if it verifies the sparsity condition
(Growth rule). Symmetrically, if a cluster is invaded, then it loses its whole last layer.
Hence, the layers of finished clusters satisfy the sparsity condition.

Thus, the constructed partition satisfies the sparsity and locality properties of al-
gorithm BASIC_PART. �

Theorem 4 In the worst case, the time complexity of algorithm DIST_PART is:

Time(DIST_PART) = O(n)

Proof In the following proof, we consider the clusters in an increasing order of the
time of their construction. Let C be a cluster in the final partition C. Let r be the
radius of C. We remark that the construction of a cluster always ends with a sequence
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of successive successful explorations, and in all these explorations except for the last
one the growth condition holds. Consider the first time t when the cluster C starts
to successively completes all its explorations. Let Time(C) be the number of time
units from t to the end of C’s construction. In other words, Time(C) is the duration
of the successive successful explorations. Let j be the radius of C at time t . For any
i ∈ {j, . . . , r}, we consider the time when C contains i layers, and we denote by rmaxi

the maximum radius of the neighboring clusters of C.
In order to decide if a layer is added or not, the cluster C must be traversed at most

a constant number of times. In addition, before a node joins a new cluster, it informs
its previous root and waits for the acknowledgment of this root. Thus, Time(C) ≤∑

0<i≤r O(i + rmaxi
). Using Theorem 1, we have r ≤ k − 1 and rmaxi

≤ k − 1. Thus,
Time(C) = O(kr).

In the worst case, two clusters are never constructed in parallel. Thus,

Time(DIST_PART) =
∑

C∈C
Time(C)

Hence, using the fact that
∑

C∈C r ≤ n, we get

Time(DIST_PART) = O(k · n)

The previous analysis is not sufficient to prove the theorem if the parameter k is
not a constant. Nevertheless, it gives us a precious remark. In fact, we remark that it
can be interesting to take the couple (Rad(C), Idv) to be the identifier of a cluster C

rooted at a node v and the lexicographical order to compare cluster identifiers (which
do not change the overall implementation). In this case, we have rmaxi

≤ r . Thus, for
the relevant range of k ≤ log(n), we have:

|C| ≥ nr/k ⇒ r ≤ k

log(n)
log(|C|) ⇒ r ≤ log(|C|)

Thus,

Time(DIST_PART) =
∑

C∈C

∑

0<i≤r

O(i + rmaxi
) ≤

∑

C∈C
O(r2)

≤
∑

C∈C
O(log(|C|)2)

≤
∑

C∈C
O(|C|)

Since C is a partition, the theorem holds. �

Remark 7 Since at each time unit nodes could exchange order of |E| messages in
a worst case scenario, the message complexity of our algorithm can be rather large.
However, this does not take into account the fact that finished clusters stop com-
municating with their neighbors. In this paper, we are mainly interested in the time
complexity and we will not consider improving the message complexity measure.
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Fig. 7 An example of bad node distribution

Remark 8 One shall remark that our theoretical analysis is still sequential. In fact,
in our analysis we consider that clusters are never constructed in parallel. This can
actually happen for instance if the graph contains a path with nodes having a decreas-
ing sequence of identities. In Fig. 7, such a bad scenario is illustrated. In fact, at each
round of the algorithm execution there will be only one cluster constructed. At the
beginning, all nodes but node number 2n fail to explore a new layer. Then, node num-
ber 2n switches to a final state, and only node number 2n − 1 wins the exploration
and so on. Thus, it takes O(n) time to terminate the construction. Also in the example
of Fig. 7, there will be order of O(n2) messages exchanged at each new exploration
round. In fact, the nodes of the clique will not be able to switch to final states before
the last round. Hence, the message complexity is large. Nevertheless, by considering
a random permutation of node identities, one can see that the path in Fig. 7 is likely
to be broken in many pieces rather quickly allowing more than only one cluster to
grow in parallel. This leads to a better time and message complexity in practice. For
the general case of any graph, we think that the average complexity of our algorithm
can be much better than the worst case bound of Theorem 4. It would be very nice
to prove this claim analytically. This could be a hard task since one have to consider
any connected graph with n nodes and all possible permutations of node identities.

5 Sublinear Deterministic Distributed Partition

In the following, we show how to improve algorithm DIST_PART in order to obtain
sublinear time algorithms for constructing a basic partition. First, we describe and
analyze a new synchronous algorithm called SYNC_PART. Then, we show that the
synchrony of the network is not important to achieve a sublinear time construction,
and we provide a new asynchronous algorithm called FAST_PART.



Theory Comput Syst

In the remainder, we denote by Vf the set of finished nodes, i.e., nodes in a finished
cluster. Furthermore, we are interested in active nodes in V − Vf , hence the degree
dv of a node v is defined as its degree in the graph GV −Vf

induced by V − Vf .

5.1 A Synchronous Deterministic Algorithm

In this section, we assume that the network is synchronous, i.e., there exists a global
clock. At any time t , At denotes the set of active nodes (nodes not in Vf at time t),

and Rt = {v ∈ At | dv > n
1
k } denotes the set of active nodes having high enough

degrees at time t .
We remark that the sparsity condition for a singleton cluster rooted at some node

v is dv > n
1
k . Hence, a singleton cluster rooted at some node in At \ Rt cannot grow

any layer. Thus, at any time t , we only let the nodes in Rt compete in order to grow
some clusters. Once Rt becomes empty, we just let the remaining active nodes be
finished singleton clusters.

The new algorithm SYNC_PART works in two stages. The first stage is performed
until time T = O(k2n1−1/k) is reached. The second stage begins at time T and lasts
O(1) time units.

In the next paragraphs, we give the details of algorithm SYNC_PART and discuss
its correctness and its complexity.

First Stage of the Algorithm During this stage, all nodes execute algorithm
DIST_PART with the following additional exploration rules:

– If a node v ∈ At is no longer in Rt , i.e., v ∈ At \Rt , then v sets its identity to −∞.
– Singleton clusters rooted at nodes in At \ Rt do not explore any layer.

Notice that the previous modifications are made only by singleton clusters that
do not verify the sparsity condition. We use the same three rules of algorithm
DIST_PART to manage the growth of other clusters rooted at any node in Rt .

Let us consider a singleton cluster rooted at v ∈ At \ Rt . Then, when applying
the new rules, v sets its identity to −∞. Hence, v has the lowest identity among
all other possible identities. Therefore, node v will not stop the growth of another
cluster rooted at a node of Rt . In fact, v can only be a part of other neighboring dense
clusters (if it is asked to join). If the neighborhood of v is also in At \ Rt , then the
cluster behaves as if it has the lowest identity, i.e., it does not explore any layer. In
a practical implementation, a node needs to know whether it is in Rt or not. Since
at any moment of algorithm DIST_PART a node is aware of its finished neighbors
(see Remark 5), there are no further communications to be done by a node in order
to know if it is still in Rt .

Second Stage of the Algorithm At time T , all remaining active nodes in At stop
computing and just decide to be finished singleton clusters.

Proposition 1 (Correctness) Algorithm SYNC_PART emulates algorithm
BASIC_PART.
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Lemma 1 Let C be the cluster with the biggest identity among active nodes at some
moment of the algorithm. We need O(k2) time in the worst case before the construc-
tion of C is finished.

Proof On one hand, the communications performed by the algorithm are done using
a broadcast convergecast process inside the BFS spanning tree of each cluster. Since a
cluster has a radius at most O(k), a broadcast (or a convergecast) costs at most O(k)

time units.
On the other hand, using the Exploration rule, cluster C always wins against its

neighboring clusters and it always succeeds in exploring new layers. In the worst
case, there will be at most k − 1 new explored layers. Thus, it takes at most O(k · k)

time before the construction of C is finished. �

Lemma 2 For any time t either |At+O(k2)| < |At | − n1/k or Rt+O(k2) = ∅.

Proof Consider a given time t . If Rt = ∅ then Rt+O(k2) = ∅ (because a finished
node will never be active again). In the remainder of the proof we consider the less
trivial case where Rt �= ∅.

Consider a node v in Rt , i.e., v has more than n1/k active neighbors at time t . Node
v must belong to some cluster C. Let u be the root of C. Suppose that u is active at
time t , then u must be in Rt (because sparse nodes cannot explore new layers). The
cluster having the biggest identity will end up having radius at least 1 and size at least
n1/k . The vertices of that cluster become inactive and so at least n1/k vertices become
inactive. Using Lemma 1, the construction of the cluster having the biggest identity
is terminated within at most O(k2) time. Thus, |At+O(k2)| < |At | − n1/k .

Suppose now that for each node v ∈ Rt , the root of the cluster containing v at time
t is inactive. This may happen since it may take some time for a root node to inform
the other nodes in its cluster that the construction of the cluster is finished. This
information takes at most O(k) time to reach a node v. Thus at time t ′ = t + O(k),
either v becomes inactive or v ∈ Rt ′ or v ∈ At ′ \ Rt ′ . Thus, we have two relevant
cases:

– No node v becomes in Rt ′ . This means that Rt ′ = ∅ and the second property of the
lemma holds.

– At least one node v becomes in Rt ′ . By considering the cluster having the biggest
identity at time t ′ and using Lemma 1, we have that |At ′+O(k2)| < |At ′ | − n1/k .
Since |At ′ | ≤ |At | and t ′ + O(k2) = t + O(k) + O(k2) = t + O(k2), we can con-
clude that |At+O(k2)| < |At | − n1/k . Thus, the first property of the lemma holds.

In all cases, either the first property or the second property of the lemma holds. �

Lemma 3 For t = O(k2n1−1/k), Rt = ∅.

Proof Using Lemma 2, at the beginning of the algorithm we have |AO(k2)| <

|A1| −n1/k or RO(k2) = ∅. If RO(k2) = ∅ then the lemma holds. Otherwise, we have
|AO(k2)| < |A1| − n1/k . Let t = O(k2). Again by Lemma 2, we have |At+O(k2)| <

|At | − n1/k or Rt+O(k2) = ∅. If Rt+O(k2) = ∅ then the lemma holds. Otherwise, we
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have |At+O(k2)| < |At | − n1/k . Hence it is easy to see that each O(k2) time period
p, either the set of active nodes decreases by at least n1/k factor or all nodes become
sparse. Thus, by a simple induction, after at most n1−1/k periods p either set A be-
comes empty or set R becomes empty. Since at any time t , Rt ⊆ At , then we can
conclude that RO(k2n1−1/k) = ∅. �

Since the first stage of the algorithm costs T = O(k2n1−1/k) time units and the
second one is performed in O(1) time units, we get the following theorem:

Theorem 5 (Time Complexity) The time complexity of algorithm SYNC_PART is
O(k2 n1−1/k).

Remark 9 We remark that since we are interested in small values of k (typically con-
stant values of k), the time complexity of our algorithm is O(n1−1/k). However, we
can show that for any k verifying k < logn, the value of T in the previous algorithm
can be chosen to be equal to O(n1−1/k). To do that, we slightly modify our algorithm
by privileging the growth of clusters having the biggest couple (Radius,Id). The proof
of this claim is technically similar to the proof of Theorem 4. In fact, consider a clus-
ter C rooted at some node v in Rt . Consider the cluster C having the biggest couple
(r ,Idv) where r is the radius of C and Idv the identity of v. Similarly to the analysis of
Theorem 4, it takes at most O(r) time to explore a new layer. Moreover cluster C con-
tains at least nr/k nodes that will be removed from set At once the construction of C

is finished. Let � ≥ 1 the radius of C in the final partition. Overall, it costs O(�2) time
to construct cluster C. Moreover at least n�/k nodes become inactive at the end of the
cluster construction. Now, for k < logn, we have that n�/k/�2 = �(n1/k). Thus, by
considering the clusters in an increasing order of their time construction, it is easy to
see that the way that our algorithm removes nodes from set At is equivalent to remov-
ing at least �(n1/k) nodes each O(1) time units. Thus, after at most O(n1−1/k) time
units, either set At becomes empty or Rt becomes empty. Thus, after O(n1−1/k) time
units, no clusters with radius at least 1 can be constructed. Hence, T can be chosen
to be O(n1−1/k) and the factor k2 can be removed in the time complexity.

5.2 An Asynchronous Deterministic Algorithm

Algorithm SYNC_PART uses the property that the system is synchronous to find a
bound on the time T before no nodes can grow a non zero radius cluster. The time T
informs all remaining active nodes that there are no more active dense clusters in the
graph. This compels us to wait T time units even if the input graph is sparse. Further-
more, algorithm SYNC_PART cannot be run in an asynchronous system without using
any synchronizers (see, e.g., Appendix A). In the following, we give a new asynchro-
nous algorithm FAST_PART which does not use any global clock. The general idea
of the algorithm is to allow sparse clusters to become finished without waiting until
pulse T . Our asynchronous algorithm shows that the key point for speeding up the
construction does not rely on the global synchrony of the system, but rather on more
local parameters.
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Details of the Algorithm Let us call a cluster C dense, if C has a radius at least

1 or if the single node v of C verifies dv > n
1
k . We also define a sparse cluster to

be a singleton cluster which is not dense (this corresponds to a node in At \ Rt in
algorithm SYNC_PART).

Algorithm FAST_PART uses the three rules of algorithm DIST_PART with the
following modifications:

– A dense cluster can explore a new layer if it has an identity bigger than those of its
active dense neighbors at distance one or two.

– A sparse cluster is not allowed to explore a new layer.
– A sparse cluster declares itself finished singleton cluster if:

• all its neighbors are sparse,
• or if none of its dense neighbors has succeeded in exploring a new layer.

Using these new rules, a sparse node is allowed to declare itself finished if it is not
explored by any neighboring cluster. This occurs if all neighbors are sparse or if the
dense neighbors have not succeeded their explorations. This simple idea enables us
to improve the time complexity of the previous synchronous algorithm.

It is obvious that the new modifications can be implemented using messages of
size at most O(log(n)) using the same techniques than in algorithm DIST_PART. For
instance, we can use a couple (Id,Dense) for the cluster identifiers, where Dense is a
boolean variable indicating whether a cluster is dense or sparse.

Proposition 2 (Correctness) Algorithm FAST_PART emulates algorithm
BASIC_PART.

Let � be the number of clusters of radius at least 1 at the end of algorithm
FAST_PART. Then, the following theorem holds:

Theorem 6 (Time Complexity) The worst case time complexity of algorithm
FAST_PART satisfies:

Time(FAST_PART) = O(k2�) = O(k2n1− 1
k )

Proof The new rules guarantee that a dense cluster is never stopped by a sparse one.
In the worst case, no two dense clusters are constructed in parallel. Thus, let us con-
sider the finished dense clusters in a decreasing order of their time construction.

The construction of a cluster costs at most O(k2). Thus, after at most O(k2�)

time, it only remains active sparse clusters in the graph. In two rounds, all remaining
sparse clusters detect that their neighbors are sparse. Thus, using the new rules, they
become finished clusters and the algorithm terminates. Thus, the first part of the the-
orem holds. In addition, since the cluster are disjoint, it is obvious that for any graph

and for any execution of the algorithm, � is bounded by n1− 1
k which completes the

proof. �

Remark 10 Note that we can apply Remark 9 for the asynchronous algorithm

FAST_PART in order to remove the k2 factor and obtain a O(n1− 1
k ) time complexity.
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Remark 11 The bound O(k2�) becomes of special interest in the case of graphs

where � can be shown to be small compared to n1− 1
k , e.g., see Appendix B for the

case study of Circulant graphs.

Remark 12 A nice property of algorithm FAST_PART is to privilege the clustering of
dense regions of the graph. For instance, if we consider a graph with only some few
dense regions, e.g., some cliques connected by some paths. Our algorithm will auto-
matically capture the topology of the underlying graph and the clustering will have a
high priority at those dense regions. In the example of Fig. 7, algorithm FAST_PART

constructs a basic partition in constant time whereas algorithm DIST_PART needs
O(n) time.

6 Sublinear Randomized Distributed Partition

Although, the previous deterministic algorithms allow us to construct clusters in par-
allel, their analysis is still sequential. In this section, we give a new randomized algo-
rithm enabling us to compute a lower bound of the number of clusters constructed in
parallel.

6.1 Randomized Local Elections

In [33], a randomized algorithm called L2-election (LE2 for short) is introduced in
order to implement distributed algorithms described with Closed Star (CS for short)
relabeling systems. Relabeling systems can be considered as a formal tool to describe
and to prove distributed algorithms independently of the underlying model of com-
munication. The reader can refer to [14, 26, 31, 32] for a review on the mathematical
foundations of relabeling system. Roughly speaking, a distributed computation step
in the CS relabeling system formalism consists in relabeling the nodes attached to a
star according to a precise relabeling rule. This encodes the fact that local compu-
tations done by a node in a distributed environment can be viewed as a function of
the states (labels) of its neighbors. The execution of a distributed algorithm is then
described as a sequence of relabeling steps. Each relabeling step changes the labels
of a star in the graph according to some rule. The relabeling could be executed in par-
allel in different regions of the graph at the condition that the corresponding stars do
not intersect. In this context, algorithm LE2 [33] is a message passing algorithm used
to implement any formal algorithm described using the relabeling system formalism.
Algorithm LE2 works in fact in rounds where at each round some nodes are elected
centers of some stars. In other words, at each round, algorithm LE2 computes some
disjoint stars to be relabeled in parallel.

Algorithm LE2 is based on the following simple idea. At each round, a node
chooses a random number. If the number chosen by a node is bigger than the number
chosen by its neighbors at distant 2, then the node is elected center of a star. Thus, the
stars centered at the elected nodes can be relabeled in parallel since they are disjoint.
Now, suppose that we want to construct the basic partition for k = 2. By Theorem 1,
the radius of a cluster is at most 1. Thus, we remark that we can use algorithm LE2
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1: while There exist nodes not in a finished cluster do
2: (0.) each node selects randomly an identity from a big set of integers.
3: Stage 1: local election in balls of radius k

4: (1.a) Each node v not in a finished cluster runs algorithm LEk

5: Stage 2: reinitialization
6: (2.a) Each formed cluster C computes independently the sparsity con-

dition for each layer j ≤ k,
7: if S contains a layer j violating the sparsity condition then
8: (2.b) C releases all layers l ≥ j and becomes a finished cluster,
9: (2.c) nodes in released layers become singleton clusters.

10: else
11: if all neighbors are finished then
12: (2.d) C becomes finished.
13: end if
14: end if
15: (2.e) Break all non finished clusters and form new singleton clusters.
16: end while

Fig. 8 Algorithm ELECT_PART

to first compute some disjoint stars. Since the elected stars are disjoint, the elected
nodes can verify the sparsity of their corresponding stars in parallel without interfer-
ing with each other. Thus, whenever a node is elected center of a star, it computes
the size of its corresponding star and then it decides to be either a radius 1 finished
cluster or a finished singleton cluster. By repeating this process until each node gets
clustered, we obtain the basic partition we want to compute.

In [33], the authors studied the number of nodes locally elected by their LE2 al-
gorithm, and they interpreted that as the degree of parallelism authorized by their
algorithm. Thus, by applying the LE2 algorithm for constructing the basic partition,
we can study the number of clusters constructed in parallel in one round and for k = 2.
Using that study, we can derive new upper bounds on the time needed to cluster all
the nodes.

In the following we will argue that the local election algorithm of [33] can be
extended to elect nodes which are centers of disjoint balls of radius k ≥ 2. Our LEk

algorithm is then used as a sub-procedure in algorithm ELECT_PART in order to
construct the basic partition. These algorithms are described in next paragraphs.

6.2 Algorithm ELECT_PART

Algorithm ELECT_PART is depicted in Fig. 8 below. It runs in many phases until
each node of the graph becomes part of a finished cluster. A phase of the algorithm is
executed in two stages.

In the first stage, we construct disjoint balls of radius at most k using algorithm
LEk depicted in Fig. 9. Algorithm LEk can be viewed as a variant of algorithm
DIST_PART. It works in at most k rounds. At each round, a node applies the ex-
ploration rule and tries to add a new layer. If the exploration is not successful, then
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Fig. 9 Algorithm LEk : code for
a cluster

1: Round ← 0;
2: while Round < k do
3: execute the Exploration Rule;
4: Round ← Round + 1;
5: if Non Success of the Exploration Rule then
6: execute the Battle Rule;
7: end if
8: end while

the node executes the battle rule as in algorithm DIST_PART. Note however that
whenever the exploration is successful then the new explored layer is added even if
it does not satisfy the sparsity condition. At the end of algorithm LEk , some nodes
will succeed growing a cluster up to some distance t ≤ k. Nevertheless, some layers
of those clusters may not verify the sparsity condition.

The second stage allows us to compute finished clusters and to re-initialize the
computations for a new phase. In fact, each cluster in the input of the second phase
computes independently whether there is a layer that does not satisfy the sparsity con-
dition (Step 2.a). This can be done distributively using convergecast and broadcast
between the root and the leaves. If there exists a layer j violating the sparsity con-
dition then the cluster rejects all layers l ≥ j and declares itself finished (Steps 2.b

and 2.c). Otherwise, if all its neighbors are finished then the cluster declares itself
finished (Step 2.d). This is because the cluster will not be able to grow any more.
Finally, the remaining clusters are broken into singleton clusters in order to run a new
phase (Step 2.e).

Remark 13 Algorithm LEk grows balls of radius k whereas a radius k − 1 suffices.
This allows us to mark edges connecting a cluster with the nodes in the last rejected
layer and we avoiding the preferred edge election step needed for some applications.
This step is discussed in Sect. 7.

6.3 Analysis of the Algorithm

In this section, we compute a bound of the expected number of phases needed before
algorithm ELECT_PART terminates. The main idea of our analysis is to bound the
number of nodes becoming part of a finished cluster in a phase, by using the number
of clusters constructed in parallel in each phase.

In the sequel, we say that a node is locally k-elected if it succeeds the first stage
of algorithm ELECT_PART without losing against any other cluster, i.e., line 6 of
algorithm LEk is never executed by a locally k-elected node. We also use a parameter
K such that: ∀v ∈ V , N2k(v) ≤ K , where N2k(v) = {u ∈ V | d(u, v) ≤ 2k}, i.e., K is
an upper bound of the 2k-neighborhood of any node.

It is not difficult to show that the probability that a node v is locally k-elected in a
given phase is �(1/N2k(v)). On the other hand, if we denote by X the random vari-
able which counts the number of locally k-elected nodes, then X can be written as
the sum of n random variables Xv (for each v ∈ V ) such that Xv = 1 with probability
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q = �(1/N2k(v)) and 0 with probability 1 − q . Hence, by the linearity of the expec-
tation, we obtain E(X) = ∑

v∈V −Vf
q . Thus, the following lemma is straightforward:

Lemma 4 The expected number of nodes locally k-elected in a phase is lower

bounded by �(
|V −Vf |

K
).

Theorem 7 Let T be the time complexity of algorithm ELECT_PART. The expected
value of T satisfies:

E(T ) = O

(

k2 log(n)

log( K
K−1 )

)

Proof Let i ≥ 0 be a phase of the algorithm and (Gi)i≥0 the sequence of graphs
such that G0 = G and for all i ≥ 1, Gi is the graph obtained by removing the nodes
(and the corresponding incident edges) belonging to a finished cluster from Gi−1.
Obviously, Gi is the input graph of phase i.

Let Xi be the random variable which denotes the size of the graph Gi (the number
of its nodes) for all i ≥ 0, and let Yi be the number of nodes locally k-elected in the
ith phase. It is clear from Lemma 4 that we have the following inequality:

E(Yi | Gi) ≥ X(Gi)/K

It is also easy to see that Xi+1 ≤ Xi − Yi for all i ≥ 0. Thus,

E(Xi+1 | Gi) ≤ Xi − E(Yi | Gi) ≤ Xi ·
(

1 − 1

K

)

For i ≥ 0, we define a new r.v. Zi by Zi = Xi/(1 − 1
K

)i . Then, E(Zi+1 | Gi) ≤ Zi .
Thus, the r.v. Zi is a super-martingale (see [43]), and then

E(Zi+1) = E(E(Zi+1 | Gi)) ≤ E(Zi)

A direct application of a theorem from [43, Chap. 9], yields E(Zi) ≤ Z0 = n. Thus

E(Xi) =
(

1 − 1

K

)i

E(Zi) ≤ n

(

1 − 1

K

)i

.

The algorithm terminates when Vf = V , i.e., Xi = 1. This implies that i is upper
bounded by the ratio log(n)/ log( K

K−1 ). Since both the first and the second stage of

the algorithm take at most O(k2) time to be finished, the assertion in the theorem is
proved. �

Remark 14 The bound given by Theorem 7 does not take into account the size of the
finished clusters at each phase but only the number of clusters constructed in parallel.
Furthermore, the number of clusters constructed in parallel is just lower bounded
using the variable K which corresponds to the initial graph G and not to the subgraph
in the input of each phase. It would be very interesting to take all this features into
account in order to get a better bound on the number of phases needed to terminate
algorithm ELECT_PART.
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6.4 Improvements

In algorithm ELECT_PART, sparse nodes also participate in the computations and
compete against other nodes in order to grow a ball. This slows down the construction
because an elected sparse node will always form a finished singleton cluster. Thus,
we can improve algorithm ELECT_PART by allowing only dense nodes to compete
in order to grow a ball of radius k.

Similarly to algorithm FAST_PART, we let a dense node win against a sparse one
using a couple (Id,Dense). In other words, we prohibit that a sparse node stops the
growth of a dense cluster. We also let a sparse node declare itself finished if it is not
invaded by any neighboring cluster, i.e., if dense neighbors lose their explorations or
if all neighbors are sparse.

By considering the number of dense nodes at each phase and using the same ar-
guments than in Theorem 7, we can find a bound on the expected number of phases
needed to terminate the construction. Unfortunately, the theoretical analysis leads to
the same bound than in Theorem 7. It is also easy (using the same reasoning than
in Theorem 6) to prove that the complexity of the modified algorithm is bounded by
O(k2�).

This new modified version of algorithm ELECT_PART is particularly interesting
because it has a sublinear time complexity for general graphs, and at the same time,
it allows us to express the high degree of parallelism of our method. For instance,
consider a graph G such that K = O(nε) with ε < 1. This defines a large class of
graphs for which we can achieve an improved time complexity, namely O(log(n)nε).

In Appendix B, we show that the expected running time of the modified algorithm
is O(log(n)) in the case of Circulant graphs.

7 Application to Graph Spanners

In this section, we show how to efficiently construct graph spanner in the C O N G E S T
distributed model using our previous algorithms. A subgraph H is an (α,β)-spanner
of a graph G if H is a spanning subgraph of G and dH (u, v) ≤ α · dG(u, v) + β for
all nodes u,v of G, where dX(u, v) denotes the distance from u to v in the graph X.
The couple (α,β) is called the stretch of H , and the size of H is the number of its
edges.

One immediate application of algorithm BASIC_PART is the construction of a
(4k − 3,0)-spanner with O(n1+1/k) edges for any n-node graph G. The spanner is
obtained by considering the set of edges spanning each cluster and by selecting an
inter-cluster edge for each pair of two neighboring clusters. The bounds on the stretch
and the size of the spanner are a straightforward consequence of Theorem 1. In order
to construct such a spanner distributively, we must first construct the basic partition,
and second select an edge between every two neighboring clusters. However, we
can both avoid this additional step of selecting preferred edges and at the same time
improve the bound on the spanner size.

In fact, let us consider any cluster C under construction in algorithm DIST_PART.
Before the construction of C is finished (just after the sparsity condition is no longer
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satisfied) and for every neighboring vertex u of C (u is on the last rejected layer
of C), we select an edge from u to some v in the last layer of C and we add it to the
spanner S. Moreover, we add the BFS spanning tree of each cluster C to the spanner
S. It is well known that this idea allows us to construct a (2k − 1,0)-spanner with
O(n1/k) edges. This idea is in fact attributed to [27] in [36, Exercise 3, p. 188] and is
used in [22] as a first step to construct (1+ ε, β)-spanners. The same idea is also used
in [34] to improve the complexity of synchronizers γ1 and γ2. The time complexity
of the algorithms used in [34, 36] is O(n) and it has not been improved since.

We remark that the last rejected layer is always explored in all the distributed
algorithms described in previous sections. Hence, the edges connecting a cluster with
nodes in the last rejected layer are implicitly computed by our algorithms without any
extra communications. Hence, by the previous discussion, the following results are
straightforward:

Theorem 8 There is a deterministic distributed algorithm that given a graph with
n nodes and a fixed integer k ≥ 1, constructs a (2k − 1,0)-spanner with O(n1+1/k)

edges in O(n1−1/k) time using messages of length O(logn).

Corollary 1 There is a deterministic algorithm that given a graph with n nodes con-
structs a (3,0)-spanner with O(n3/2) edges in O(

√
n) time using messages of length

O(logn).

One can find many papers concerning the construction of graph spanners. In [38,
39, 44], the reader can find excellent and recent reviews on graph spanners.

To our knowledge Theorem 8 provides the best time complexity for constructing
(2k−1,0)-spanners with O(n1+1/k) edges in a deterministic manner and using small
messages. The fastest deterministic algorithm was given very recently in [20]. It con-
structs (2k − 1,0)-spanners with O(kn1+1/k) edges in O(k) time using messages of
polynomial size. Fast randomized algorithms using small messages exist. The best
one is due to Baswana et al. [11, 12]. The authors there gave a (Las-Vegas) random-
ized algorithm that computes a (2k − 1,0)-spanner with expected size O(kn1+1/k)

in O(k) time using O(log(n)) size messages. As mentioned in [9], a randomized so-
lution might not be acceptable in some cases, especially for distributed computing
applications. In the case of graph spanners, deterministic algorithms that guarantee a
high quality spanner are more than of a theoretical interest. Indeed, one cannot just
run a randomized distributed algorithm several times to guarantee a good spanner,
since it is impossible to check efficiently the global quality of the spanner in the
distributed model.

8 Open Questions

In this paper, we focus on the time complexity of constructing sparse partitions in the
practical C O N G E S T distributed model. One important motivation of our work is to
understand and to study the effects of the congestion created by small messages into
the overall time complexity of a distributed algorithm.

We left open the following questions:
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1. Can we improve the time complexity of our algorithms from n1−1/k to n1/k in
the C O N G E S T model? In particular, we remark that, in the case of small k

(2,3,4,5), the locality level of the basic partition and the time complexity bound
obtained using our technique are better than the bounds one can obtain by both
assuming a more powerful distributed model, i.e., unlimited message size, and us-
ing techniques from [9]. This observation is intriguing and one can be interested
in a lower bound on the time complexity of distributively computing the basic
partition. Although, the case k = 2 seems hard to improve, we are optimistic that
deterministic algorithms with better bounds exist for other values of k.

2. We have studied the sparse partition problem from a locality point of view. In other
words, we only consider the problem of improving the time complexity. Can we
improve the message complexity of our algorithms while maintaining the same
time complexity?

Appendix A: Application to Neighborhood Covers and Network Synchronizers

Neighborhood covers can be thought as a generalization of the basic partition. In
fact, for any positive integer ρ, a ρ-neighborhood cover of a graph G can be defined
as a collection of clusters C = ∪C such that for every v ∈ V , there exists a cluster
C ∈ C such that Nρ(v) ⊆ C where Nρ(v) = {u ∈ V | d(u, v) ≤ ρ} denotes the ρ-
neighborhood of node v in the graph G. Hence, the basic partition described before
is a 0-neighborhood cover of G having a low average degree, namely O(n1/k). In Pe-
leg’s book [36, Chap. 12], one can find a survey on different types of covers obtained
on the basis on the basic partition algorithm. In particular, given an initial cover S , it is
shown in [36] how to extend algorithm BASIC_PART to construct a coarsening cover
T of S , that is a cover that subsumed S . By taking S = ⋃

v∈V Nρ(v), it can be shown
that a ρ-neighborhood cover with radius O(k ·ρ) and average degree O(n1/k) can be
constructed on the basis of algorithm BASIC_PART (the proof is by Theorem 12.2.1
of [36]). This type of neighborhood covers is also used in [34] as an auxiliary com-
munication structure to design network synchronizers. More specifically, the authors
in [34] described a distributed 1-neighborhood cover algorithm that is used to design
a new efficient synchronizer. Based on the extended construction of [36], it is not dif-
ficult to extend our basic partition distributed algorithms to construct ρ-neighborhood
covers distributively. Since we are mainly interested in the application of covers in
the design of network synchronizers, we will briefly outline the modifications to be
done to obtain the ρ-neighborhood cover used in [34]. Extending our technique for
any ρ is left as an exercise.

A.1 Distributed Construction of 1-Neighborhood Covers

In this section, we extend algorithm DIST_PART in order to cover the 1-neighborhood
of each node. We use the same distributed techniques to manage cluster growth. How-
ever, we make a cluster explore two layers at the same time instead of only one. At
each new exploration, each cluster fights to maintain two layers li and li+1 with i the
radius of the cluster. The first layer li allows the cluster to compute the sparsity con-
dition (the same one than in algorithm DIST_PART). The second layer li+1 (which is
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the last explored layer) guarantees that the neighborhoods of all nodes in layer li are
in the current cluster. There are mainly five important modifications to do:

1. At the beginning of the algorithm, all nodes are orphans. An orphan node first
explores two consecutive layers before starting computing the sparsity condition.

2. If the sparsity condition is satisfied for layer li , then a cluster begins a new explo-
ration, i.e., the leaves in layer li+1 try to invade new nodes. If the new exploration
succeeds, then layer li+1 becomes layer li′=i+1 and the new explored layer be-
comes the new li′+1 layer.

3. If the sparsity condition for layer li is not satisfied, then the construction of the
cluster is finished. The finished cluster contains not only all layers lj<i but also
the two layers li and li+1. Nevertheless, only nodes in layers lj<i are in a final
state. The 1-neighborhoods of all nodes in layer li are covered by the finished
cluster but they do not stop computing yet. In fact, the 1-neighborhoods of nodes
in layer li+1 may not be covered by a cluster. Hence, nodes in layer li become
orphan clusters with identity −∞ in order to allow other clusters to grow and
cover the neighborhoods of nodes in layer li+1. On the other side, nodes in layer
li+1 become orphan clusters with their initial identifiers and continue competing
in order to grow new clusters.

4. If a new exploration fails, i.e., there is a cluster at distance 1 or 2 (from layer li+1)
with a bigger identifier, then:

– either the winner lost against another neighboring cluster and the current cluster
is not invaded. Hence, the cluster simply retries a new exploration.

– or the current cluster is invaded and the cluster loses its last layer li+1. Hence,
invaded nodes in layer li+1 become part of the last layer liwin+1 of the winner
cluster. Nodes in layer li+1 which have not been invaded become orphan nodes
and begin a new exploration using their own identifiers. Layer li becomes the
last layer li′+1=i and layer li−1 becomes layer li′=i−1. Then the cluster begins
a new exploration once again.

5. When the construction of a cluster is finished, nodes at distance at least 2 from the
border of the cluster, i.e., layers lj≤i−1, switch to final states. In fact, layer li−1
of a finished cluster acts as a barrier that protects the finished cluster from future
invasions. Layers lj≤i−1 are usually called the Kernel of the cluster.

It is easy to see that the time and message complexity of the extended algorithm
increases by only a constant factor due to the computation of the extra layer li+1.
Notice also that it is not difficult to adapt the techniques of algorithms FAST_PART

and ELECT_PART in order to obtain sublinear time complexity.

An Example of Cluster Growth In Fig. 10, we give an example of how the cover is
constructed. In our example, there are four active clusters: 1, 2, 3 and 4 with identities
Id1 > Id2 > Id3 > Id4. We suppose that there is a finished cluster in the neighborhood
of cluster 1.

The nodes in layer li of the finished cluster (first part of Fig. 10) still participate in
the computation with identity −∞, all the nodes in the Kernel of the finished cluster
are in a final state. There is also a node in layer li+1 of the finished cluster which
belongs to layer li+1 of cluster 1.
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Suppose that the layers li of the active clusters satisfy the sparsity condition, then
these clusters will try to grow. Cluster 2 cannot grow because cluster 1 is at distance
two of it and has a bigger identity. Cluster 1 will invade both clusters 3 and 4. Clus-
ter 4 is orphan and it simply joins the last layer of cluster 1. Cluster 3 will lose its last
layer li+1. The invaded nodes of cluster 3 join cluster 1 and the other nodes which
have not been invaded become orphan clusters (second part of Fig. 10). Note also
that the node with identity −∞ in the finished cluster is invaded by cluster 1. This
guarantees that the neighborhood of the children of the (−∞)-node in the finished
cluster is covered by cluster 1.

Once the new exploration is finished, cluster 1 verifies the sparsity condition. If it
is satisfied, a new exploration will begin and clusters 2 and 3 will be invaded. Note
that nodes in the Kernel of the finished cluster will not be invaded by cluster 1. If
the sparsity condition is not satisfied which is the case in the third part of Fig. 10,
the construction of cluster 1 is finished. The nodes in layer li′ become orphans with
identity −∞. The nodes in layer li′+1 become orphan nodes except those which are
already in layer li of another finished cluster (those whose neighborhoods are cov-
ered). Note that the two finished clusters we have constructed overlap (they have a
common edge).

A.2 Application to Network Synchronizers

The basic partition and the 1-neighborhood covers constructed in previous sections
are of special interest for designing network synchronizers γ , γ1 and γ2 [34]. In the
following, we review the basic properties of these synchronizers.

Background Network synchronizers allow us to transform a synchronous algorithm
into an asynchronous one. In general, one prefers to design a distributed algorithm
in a synchronous model rather than an asynchronous model which is typically harder
to grasp and to analyze [36, Chap. 6]. From a practical point of view, network syn-
chronizers provide a uniform methodology for transforming synchronous distributed
algorithms into asynchronous ones.

Generally speaking, the basic idea of network synchronizers is to simulate a global
clock by using local pulse generators. If the local clock pulse of some node v is equal
to p, then node v knows that the messages that it has sent at pulse p −1 have reached
their destinations. Many simulation techniques were developed in order to guarantee
this property:

1. The first basic technique is known as synchronizer α. The general idea of synchro-
nizer α is to send an acknowledgment corresponding to each received message of
the original synchronous algorithm. Once, a node receives an acknowledgment of
all the original messages corresponding to one pulse, the node informs its neigh-
bors and then it generates the next pulse. This technique leads to an overhead of
O(|E|) messages in order to simulate a pulse. Assuming that a message delay is
at most O(1) (this is only for performance analysis), it also leads to the theoretical
O(1) time overhead per pulse.

2. The second basic technique called synchronizer β assumes a precomputed rooted
BFS spanning tree T of G. Only the root of T have a pulse generator which
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Fig. 10 An example of a cluster expansion for cover needed for γ2

controls all other nodes. In fact, once a node u receives the acknowledgments of
the messages it has sent, the node u is ready for the next pulse and it informs
its parent in the tree T . The parents forward this information until it reaches the
root of T . Once the root learns that all the nodes are ready for the next pulse, it
broadcasts a message saying “it is time for the next pulse”! Thus, synchronizer β

implies an overhead of O(|V |) messages and O(D) time per pulse, where D is
the diameter of G.

3. The third technique is an intermediate technique which provides a good time-
message trade-offs. This technique implies three synchronizers γ , γ1 and γ2 [34].
All of these three synchronizers use sparse covers. More precisely, synchronizer
γ uses the basic partition as an auxiliary communication structure. Synchronizer
γ1 uses a cover based on the basic partition where each edge belongs to at least
one cluster. This property is easily obtained by our partition algorithms by simply
marking the last rejected layer as part of the cluster. Finally, synchronizer γ2 uses
the 1-neighborhood cover described in the previous section.

A detailed description of synchronizers γ , γ1 and γ2 can be found in [34]. In
the following, we just outline the basic ideas used in synchronizer γ (the two other
synchronizers are based on the same general ideas). First, we assume the following:
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1. A partition C of G is constructed.
2. A rooted BFS spanning tree TC for each cluster C ∈ C is constructed.
3. A set I of intercluster edges is selected.

To simulate a pulse, we combine the techniques of synchronizers α and β .
Roughly speaking, the root of each tree TC first waits to learn that the nodes in C

are ready for the next pulse (which costs O(|C|) messages and O(Rad(C)) time for
each cluster). Then, the cluster tries to synchronize with its neighbors using the in-
tercluster edges. More precisely, the root of C broadcasts a notification message all
along the tree TC saying that all the nodes in its cluster are ready. When the leaves
of TC receive the notification message, they forward it to neighboring clusters using
the selected intercluster edges (which costs O(|I|) message and O(1) time). Sym-
metrically, the leaves receive a notification from their neighboring clusters. When
receiving such a notification, they send it back to their root. Once the root receives
the notification messages of its neighbors, it sends a message to the nodes in its clus-
ter saying “it is time for the next pulse”. Thus, the global overhead is O(n + |I|)
messages and O(Rad(C)) time per pulse.

Thus, if we take the basic partition as a communication structure, then the global
overhead is O(n1+1/k) messages and O(k) time per pulse which gives a good com-
promise compared to synchronizer α and β .

Contribution The previous overhead is essentially optimal according to Lem-
ma 25.1.7 in Peleg’s book [36]. Synchronizers γ , γ1 and γ2 have the same perfor-
mances up to a constant factor. Hence, one remaining challenge is to improve the
pre-processing step of constructing the required covers. Using our algorithms, the
time complexity of this pre-processing step is reduced from O(n) in previous imple-
mentations to O(n1−1/k).

Appendix B: Case Study: Circulant Graphs

In this section, we study the efficiency of algorithms FAST_PART and algorithm
ELECT_PART in the case of Circulant Graphs. In fact, Circulant Graphs are dense
enough to be interesting for the algorithm we are studying. They have enough large
diameter in order to let the analysis non trivial and constructive. In addition, the analy-
sis given here is interesting from a theoretical point of view. In particular, the proof
of Theorem 12 below illustrate the improvements discussed in Sect. 6.4. The reader
should also note that this class of graphs was studied in many past works and for
different purposes. For instance, it is used in [16] as a basis for the construction of
graphs having the small-world property.

Definition 1 A circulant graph Cirn(L) is a graph of n nodes {1,2, . . . , n} in which
a vertex i is adjacent to nodes (i − j) and (i + j) for each i and j in the list L (see
Fig. 11 for an example).

Definition 2 For every parameter ε such that 0 < ε ≤ 1, we define the graph Cirε
n to

be the circulant graph Cirn(1,2, . . . , �nε

2 �).
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Fig. 11 An Example of
Cirn(L) graphs with n=8 and
L ∈ {{1}, {1,2}, {1,2,3}}

In the sequel, we suppose that ε > 1
k

. In fact, if ε ≤ 1
k

then the graph is already
sparse and all our algorithms terminate in O(1) rounds.

Theorem 9 For k < log(n) and for every graph Cirε
n , the time complexity of algo-

rithm FAST_PART is bounded by O(n1−ε).

Proof For k < log(n), any constructed cluster has radius at most 1. It can also be
shown that � ≤ 2 n

nε = O(n1−ε). Thus, the theorem follows as a consequence of
Theorem 6. �

Theorem 10 Let T be the time complexity of algorithm ELECT_PART. Then, for
every graph Cirε

n, the expected value of T satisfies:

E(T ) = O(k3 log(n) nε)

Proof For any graph Cirε
n, it is easy to show that K = 2k nε (we recall that K is an

upper bound of the 2k-neighborhood of any node). Thus, log(1− 1
K

) ≤ − 1
K

= − 1
2knε

and the result follows immediately from Theorem 7. �

The two Theorems 9 and 10 are immediate consequences of the analysis we have
already made for algorithms SYNC_PART and ELECT_PART. In particular, we obtain

a time complexity which is better than O(n1− 1
k ). Nevertheless, using a more careful

analysis, we obtain the following bounds:

Theorem 11 For every graph Cirε
n , the expected time complexity T of algorithm

ELECT_PART satisfies:

E(T ) = O
(
k3 log(n) + kn

1
k
)

Theorem 12 Using the improved version of algorithm ELECT_PART described in
Sect. 6.4, the expected time complexity T of algorithm ELECT_PART satisfies:

E(T ) = O(k3 log(n))

Proof We prove the previous two theorems in two parts. The first part is common to
the two theorems. The technical arguments are similar to those in the analysis made
in Theorem 7 but the reasoning is different.
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First Part of the Proof Let i ≥ 0 be a phase of algorithm ELECT_PART and (Gi)i≥0

be the sequence of graphs such that G0 = G and for all i ≥ 1, Gi is the graph obtained
by removing the nodes belonging to a finished cluster from Gi−1.
Let Vi be the set of nodes having a degree higher than �nε

2 � in phase i. Let Xi be the
random variable which denotes the number of nodes in Vi , and let Yi be the number
of nodes from Vi which are locally k-elected in the ith step. The following inequality
holds:

E(Yi | Gi) ≥ Xi

K
.

One can show that if the node v belongs to Vi , then every active neighbor w of v

is also in Vi . Hence, we can state the following:

E(Xi+1 | Gi) ≤ Xi − E(Yi | Gi)
nε

2

≤ Xi

(

1 − nε

2K

)

≤ Xi

(

1 − 1

2 · 2k

)

.

By induction and using the same arguments as in Theorem 7, the expected time
such that Xi = 1 is bounded by:

O

(

k2 log(n)

log( 4k
4k−1 )

)

.

Let us consider the time after which all nodes in the graph have a degree less
than �nε

2 � (i.e., the time such that Vi = 0). One can show that the remaining nodes
are grouped in many connected fragments that can be divided in two types: dense

components with more than n
1
k nodes and sparse components with no more than

n
1
k nodes. All theses components are disjoint and do not share any node. Thus, the

algorithm runs independently on each component.

Let us consider a dense component Cd (i.e., n
1
k < |Cd | < �nε

2 �). In one phase,
there will be exactly one elected node in Cd and the finished cluster constructed
around this node will contain the whole component Cd . Thus, in O(k) time, all nodes
in Cd become finished.

Second Part of the Proof of Theorem 11 Let us consider a sparse component Cs

(i.e., |Cs | ≤ n
1
k ). The nodes of such a component have a degree less than n

1
k . At each

phase of algorithm ELECT_PART, there will be exactly one elected node in Cs which

forms a finished singleton cluster. Thus, we need at most O(n
1
k ) phases of O(k) time

units each before all nodes in Cs become finished.
To conclude, if Vi becomes empty then we need at most O(kn

1
k ) time units before

the algorithm terminates and Theorem 11 holds.
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Second Part of the Proof of Theorem 12 Let us consider a sparse component Cs ,

i.e., |Cs | ≤ n
1
k ). The nodes of such a component have a degree less then n

1
k . Thus,

using from the improvements of algorithm ELECT_PART in Sect. 6.4, these nodes
are allowed to be finished. Hence, in O(1) time, they all become finished singleton
clusters.

To conclude, if Vi becomes empty then we need at most O(k) time units before
the algorithm terminates and Theorem 12 holds. �
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1. Introduction

Among the numerous algorithms to broadcast in a synchronized setting, we are witnessing a new
tendency of distributed and randomized algorithms, also called gossip-based algorithms: at each
instant, any number of broadcasts can take place simultaneously and we do not give any priority to
any particular one. In each round, a node chooses a random neighbor and tries to exchange some
information. Due to the simplicity of gossip-based algorithm, such an approach provides reliability
and scalability. Contrary to deterministic schemes for which messages tend to route in a particular
subgraph (for instance a tree), a gossip-based algorithm can be fault-tolerant (or efficient for a
dynamic network) since in a strongly connected network, many paths can be used to transmit a
message to almost every node.
Themajority of results deal with the uniform random phone call for which a node chooses a neigh-

bor uniformly at random.However, such amodel does not take into account that a given node could
be “called” by many nodes simultaneously implying a potential congestion. A more embarrassing
situation is the one of the radio networks in which a node should be called simultaneously by a
unique neighbor otherwise the received messages are in collision. In the rendezvous model, every
node chooses a neighbor and if two neighbors choose themselves mutually, they can exchange some
information. The rendezvous model is useful if a physical meeting is needed to communicate as in
the case of robots network.
Although the rendezvous model can be used in different settings, we describe the problem of

broadcasting a message in a network of robots. A robot is an autonomous entity with a bounded
amount of memory having the capacity to perform some tasks and to communicate with other
entities by radio when they are geographically close. Examples of use of such robots are nu-
merous: exploration [1,7], navigation (see Survey of [17]), capture of an intruder [3], search for
information, help to handicapped people or rescue, cleaning of buildings, . . . The literature
contains many efficient algorithms for one robot and multiple robots are seen as a way to speed
up the algorithms. However, in a network of robots [4], the coordination of multiple robots
implies complex algorithms. Rendezvous between robots can be used in the following setting:
consider a set of robots distributed on a geometric environment. Even if two robots sharing a
region of navigation (called neighbors) might communicate, they should also be close enough.
It may happen that their own tasks do not give them the opportunity to meet (because their
routes are deterministic and never cross) or it may take a long time if they navigate at random. A
solution consists in deciding on a meeting point for each pair of neighbor robots. If two neighbors
are close to a given meeting point at the same time, they have a rendezvous and can
communicate.
Although there exist many algorithms to broadcast messages, we only deal with algorithms

working under a very weak assumption: each node or robot only knows its neighbors or its
own meeting points. This implies that the underlying topology is unknown. Depending on the
context, we might also be interested in anonymous networks in which the labeling of the nodes
(or history of the visited nodes) is not used. By anonymous, we mean that unique identities
are not available to distinguish nodes (processors) or edges (links). In a robot network, the
network can have two (or more) meeting points with the same label if the environment con-
tains two pairs of regions that do not overlap. The anonymous setting can be encountered in
dynamic, mobile or heterogeneous networks.
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1.1. Related works

How to broadcast efficiently a message with a very poor knowledge on the topology of an anon-
ymous network ? Depending on the context, this problem is related to the way a “rumor” or an
“epidemic” spreads in a graph. In the literature, a node is contaminated if it knows the rumor.
The broadcast algorithm highly depends on the communication model. For instance, in the k-ports
model, a node can send a message to at most k neighbors. Thus, our rendezvous model is a 1-port
model.
The performance of a broadcast algorithm is measured by the time required to contaminate all

the nodes, the amount of memory stored at each node or the total number of messages. In this ar-
ticle, we analyze the time complexity in a synchronous setting of a rendezvous algorithm (although
several broadcast algorithms including ours can work in an asynchronous setting, the theoretical
time complexity is usually analyzed in a synchronous model).
Many broadcast algorithms exist (see the survey by Hedetniemi et al. [9]) but few of them are

related to ourmodel. The closest model is the one of Feige et al. [8]. The authors prove general lower
and upper bounds (log2 n and O(n ln n)) on the time to broadcast a message with high probability1

in any unknown graph. A contaminated node chooses a neighbor uniformly at random but no
rendezvous are needed. In our model, the time complexity increases since a rendezvous has to be
obtained to communicate. For a family of small-world graphs and other models (2-ports model
but a node can only transmit a given message a bounded number of times), Comellas et al. [6]
showed that a broadcast can always be done. A recent work of Karp et al. [11] deals with the random
phone call model. In each round, each node u chooses another node v uniformly at random (more
or less as in [8]) but the transmission of a rumor is done either from the caller to the called node
(push transmission algorithm) or from the called node to the caller (pull transmission algorithm). The
underlying topology is the complete graph and they prove that any rumor broadcasted in O(ln n)
rounds needs to send ω(n) messages on expectation.
However, the results of random call phone [8,11] do not imply the presented results in the rendez-

vous model:

• The classes of graphs for which the broadcast runs fast or slow are different in the rendez-
vous model and in the random phone call model. For instance, the lower bound is �(ln(n)) in
both models. Now, consider the complete graph, its broadcast time O(n ln(n)) is close to the
lower bound in the random phone call model whereas it becomes �(n ln(n)) in the rendezvous
model.

• We deal with the expected broadcast time. Depending on the topology, this time can be either
equal or different to the broadcast time with high probability.

In the radio network setting (n-ports model), some algorithms and bounds exist whether the to-
pology is known or unknown (see the survey of Chlebus [5]). However, themodel of communication
is different from ours: simultaneously, a node can send a message to all of its neighbors and a node
can receive a message if and only if a unique neighbor send a message. Two kinds of algorithms are

1 High probability means with probability 1−O(n−c) for some positive constant c.
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proposed in the radio model: with or without collision detection. In our model, there is no problem
of collision.
Rendezvous in a broadcast protocol are used in applications like Dynamic Host Configuration

Protocol but to the best of our knowledge, the analysis of a randomized rendezvous algorithm to
broadcast in a network is new. The random rendezvous model was introduced in [15] in which the
authors compute the expected number of rendezvous per round in a randomized algorithm. Their
algorithm is a solution to implement synchronous message passing in an anonymous network that
passes messages asynchronously [18]. Many concurrent programming languages including CSP and
Ada use this method to define a communication between pairs of asynchronous processes. Angluin
[2] proved that there is no deterministic algorithm for this problem (see the paper of Lynch [12]
containing many problems having no deterministic solutions in distributed computing) . In [16], the
rendezvous are used to elect randomly a leader in an anonymous graph.

1.2. The model

Let G = (V ,E) be a connected and undirected graph of n vertices and m edges. For convenience
and with respect to the problem of spreading an epidemic, a vertex is contaminated if it has received
the message sent by an initial vertex v0.
The model can be implemented in a fully distributed way. The complexity analysis, however

based on the concept of rounds, is commonly used in similar studies [8,15,16]. In our article, a round
is the following sequence:

• for each v ∈ V , choose uniformly at random an incident edge;
• if an edge (vi, vj) has been chosen by vi and vj , there is a rendezvous;
• if there is a rendezvous and if only vi is contaminated, then vj becomes contaminated.

TG is the broadcast time or contamination time, that is the number of rounds until all vertices of
graph G are contaminated. TG is an integer-valued random variable; in this paper, we concentrate
the study on its expectation E(TG).
Some remarks can be made on our model. As explained in Section 1, the rendezvous process (the

first two steps of the round) keeps repeating forever and could be seen as a way of maintaining
connectivity. Several broadcasts can take place simultaneously and we do not give any priority to
any one of them, even if we study a broadcast starting from a given vertex v0.
We concentrate our effort on E(TG) and we do not require that the algorithm finds out when

the rumor sent by v0 has reached all the nodes. However, some hints can be given: we can stop the
broadcast algorithm (do not run the third step of the round) using a local control mechanism in
each node of the network: if identities of the nodes are available (non anonymous networks), each
node keeps into its memory a list of contaminated neighbors for each rumor and when this list
contains all the neighbors, the process may stop trying to contaminate them (with the same rumor).
If the network is anonymous and the number of nodes n is known, then it is possible to prove that
in O(n2 ln(n)) rounds with high probability, all the neighbors of a contaminated node know the
rumor.
In our algorithm, nodes of large degree and a large diameter increase the contamination time.

Taking two adjacent nodes vi and vj of degrees di and dj respectively, the expected number of rounds
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to contaminate vj from vi is didj . For instance, take two stars of n/2 leaves. Join each center by an
edge. In the rendezvousmodel, the expected broadcast time is�(n2)whereas in [8]’s model, it will be
�(n ln(n)) on expectation and with high probability. Starting from this example, E(TG) can easily
be upper bounded by O(n3) but we find a tighter upper bound.

1.3. Our results

Themain result of the paper is to prove in Section 2 that for any graphG, log2 n � E(TG) � O(n2).
More precisely, for any graphG of maximal degree�, E(TG) = O(�n). This main result is far from
obvious.
In Section 3, we show that there are some graphs for which the expected broadcast time asymp-

totically matches either the lower bound or the upper bound up to a constant factor. For instance,
for the complete balanced binary tree, E(TG) = O(log2 n) whereas E(TG) = �(n2) for the double
star graph (two identical stars joined by one edge). For graphs of bounded degree � and diameter
D, we also prove in Section 3 that E(TG) = O(D�2 ln�). This upper bound is tight since for�-ary
complete trees of diameter D, E(TG) = �(D�2 ln�). The complete graph was proved [15] to have
the least expected number of rendezvous per round; nevertheless, its expected broadcast time is
�(n ln n).

2. Arbitrary graphs

The first section presents some terminology and basic lemmas that are useful for the main results.

2.1. Generalities on the broadcast process

The rendezvous process induces a broadcast process, that is, for each nonnegative integer t, we
get a (random) set of vertices, Vt , which is the set of vertices that have been reached by the broad-
cast after t rounds. The sequence (Vt)t∈N is a homogeneous, increasing Markov process with state
space {U : ∅�U ⊂ V }. Any state U contains the initial vertex v0 and the subgraph induced by U is
connected. State V is its sole absorbing state; thus, for each graph G, this process reaches state V
(that is, the broadcast is complete) in finite expected time.
The transition probabilities for this Markov chain (Vk) depend on the rendezvous model.

Specifically, if U and U ′ are two nonempty subsets of V , the transition probability pU ,U ′ is 0
if U�U ′, and, if U ⊆ U ′, pU ,U ′ is the probability that, in a given round, U ′ − U is the set of
vertices not in U that have a rendezvous with a vertex in U . Thus, the loop probability pU ,U
is the probability that each vertex in U either has no rendezvous, or has one with another
vertex in U .
In the sequel, what we call the broadcast sequence is the sequence of distinct states visited by the

broadcast process between the initial state {v0} and the final absorbing state V . A possible broadcast
sequence is any sequence of states that has a positive probability of being the broadcast sequence;
this is any sequence X = (X1, . . . ,Xm) such that X1 = V0 = {v0}, Xm = V , and pXk ,Xk+1 > 0 for all k .
By du we denote the degree of vertex u. For a bounded degree graph,� is the maximal degree of

the graph. By D we denote the diameter of the graph.
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If Xk = Vt is the set of the k contaminated vertices at time t then Yk is the set of remaining vertices.
We define the cut Ck as the set of edges that have one endpoint in Xk and the other in Yk .
For any edge a = (u, v) ∈ E, P(a) = (dudv)

−1 (respectively, P(a)) is the probability that edge a
will obtain (respectively, not obtain) a rendezvous at a given round. The product (dudv)−1 is also
called the weight of the edge a.
We also define two values for any set of edges C ⊂ E : P(EC) (respectively, P(EC)) where EC is

the event of obtaining a rendezvous in a round for at least one edge (respectively, no edge) in C;
and  (C) = ∑

a∈C P(a). Since  (C) is the expected number of rendezvous in C , it is much easier to
deal with in computations. Obviously, P(EC) �  (C) holds for any C . Lemma 2 provides a lower
bound for P(EC) of the form �( (C)) provided  (C) is not too large.
With these notations, for any set of vertices U , pU ,U = 1− P(ECU ), where CU is the set of edges

that have exactly one endpoint in U (the cut defined by the partition (U , V − U)).

Lemma 1. Let C be any given subset of E. For any a ∈ E, we have P(a | EC) � P(a).

Proof. Partition C into C1 ∪ C2, where C1 = {e′ | e′ ∈ C , e′ incident to a} and C2 = C \ C1.
Then we have:

P(a | EC) = P(a | EC1 ∧ EC2)

= P(a∧EC1 |EC2 )
P(EC1 |EC2 )

.

Since P(EC1 | EC2) � 1, we have:

P(a | EC1 ∧ EC2) � P(a ∧ EC1 | EC2).
Once there is a rendezvous on the edge a, there will be no rendezvous on the edges of C1. So we
have:

P(a ∧ EC1 | EC2) = P(a | EC2),
yielding

P(a | EC1 ∧ EC2) � P(a | EC2).
The edge a being adjacent to none of the edges in C2, the fact that there is no rendezvous on this
edges does not affect the probability of a rendezvous on the edge a. Therefore:

P(a | EC1 ∧ EC2) � P(a).

Thus, for any a ∈ E \ C
P(a | EC) � P(a). �

Lemma 2. For any C ⊂ E, P(EC) � "min(1, (C)) with " = 1− e−1 where e = exp(1).
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Proof. Assume that at time t, we have Vt = Xk , that is k nodes are contaminated.
There is no new contaminated vertex (and hence |Vt+1| = k), if and only if there is no rendezvous

in C during one round. Let {e1, e2, · · · , el} denote the set of edges of C . Then
P(EC) = P(e1 ∧ e2 ∧ · · · ∧ el)

= P(e1)P(e2 | e1) · · ·P(el | e1 ∧ e2 ∧ · · · ∧ el−1)
= (1− P(e1))(1− P(e2 | e1)) · · · (1− P(el | e1 ∧ e2 ∧ · · · ∧ el−1)).

From Lemma 1, we have P(ei | e1 ∧ e2 ∧ · · · ∧ ei−1) � P(ei). Hence

P(EC) �
l∏
i=1
(1− P(ei))

and

P(EC) � 1−
l∏
i=1
(1− P(ei)).

Now, since 1− x � e−x, this becomes

P(EC) � 1−
l∏
i=1

e−P(ei) = 1− e− (C).

The function x �→ 1− e−x is increasing and concave, so that 1− e−x � min(", "x) = "min(1, x) (with
" = 1− e−1) holds for all x � 0. This proves the lemma. �
Corollary 3.

1

P(EC)
�

e

e − 1
max

(
1,

1
 (C)

)
�

e

e − 1

(
1+ 1

 (C)

)
. (1)

Lemma 4. For any graph G, any integer k and any p ∈ (0, 1), if P(TG > k) � p then E(TG)
� k/(1− p).

Proof. Cut the broadcast process into “segments” of k rounds, and consider the “broadcast-or-re-
set” process such that, at the beginning of each segment when the broadcast has not yet occurred,
the set of contaminated vertices is reset to the initial vertex. Let X be the index of the segment
in which the broadcast-or-reset process terminates. The hypothesis implies that X is geometrically
distributed with parameter at least 1− p , so that E(X) � 1/(1− p).
The broadcast-or-reset process cannot terminate before the broadcast process, so that TG � kX .

Taking expectations yields

E(TG) �
k

1− p
. (2)

Since the number of contaminated vertices can be at most doubled at each round, we have the
following trivial lower bound. �
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Theorem 5. For any graph G, TG � log2 n with probability 1.

2.2. The general upper bound

We will prove the following:

Theorem 6. For any connected graphG with n vertices and maximum degree�, the broadcast time TG
satisfies

E(TG) �
e

e − 1
(n− 1)(6�+ 1). (3)

The proof of this theorem is a bit involved; wewill sketch it before stating and proving a few lemmas.
The probability distribution for the full broadcast time TG is not known, but, when conditioned by

the sequence of states visited by the broadcast process, it becomes a sum of independent geometric
random variables, for which the parameters are known exactly (Lemma 7). Thus, the conditional
expectation of the broadcast time becomes the weight of some trajectory, which is defined as a sum
of weights for the visited states. Each individual weight is upper bounded by an expression that only
depends on individual rendezvous probabilities (Lemma 2 and Corollary 3), and then a uniform
upper bound is obtained for the conditional expectations (Lemma 9); this uniform upper bound
then straightforwardly translates into an upper bound for the (unconditional) expected broadcast
time.
The next lemma is stated in a more general setting than our broadcasting process.

Lemma 7. Let (Mt)t∈N be a homogeneous Markov chain with finite state space S and transition

probabilities (px,y)x,y∈S .
Let (Tk)k∈N denote the increasing sequence of stopping times defined by

T0 = 0

Tk+1 = inf{t > Tk : Mt /= MTk },

and let (M ′
k)k∈N be the “trajectory”chain defined by

M ′
k =

{
MTk if Tk < ∞,
M ′
k−1 if Tk = ∞.

Then, for any sequence x0, . . . , xN such that xk+1 /= xk and pxk ,xk+1 > 0 for 0 � k � N − 1, condi-
tioned on M ′

k = xk for 0 � k � N , T = (Tk+1 − Tk)0�k�N−1 is distributed as a vector of independent
geometric random variables with respective parameters 1− pxk ,xk .

Proof. The proof is straightforward. Let t = (t0, . . . , tN−1) be any vector of positive integers. The
event {T = t ∧M ′

k = xk , 0 � k � N } has probability

P(M0 = x0)

N−1∏
i=0

pti−1xi ,xi pxi ,xi+1 . (4)
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Summingover all possible vectors t , we get for the probability that the trajectorymatches x0, . . . , xN :

P(M ′
k = xk , 0 � k � N) = P(M0 = x0)

N−1∏
i=0

pxi ,xi+1
1− pxi ,xi

. (5)

Dividing (4) by (5) yields

P(T = t |M ′
k = xk , 0 � k � N) =

N−1∏
i=0

pti−1xi ,xi (1− pxi ,xi ), (6)

which is indeed the distribution of a vector of independent geometric variables with the claimed
parameters. �
Corollary 8.

Let V denote the trajectory of the loopless broadcast process (denoted M ′ in the statement of
Lemma 7). Let X = (X1, . . . ,Xm) be any possible broadcast sequence, and C = (C1, . . . ,Cm−1) the
corresponding sequence of cuts. Then

E(TG|V = X ) =
m−1∑
k=1

1

P(ECk )
.

Proof. Lemma 7 ensures that, conditioned on V = X , TG is distributed as the sum of indepen-
dent geometric random variablesG1, . . . ,Gm−1, whereGk has parameter 1− pXk ,Xk = P(ECk ), which
implies expectation 1/P(ECk ). Linearity of expectation yields the claim. �

Lemma 9. Define the weight of any possible broadcast sequence X as

w(X ) =
m−1∑
k=1

1
 (Ck)

. (7)

Then

w(X ) � 6(n− 1)�. (8)

Proof.We begin by noting that, since we are looking for a uniform upper bound on the weight, we
can assume that m = n, which is equivalent to |Xk | = k for all k (recall that in the slowest process,
we have at most one new vertex contaminated per round). If such is not the case in a sequence X ,
then we can obtain another possible sequenceX ′ with a higher weight by inserting an additional set
X ′ between any two consecutive sets Xk and Xk+1 such that |Xk+1 − Xk | � 2, with pXk ,X ′ and pX ′, Xk+1
meeting the condition that they are both positive; such an X ′ always exists, because each edge of
every graph has positive probability of being the only rendezvous edge in a given round. This will
just add a positive term to the weight of the sequence; thus, the sequence with the maximum weight
satisfies m = n.
To prove that

∑n−1
k=1 1/ (Ck) � 6(n− 1)�, we prove that the integer interval [1, n− 1] can be par-

titioned into a sequence of smaller intervals, such that, in each interval, the average value of 1/ (Ck)
is at most 6�.
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Assume that integers 1 to k − 1 have been thus partitioned, and let us consider Ck . If  (Ck) �
1/(4�) (that is, 1/ (Ck) � 4� < 6�), we put k into an interval by itself and move on to k + 1. We
now assume  (Ck) < 1/(4�), and set 1/ (Ck) = +� with + > 4.
Let v be the next vertex to be reached by the broadcast after Xk , that is, {v} = Xk+1 − Xk . This

vertex must have at least one neighbor u in Xk .
Let d � 1 denote the number of neighbors of v that are inXk . Each edge incident to v has weight at

least 1/(dv�), and d of them are in Ck , so that we have d/(dv�) �  (Ck) = 1/(+�), or equivalently,

d � dv/+. (9)

Thus, v ∈ Xk+1 has dv − d neighbors in Yk+1 = V − Xk+1. Since at most one of them is added to X
at each step of the sequence, this means that, for 0 � j � dv − d , Yk+1+j contains at least dv − d − j

neighbors of v. In other words, Ck+1+j contains at least dv − d − j edges that are incident to v, each
of which has weight at least 1/(dv�). Consequently,

1
 (Ck+1+j)

�
dv�

dv − d − j
(10)

holds for 0 � j � dv − d .
The right-hand side of (10) increases with j, and for j = �dv/4� (Eq. (9) and + > 4),

dv�

dv − d − �dv/4� � dv�

dv − 2�dv/4�
� dv�

�dv/2�
� 2�.

Summing (10) over 0 � j � �dv/4�, we obtain
�dv/4�∑
j=0

1
 (Ck + 1+ j)

� 2�
(
1+ dv

4

)
. (11)

Since dv � +, we also have 1/ (Ck) � dv�. Adding this to inequality (11), we now get

1
 (Ck)

+
∑

0�j��dv/4�

1
 (Ck + 1+ j)

� �

(
++ 2+ dv

2

)

� �

(
2+ 3dv

2

)
.

There are 2+ �dv/4� � 1+ dv
4 terms in the left-hand side of this inequality, so that the average value

of 1/ (Ci), when i ranges over [k , k + 1+ �dv/4�], is at most

�
2+ 3dv

2

1+ dv
4

� 6�. (12)

This concludes the recursion, and the proof. �
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Proof (Theorem 6).
Let X be any possible broadcast sequence as in Lemma 9. Applying Corollary 3 to C = Ck and

summing over k , we get

∑
k

1

P(ECk )
�

e

e − 1

(
n− 1+

∑
k

1
 (Ck)

)
. (13)

By Lemma 9, the right-hand side of (13) is at most

e

e − 1
(n− 1+ 6�(n− 1)) = e(n− 1)(6�+ 1)

e − 1
. (14)

ByLemma7, the left-hand side of (13) is the conditional expectation of TG . The upper bound remains
valid upon taking a convex linear combination, so that we get, as claimed,

E(TG) �
e(n− 1)(6�+ 1)

e − 1
. (15)

Note. It should be clear that the constants are not best possible, even with our method of proof.
They are, however, quite sufficient for our purpose, which is to obtain a uniform bound on the
expected broadcast time.
The complete characterization of the distribution of TG seems difficult and is left open. �

3. Specific graphs

Theorems 5 and 6 provide lower and upper bounds on the expected contamination time for any
graph. In this section, we prove that there exists some graphs for which the bounds can be attained.
The well-known coupon-collector problem (that is the number of trials required to obtain n

different coupons if each round one is chosen randomly and independently. See [14] for instance)
implies the next lemma:

Lemma 10. For a star S of n leaves, E(TS) = n ln n+O(n).

3.1. The l-star graphs

An l-star graph Sl is a graph built with a chain of l+ 2 vertices. Then, to each vertex different
from the extremities, �− 2 leaves are added. Let Sl be a l-star graphs with n = l(�− 1)+ 2 verti-
ces. According to Theorem 6, E(TSl) = O(�n) = O(n

2

l ). On the other hand, the expected number
of rounds to get a rendezvous between the centers of two adjacent stars is �2 and, therefore, the
expected number of rounds for contaminating all the centers is�(l�2) = �(n�). As a corollary to
this result we have

Proposition 11. There exists an infinite family F of graphs with n vertices and maximal degree� such
that, for any G ∈ F , E(TG) = �(�n).

It follows that the general upper bound O(n2) given by Theorem 6 is tight for the any l-star graph
with l � 2 constant.
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3.2. Matching the lower bound

To prove that the �(ln(n)) bound is tight, we prove an upper bound that only involves the
maximum degree � and the diameter D.

Theorem 12. Let G be any graph with maximum degree � � 3 and diameter D. Then the expected
broadcast time in G, starting from any vertex, is at most 4�2 (ln 2+ D + D ln�) .

Our proof of this theorem will make use of the following lemma.

Lemma 13. Fix a constant p > 0, and let Zk denote the sum of k independent geometric random vari-
ables with parameter p.

Then, for any t � k/p , we have

P(Zk > t) � exp

(
− tp

2

(
1− k

tp

)2)
.

Proof.We will use Hoeffding’s inequality, as recalled in [13], Theorem 2.3: if (Xi)1�i�t are indepen-
dent random variables such that 0 � Xi � 1 holds with probability 1 for each i, and X = ∑t

i=1 Xi
has expected value -, then, for every positive .,

P(X � (1− .)-) � exp

(
−.2-

2

)
. (16)

Let (Xi)i�1 be a sequence of independent Bernoulli trials, each one with probability of success p .
Since the index of the first success in such a sequence is geometric with parameter p , the index of
the k-th success in this sequence is distributed as Zk . Thus,

P(Zk > t) = P

(
t∑
i=1

Xi < k

)
. (17)

Here we have - = tp , so that the right-hand side of (17) is of the form P(X � (1− .)-) with
. = 1− k

tp , provided t � k/p . Applying (16) yields the claimed upper bound. �

Proof (Theorem 12). We prove that the probability for the broadcast time to exceed half of the
claimed bound is at most 1/2 and then use Lemma 4.
Let ube the initial vertex for the broadcast. For each other vertex v, pick a path /uv from u to vwith

length atmostD. Since all degrees are atmost�, each edge in/uv has a rendezvousprobability at least
1/�2. Hence, the broadcast time from u to v along the path /uv (that is, the time until the first edge has
a rendezvous, then the second edge, and so on) is distributed as the sum of independent geometric
random variables with parameters equal to the rendezvous probabilities, and is thus stochastically
dominated by the sum of D independent geometric random variables with parameter 1/�2.
Let Tuv denote the time until broadcast reaches v when the initial vertex is u; Lemma 13 and the

above discussion imply that, for any t,

P(Tuv > t) � e
− t

2�2

(
1−D�2

t

)2
. (18)
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Let n denote the number of vertices in G. Moore’s bound ensures that n− 1 � �D.
It is routine to check that, if t > 2�2(ln 2+ D + D ln�), then t(1− D�2/t)2 > 2�2(ln 2+ D ln�)

� 2�2 ln(2n− 2). Thus, for each of the n− 1 vertices v /= u, we get

P(Tuv > t) � e− ln(2n−2) = 1
2n− 2

, (19)

so that, summing over v, we get

P(Tu > t) �
1
2
. � (20)

Corollary 14.There exists an infinite family of graphsF such that, for anyG ∈ F ,E(TG) = O(ln(|V |)).
Proof. For any integers � � 3 and any h, the complete �-ary tree with diameter 2h has
�.(�− 1)h−1 > (�− 1)h leaves (which implies that ln |V | � h ln(�− 1)), and Theorem 12 states
that its expected broadcast time is no larger than

4�2 (ln 2+ 2h+ 2h ln�) < 8�2
(
1+ ln�

ln(�− 1)

)
ln |V | + 4�2 ln 2.

For any fixed � � 3, this is O(ln |V |). �

3.3. The complete graph

It seems also interesting to point out that the complete graph Kn has the minimal (see [15])
expected rendezvous number in a round:

E(NKn) =
(n
2

)
(n− 1)2

,

which is asymptotically 1
2 . We prove in this section that its expected broadcast time is however

O(n ln n), which is significantly shorter than that of the l-star graph with l constant which is �(n2).

Lemma 15. E(TKn) � 2"−1n ln n+O(n).

Proof.We bound the expected contamination time from above, by allowing at most one new con-
taminated vertex per round. In this new and pessimistic contamination process, we sum up the
expected time to increase the number of contaminated vertices by one:

E(TKn) �
n−1∑
k=1

1

P(ECk )
.

Since  (Ck) = k(n−k)
(n−1)2 < 1, we can apply Lemma 2 with P(ECk ) � " (Ck). It turns out that

E(TKn) � "−1(n− 1)2
n−1∑
k=1

1
k(n− k)

= "−1(n− 1)2
2

(n− 1)
Hn−1.
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Since Hn ∼ ln n+ 0.57721...+ o(1) we obtain E(TKn) � 2"−1(n− 1) ln (n− 1)+O(n). �
Moreover, we have:

Lemma 16.With probability 1− n−1/2, TKn � 1
2n ln n.

Proof. Let vt denote the number of contaminated vertices at round t. Then, we have

E(vt+1 | vt = k) = k

(
1+ n− k

(n− 1)2

)
and then

E(vt+1 | vt) = vt

(
1+ n− vt

(n− 1)2

)
= vt

(
1+ n

(n− 1)2

)
− v2t
(n− 1)2

� vt

(
1+ n

(n− 1)2

)
,

yielding

E(vt) �
(
1+ n

(n− 1)2

)t
.

For any + < 1 positive real value, we have (1+ n
(n−1)2 )

t � +n whenever t ln
(
1+ n

(n−1)2
)

� ln(+n). It

follows that if t < t0(n,+) = (ln n+ ln +)(n−1)
2

n then E(vt) � +n. By theMarkov inequality, we have

P(vt � n) = P(vt = n) �
E(vt)
n

� +.

By definition, vt = n if and only if TKn � t. Hence

P(TKn > t) � 1− +

and then using again the Markov inequality, we have

E(TKn) � tP(TKn > t) � (1− +)t.

With + = 1√
n
and t = t0(n,+), we obtain:

E(TKn) �
1
2
ln n

(n− 1)2

n

(
1− 1√

n

)
yielding

P

(
TKn �

1
2
ln n

(n− 1)2

n

)
� 1− 1√

n
,

i.e., with probability 1− n−1/2, we have

TKn �
1
2
n ln n. �

Lemmas 16 and 15 imply:

Proposition 17. E(TKn) = �(n ln n).
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3.4. �-regular balanced rooted trees with bounded diameter

Lemma 18. Let G be a�-regular balanced complete rooted tree of depth 2. The expected time for the
root to contaminate its children is �(�2 ln�).

Proof. This lemma is a variation of the coupon collector problem (See Lemma 10). Let v be the
root of tree. The probability of rendezvous in one round for vertex v is 1

� . Let Tk be the number of
rounds required for v to obtain a rendezvous with a new vertex knowing that k is the number of its
children already contaminated. This event occurs with probability �−k

�2
and implies E(Tk) = �2

�−k .
Hence, we have

E(Td ) =
�−1∑
k=0

E(Tk) =
�−1∑
k=0

�2

�− k
= �2

�∑
k=1

1
k

= �2H� = �(�2 ln�). �

Theorem 19. Let G be a�-regular balanced complete rooted tree of depth D/2 with D even. E(TG) =
�(D�2 ln�).

Proof. Suppose the broadcast starts from the root v0. Let us construct a path v0, v1, v2, . . . , vD/2 such
that vi is the last contaminated child of vi−1. Tvi denotes the number of rounds to contaminate vj
by its parent vi−1 once vi−1 is contaminated. Since TG �

∑D/2
i=1 Tvi and from Lemma 18, for every

1 � i � D/2, E(Tvi ) = �(�2 ln�), we have E(TG) �
∑D/2

i=1 E(Tvi ) = �(D�2 ln�). �
Theorem 19 proves that there exists a graph for which the upper bound of Theorem 12 is tight.
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Abstract

The compactness of a routing table is a complexity measure of the memory space needed to store
the routing table on a network whose nodes have been labelled by a consecutive range of integers. It is
defined as the smallest integerk such that, in every nodeu, every set of labels of destinations having
the same output in the table ofu can be represented as the union ofk intervals of consecutive labels.
While many works studied the compactness of deterministic routing tables, few of them tackled the
adaptive case when the output of the table, for each entry, must contain a fixed numberα of routing
directions. We prove that everyn-node network supports shortest path routing tables of compactness
at mostn/α for an adaptiveness parameterα, whereas we show a lower bound ofn/αO(1).
 2003 Elsevier B.V. All rights reserved.

Keywords:Compact routing tables; Adaptive routing; Interval routing

1. Introduction

1.1. Generalities

Given a parallel or distributed system, the interconnection network ensures the commu-
nication between the processors, the terminal nodes. Each intermediate node has a router, a
dedicated co-processor which forwards the messages between processors through the links
of the underlying topology. The routers run a distributed algorithm which specifies the
way to go from a node of the network to another. This algorithm is described by a routing
function.

Once a router receives a message, it looks at its header and checks the destination of the
message, and finds the output port that will be used to forward the message towards to next
intermediate node up to its destination. The output port is a number local to each router

* Corresponding author.
E-mail addresses:gavoille@labri.fr (C. Gavoille), zemmari@labri.fr (A. Zemmari).

1570-8667/$ – see front matter 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S1570-8667(03)00027-3



238 C. Gavoille, A. Zemmari / Journal of Discrete Algorithms 1 (2003) 237–254

and associated to each link between routers. A standard way to implement such algorithms
is to use arouting table. To find the output port, the router consults a table which is kept
in its local memory. For each destination, this table returns the output port number through
which the message can be forwarded.

A simple method to organize this table is to associate to each destination the output
port number which can serve it. This method is simple, but it is very memory expensive. It
requires O(n logd) bits to maintain the routing table in each node of degreed , wheren is
the number of nodes of the underlying graph representing the network.

For a large or growing network, this method is not feasible. It is interesting to look for
another method in order to reduce the size of the data structure stored by the routers, and
used for the routing task. In the field of compact routing, several methods and strategies
were introduced to reduce the router memory size, as separator-based routing schemes [13,
14], hierarchical routing schemes [2,25], prefix routing [3], Boolean routing [9], and inter-
val routing [27,30]. We focus our work on the latter technique that offers a more compact
data structure for routing tables.

1.2. The interval routing schemes

The interval routing was introduced by Santoro and Khatib in [27], and extended in [30]
by van Leeuwen and Tan. It has been intensively studied in recent years, and an overview
can be found in [16]. This method consists of finding a global labelling of the nodes
with integers taken from{1,2, . . . , n}, and, given a routing table, to group in the small-
est set of intervals the destination labels using the same output port in each node. An
interval means a set of consecutive integers, the labels 1 andn being considered as con-
secutive. If there exists a routing table such that each set of destination labels using a
same output port can be grouped with at mostk intervals, we deal with ak-interval
routing scheme for this network,k-IRS for short. Ak-IRS can be implemented with
O(kd logn) bits per node by storing the interval boundaries of the destinations. Actually,
this naive coding can be slightly compressed into O(kd log(n/k)) bits [16]. In a sense,
interval routing is a compact implementation of routing tables. One can hope to store
only O(k) integers per node for bounded degree networks usingk-IRS, whereas standard
routing tables require O(n) integers. The parameterk is calledcompactnessof a routing
table.

Many works try to determine routing tables with minimum compactness under several
assumptions on the quality of the routing measured in term of length of the routes: shortest
path routing [12,17,18,20], stretched routing [4,11,24], routing with bounded dilation [6,
15,22,24,28], etc. (cf. [16]). Nevertheless, these works have studied only the deterministic
case: for each source-destination pair, the routing table encodes only one routing path. So,
the routing path is completely determined by giving the intervals. On the contrary,adaptive
routing allows to diversify the routing paths. A destination can belongs to more than one
set of intervals. For interval routing schemes, this extension has been partially suggested
in [29].



C. Gavoille, A. Zemmari / Journal of Discrete Algorithms 1 (2003) 237–254 239

1.3. Adaptive routing tables

More precisely, let us define anα-adaptive routing tableas a routing table in which
every destination can be founded in each router for exactlyα different output ports, for
some integerα � 1. Similarly, anα-adaptivek-interval labelling scheme, or k-ILSα for
short, is anα-adaptive routing table for which the set of destination labels using the same
output port can be grouped into at mostk intervals. An ILSα is termedvalid if for every
source-destination pairu,v, with1 u �= v, there exists inu (and all the other intermediate
nodes)at least oneoutput port among theα possible ones that induces a route tov. A valid
ILSα is called anα-adaptive interval routing scheme, IRSα for short. Therefore, ak-IRSα
is simply anα-adaptive routing table of compactnessk.

The definition captures adaptiveness of a routing, since at each step the router can se-
lect the next edge of the route among2 α. This potentiality provides many routing paths,
but not necessarily entirely disjoint paths that would require some strong assumptions on
the edge-connectivity of the network. In this model some routes may loop. The router has
the guarantee that at least one route connects to the destination. The other paths are called
deflecting paths. They can be used depending on the load of the network, or on every other
parameters, in order to improved the traffic. The caseα = 1 corresponds to the determinis-
tic one (no deflecting paths).

Of course, in practice, for a complete implementation of a routing protocol, aselection
function must choose one output port among the valid set. The adaptiveness of a rout-
ing table of compactnessk implies to store in the router a total of O(kd log(n/k)) + |S|
bits of routing information, where|S| represents the number of bits needed to code the
selection functionS encoding the policy of the router. For instance, a kind of routing
policy may consist to choose at random a permutation of the possible paths returned by
the router if several3 messages come in the router at a same time (this occurs, for in-
stance, when the messages cannot be stored locally due to physical constraints of the
router). In this case|S| is just the size of a pseudo-random generator. A selection func-
tion may also provide some priority ordering between the routing paths. In this case it
requires to store extra bits, and|S| might be large. In particularS must differentiate
routing paths from deflecting paths. In all the cases, our approach consists in splitting
the memory requirements of the router in two parts: one required by the routing tables
(the term O(kd log(n/k))), and the other part required by the selection function (the
term |S|).

In this paper, we are not interested in the coding of the selecting functionS, but
rather in the parameterk, the compactness. This latter parameter depends on the graph
topology only, whereas the coding of the selection function may depend on the strat-
egy to optimize the traffic: the links can be chosen at random, or selected according to

1 In the framework of compact routing a common assumption is that the destination of a message is never
its source. The caseu= v can be solved by the local processor (assumed having a relatively high computational
level) without any communication with its router. This allows to establish more flexible and deeper results in
particular for space memory lower bounds.

2 As we will see the degree of the node has to be at leastα.
3 No more thanα.
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some load history tables of the links, or predicted from some other arbitrary policies
(deadlock-free, . . . ). We observe that a space complexity measure that would combine
both terms suffers of the generalΩ(n logd) bit/node lower bound (and anΩ(n) inter-
vals for the compactness) that applies to shortest path deterministic routing tables [18,
19]. Indeed, as we will see more precisely in Section 4.3, an adaptive routing table and
a selection function encode together at least a deterministic routing table. However, such
a combination does not allow to measure precisely the contribution of each part (for in-
stance, theΩ(n)-lower bound on the compactness [18] does not apply for shortest path
α-adaptive routing tables, cf. Section 4). So, our approach allows to measure the balance
between the information needed for the adaptive routing table and the selection func-
tion.

1.4. Related works

Previous works on compact and adaptive routing schemes can be founded in [1,2,9,21]
for general schemes, and in [10,11,23,26] for interval routing schemes and its general-
izations. However, most of theses works try to give a compact representation ofall the
shortest paths. Although these schemes extend the deterministic case, they suffer by the
fact that many general lower bounds for deterministic routing established in [12,18–21] ap-
ply as well for the adaptive case. Indeed, these lower bounds are based on the uniqueness
of the shortest paths between specific subset of nodes in some worst-case graphs. Thus, on
these graphs all-shortest-path routing would consist to route along one shortest path as in
deterministic routing. In essence, all-shortest-path compact routing schemes are not more
compact than deterministic shortest path routing schemes. For instance, the asymptotic
n/4-lower bound on the compactness for deterministic shortest path IRS applies also for
all-shortest-path IRS [18].

1.5. Our results

As we will see in the following, the situation is better thanks to the definition we propose
for α-adaptive routing tables (IRSα), specially wheneverα > 1 and becomes larger. All
previously cited lower bounds does not apply in that case, and moreover we show thatn/α

intervals per arc suffice for shortest path IRSα that is already better than the deterministic
case wheneverα � 4.

This paper is organized as follows. Section 2 defines more precisely the model ofα-
adaptive routing tables. In Section 3 we show that every routing tables can be transformed
on anα-adaptive routing table with the same set of routes and the same compactness. In
particular we show thatn/α intervals per arc suffice, even if shortest paths are required.
In Section 4 we specifically study more deeply shortest path routing tables, and we show
an existentialn/αO(1)-lower bound for the compactness, that is asymptotically optimal for
constantα. We conclude in Section 5 by some possible extensions and perspectives of this
work.
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2. Preliminaries

In this paper, the network is modeled by a connected graphG= (V ,E), whose set of
nodesV represents the routers, and whose set of arcsE the communication links between
the routers. We assume that the links are bi-directional, i.e., if(u, v) ∈ E then(v,u) ∈ E;
G is a symmetric digraph.4 For everyu ∈ V , we denote by deg(u) the number of neighbors
of u corresponding to the common value of in- and out-degree ofu. Finally, δ(G) denotes
the minimum degree ofG, that isδ(G)=min{deg(u) | u ∈ V }.

2.1. Definitions

Formally, aninterval labelling schemeon ann-nodeG is a pair(L,I ) of functions
whereL :V → {1, . . . , n} is a one-to-one labelling of the nodes, andI :E→ 2L(V ) is a
labelling of the arcs such that, for every arc(u, v) ∈ E, L(w) ∈ I(u, v) if and only if the
route fromu tow uses the arc(u, v).

Moreover, given an integerα � 1, the pair(L,I) is anα-adaptive interval labelling
scheme, ILSα for short, if for allu,w ∈ V , w �= u, the set

{
(u, v) ∈E | L(w) ∈ I(u, v)}

is of cardinalityα. A valid ILSα is called an IRSα (α-adaptive interval routing scheme or
α-adaptive routing table), if it fulfills the connectivity condition: for allu,w ∈ V , w �= u,
there exists a sequenceρ(u,w)= (v1, . . . , vt ) of nodes such thatv1 = u andvt =w, and
for everyi ∈ {1, . . . , t − 1}, L(w) ∈ I(vi , vi+1). The sequenceρ(u,w) is called arouting
pathor routefrom u tow, and may not form a simple path inG.

A shortest pathIRSα is an IRSα for which, for any pairu,w, there exists a routing
pathρ(u,w) that is a shortest path inG. This definition easily extends to weighted graphs
considering paths of minimum cost. We insist on the fact that betweenu andw there is at
least one routing pathρ(u,w) that is a shortest path, although many routing paths might
be represented by the labelling. As said before in Section 1.4, the main interest of this
condition is to avoid then/4-lower bound of [18] on the compactness.

Remark. A consequence of the previous definition is that only the graphs of minimum
degree at leastα support an ILSα , and thus an IRSα . A variant of the previous definition to
overcome this problem would consist to impose that

∣∣{(u, v) ∈E | L(w) ∈ I(u, v)}∣∣=min
{
α,deg(u)

}
.

Although all the results we propose in this paper hold for both definitions, for simplicity,
only the former definition is considered in the sequel.

4 However, many of the results presented in this paper are still valid for nonsymmetric and strongly connected
digraphs.
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2.2. Compactness

The compactnessof an ILSα (L,I) is the smallest integerk such that every set
I(u, v) can be represented as the union of at mostk intervals of consecutive integers of
{1,2, . . . , n} (1 andn being considered as consecutive). Such ILSα and IRSα are denoted
respectively byk-ILSα andk-IRSα .

Remark. Forα = 1, all the definitions match with the standard ILS/IRS introduced by [27,
30]. For simplicity, we denote in the sequel IRS for IRS1. The labellings we consider in this
paper are supposed to bestrict, i.e., we impose thatL(u) /∈ I(u, v), for every(u, v) ∈E.

3. A general labelling scheme

We show in this section that every graphG supports a 1-IRSα for everyα � δ(G), the
routing paths being not necessary shortest paths. This result can be seen as a generalization
of the labelling scheme of [27] (showing that every graph has a 1-IRS), and will be a tool
for the remaining of the paper. We denote by[1, n] the set{1,2, . . . , n}.

Theorem 3.1. Let (L,IA) be anyk-IRSα on ann-node graphG = (V ,E) with δ(G) �
α+ 1, and letY ⊆E such that everyx ∈ V has at most one neighbory so that(x, y) ∈ Y .
Then,(L,IA) can be transformed in polynomial time into ak-IRSα+1 onG, (L,IB), such
that all the routes represented by(L,IA) are preserved in(L,IB), and such that for every
(x, y) ∈ Y , IB(x, y)= [1, n] \ {L(x)}.

Proof. For everyz ∈ [1, n], let us denote succ(z) (respectively pred(z)) the successor (re-
spectively predecessor) ofz in [1, n] modulon. Formally, succ(z) = (z modn) + 1, and
pred(z)= (z+ n− 2 modn)+ 1. Let us define the following procedure of inputs(L,IA)
andY , and of output(L,IB) satisfying the statement of Theorem 3.1.

For every nodex do (possibly in parallel):

(1) For every(x, y) ∈E, setIB(x, y)← IA(x, y).
(2) SetR←[1, n] \ {L(x)}.
(3) Let (x, y) be the unique arc ofY (if y does not exist go to 4), setIB(x, y)← R, and

updateR← IA(x, y).
(4) WhileR �= ∅ do:

(a) Findy andz such that(x, y) ∈E, z ∈R \ IB(x, y), and either pred(z) ∈ IB(x, y)
or succ(z) ∈ IB(x, y).

(b) Find y ′ such that(x, y ′) ∈ E, andz ∈ IB(x, y ′). Let [a, b] an interval such that
z ∈ [a, b] ⊆ IA(x, y ′).

(c) UpdateR←R \ ([a, b] \ IB(x, y)).
(d) UpdateIB(x, y)← IB(x, y)∪ [a, b].

Intuitively, the procedure consists on finding a labelz ∈ R such that its predecessor (or
successor) is a boundary of some intervals ofIB(x, y). Then we append[a, b], an interval
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containingz, toIB(x, y) solving the problem forz (at least). The procedure iterates on the
updated version ofR.

Let us consider any nodex. Let us show that for everyi, at the beginning of theith run
of Instruction 4 (at the testR �= ∅), the setR fulfills the following propertyPi : R contains
at mostn− i labels, and ifz ∈ R thenz appears inα setsIB , and otherwisez= L(x) or
z appears inα + 1 setsIB . In other words, at each loop,R denotes the set of labels that
remains to treat.

By induction oni: the first time in Instruction 4, if no arc(x, y) ∈ Y exists,R is the set of
all the labels (except forL(x)), andIB is initialized toIA. Hence, if there is no arc(x, y) ∈
Y , P1 is true. Otherwise, after Instruction 3, all labels remaining inR appear exactly inα
setsIB (the others appear already inα + 1 sets by settingIB(x, y) = [1, n] \ {L(x)}).
Hence in any casesP1 is true.

Now, assume the property holds up to theith loop. To show thatPi+1 is true, let us
first show that Instruction 4(a) is doable, that is the pair(y, z) can be founded: first, if
i = 1, then it suffices to choose anyy such that(x, y) /∈ Y andIA(x, y) �=R (it must exist
otherwise every label�= L(x) would appear in at leastδ(G) � α + 1 setsIA). Then, we
can choose anyz /∈ IA(x, y) (thusz ∈ R) so that pred(z) ∈ IA(x, y) or succ(z) ∈ IA(x, y).

For i > 1, a pair(y, z) exists otherwise,z and pred(z) (or succ(z)) would appear in the
same number of setsIB . By PropertyPi , z ∈ R implies pred(z) or succ(z) ∈R (otherwise
they would not appear in the same number of setsIB ). This implies thatR = [1, n] \
{L(x)}, which is not possible since|R| � n − i < n − 1 (i > 1). So, Instruction 4(a) is
doable. Instruction 4(b) is doable sincez ∈ R and by PropertyPi z appears inα � 1 sets
IB . Instructions 4(c) and 4(d) are doable as well. We remark, that in Instruction 4(c),
|R| decreases by at least one element:[a, b] contains at leastz. We check that all labels
removed fromR appears in exactlyα+ 1 setsIB . Therefore,Pi+1 holds.

So, at the end of the last loop", R is empty and by PropertyP", all the labels appear in
α + 1 setsIB . Taking a union in Instruction 4(d), we guarantee thatIA(x, y)⊆ IB(x, y),
and thus it preserves the routes. It follows that(L,IB) is a valid ILSα+1. Moreover, in In-
struction 4(d), because pred(z) andz are consecutive modulon, and becausez ∈ IA(x, y)
and pred(z) ∈ IA(x, y), we have that the minimum number of intervals to represent
IB(x, y) never increase and thus is at most the one ofIA(x, y). So, (L,IB) has com-
pactness at mostk, and by Instruction 3, all the arcs ofY have the interval[1, n] \ {L(x)}.
This completes the proof.✷

Remark. We do not precise the time complexity of the previous algorithm because it may
depend on the data structure used to code the input IRS (the one achieving the lowest time
complexity is not necessary the most compact one). Anyway, using naive interval coding
representation of IRS, this time is less than O(n4), but can easily be reduced to O(|E|kα)
with more efficient data structures.

Using a spanning treeT of G, a DFS-based 1-IRS1 onT (cf. [27]), and applying induc-
tively onα in Theorem 3.1 we have:
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Corollary 3.2. Every graphG such thatδ(G)� α, supports a1-IRSα .

Whereas forα = 1 every graph has ak-IRS with k � n/2, for α > 1 we show that
k � n/α. More precisely:

Theorem 3.3. Let (L,I) be anyk-IRS1 on ann-node graphG, and letα � δ(G). Then,
G supports ak′-IRSα such that all the routes of(L,I) are preserved, and such thatk′ �
min{k, (n− 1)/α}.

Proof. The statement is obvious forα = 1. Assume,α � 2. We build a setY composed
of the arcs assigned with the largest number of intervals, for each node. After the first
application of Theorem 3.1, we obtain ak-IRS2 for G, with the same set of routes, and
where the arc with the largest number of intervals (for each node) is now reduced to one.
We can re-apply Theorem 3.1 with a new setY still composed of the arcs assigned with
the largest number of intervals, which is hence at most the second largest one in(L,I).
Finally, after a total ofα− 1 applications of Theorem 3.1 (this is feasible sinceα � δ(G)),
we obtain ak′-IRSα with the same set of routes where the maximum number of intervals
assigned on an arc,k′, is bounded byk and also by theαth largest number of intervals
assigned on an arc in(L,I).

Let x be any node ofG. Let d = deg(x), and letk1, . . . , kd be the number of intervals
of the setsI(x, y) (thek-IRS1 defined onG) for all neighborsy of x. Moreover assume
k1 � · · · � kd . We have

∑α
i=1 ki �

∑d
i=1 ki � n − 1 (α � d and the label ofx is not

assigned). Thuskα � (n− 1)/α. As said before,k′ � min{k, kα} completing the proof.

Remark. Theorem 3.1 can be slightly improved to

k′ � min
{
k,

(
n− 1− δ(G))/α+ 1

}
if all the incident arcs of each node are labelled with non-empty labels (in this case we have∑α

i=1 ki � n− 1− (δ(G)− α)). This assumption occurs, for instance, for shortest paths
routing tables.

4. Shortest path labelling

In this section we are interested in IRSα for which there exists at least one shortest path
(represented by the labelling schemes) for all pairs of nodes. Thanks to Theorem 3.1, many
graphs can be identified to support shortest pathk-IRSα . For instance, grid, hypercube,
complete graph, cycle, trees, outerplanar graphs, interval graphs, etc., have shortest path 1-
IRS, and thus also shortest path 1-IRSα . Families of graphs having shortest path O(1)-IRS
include torus,k-trees with constantk, planar graphs with a constant number of faces, etc.
(see [16] for a complete state of the art).

For every graphG, we define

IRSα(G)=min{k |G has a shortest pathk-IRSα}.



C. Gavoille, A. Zemmari / Journal of Discrete Algorithms 1 (2003) 237–254 245

Note that the computation of IRS(G) (for α = 1) already involves several difficult op-
timizations. The decision problems “is IRS(G) = 1?” and “is IRS(G) = 2?” are NP-
complete [5,7]. Hereafter, the value IRSα(G) is termedcompactnessα of G.

4.1. Comparison between compactness1 and compactnessα

By Theorem 3.1, we have IRSα+1(G)� IRSα(G)� · · ·� IRS(G). It is not a difficult
exercise to check that there are graphs that support shortest path 1-IRS2, whereas they do
not support shortest path 1-IRS1 (for instance, consider the Petersen graph [17], or the
wheel-graph [8]). The next result shows that the difference between the compactness of 1-
andα-adaptive routing of a graph can be exponentially large.

Theorem 4.1. For every integerδ � 0, there exists a graphG on 2δ+3 nodes such that
IRS1(G)� 2δ and IRS2(G)� 2δ+ 4.

Proof. We use the construction given in [17] that shows that IRS1(G) � n/8 for some
n-node graphs withn a power of two. Here we recall their construction.

For ap× q Boolean matrixM = (Mi,j ), letGM = (VM,EM) be the graph such that:

(1) VM = {v1, . . . , vp} ∪ {a1, . . . , aq} ∪ {b1, . . . , bq};
(2) {x, y} ∈ EM if and only if (x = aj andy = bj ), (x = bj andy = vi andMi,j = 1), or

(x = aj andy = vi andMi,j = 0).

We haven= |VM | = p + 2q . Roughly speaking,GM is a two-level graph. The first level
consists of edges of type{aj , bj }, and the second one consists ofvis (a stable) which are
connected toaj or bj depending on whetherMi,j = 0 or 1. See Fig. 1 for an example.

For every Boolean matrixM, we denote byM the matrixM with every bit comple-
mented. Moreover, ifM = (XY ), whereX andY are two matrices of same dimensions,
we setχ(M) = (YX), which is the matrix obtained fromM by exchanging the columns
of X with those ofY . We consider a specific matrixMδ , δ � 0, defined by induction. The

M =



0 0 0
0 1 1
1 0 1
1 1 0




Fig. 1. A graphGM .
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construction ofMδ is summarized by Eq. (4.1).

(4.1)

M0=



0 0
0 1
1 1
1 0


 , χ(M0)=




0 0
1 0
1 1
0 1


 , Mδ+1=

(
Mδ Mδ

χ(Mδ) χ(Mδ)

)
.

It is shown in [17] that IRS(GMδ ) � 2δ (roughly speaking, whatever the labelling of
thevis, the setI(aj , bj ) must contain only a particular subset of thevis which is made to
be hard to represent with intervals). In this casep = 2δ+2 andq = 2δ+1. Thusn = 2δ+3,
proving the first part of Theorem 4.1.

Let us show that IRS2(GMδ ) � 2δ + 4 for every δ � 0. For this purpose, it suf-
fices to define a shortest path IRS2 on GMδ , (L,I), such that for all the arcs(u, v) /∈
{(aj , bj ), (bj , aj )}, |I(u, v)|� 2δ+ 4, thus composed of at most 2δ+ 4 intervals. Indeed,
by Theorem 3.1, such a labelling can be transformed into an IRS2 with the same set of
routes such that the edges{aj , bj } consist of one interval. Therefore it would prove that
IRS2(GMδ)� 2δ+ 4.

In this proof, we do not optimize the node-labelling, leaving a small space to improve the
bound on IRS2(GMδ ). Let us choose an arbitrary labellingL. Since we do not care about
the number of intervals on the edges{aj , bj }, let us defineBMδ be the graphGMδ where the
all the edges{aj , bj } have been removed. First, remark thatBMδ is a 2δ+1-regular bipartite
graph. Clearly,BM is isomorphic to every graphBM ′ , whereM ′ is obtained by comple-
menting some columns ofM (this morphism exchanges the roles playing by someajs
andbjs), or by permuting some columns (this morphism permutes some edges{aj , bj }).
So, for the sake of simplicity, let us setBδ to be the common graph isomorphic toBMδ ,
Bχ(Mδ), etc. LetV1(Bδ) to be the set of the first partition of nodes ofBδ , theajs andbjs,
andV2(Bδ) as the nodesvis ofBδ .

Let us define by induction onδ, (L,I) onBδ . Bδ+1 consists of two copies ofBδ , B1
andB2, with some extra edges connectingV1(B1) to V2(B2), and some edges connecting
V1(B2) to V2(B1). Let ψ be the morphism betweenV (B1) andV (B2), and letφi be the
morphism betweenVi(B1) andVi(B2) for i = 1,2. Forδ = 0, we check that one can findI
such that|I(u, v)|� 4 for all arcs(u, v) of B0. Let k =max|I(u, v)|, over all arcs(u, v)
of Bδ . Since we do not care aboutL, we considerI(u, v) as a subset of nodes rather than
a subset of labels.

We first look at any nodev ∈ V2(B1). By induction, assume that|I(v, a)| � k for all
(v, a) ∈ E(B1). We remark that if(v, a) ∈ E(B1), then (v,φ1(a)) ∈ E(Bδ+1) \ E(B1).
SettingI(v,φ1(a)) = ψ(I(v, a)) for all (v, a) ∈ E(B1), we are able to route fromv ∈
V2(B1) to all the nodes ofV (Bδ+1)\{φ2(v)}. We addφ2(v) to any arc incident ofv leading
to φ2(v) by a shortest path. One can check that the routes are still the shortest, and since
the edges(v, a) and(v,φ1(a)) are distinct,|I(v, a)|� k + 1 for all (v, a) ∈E(Bδ+1).

Then, let us look at any nodea ∈ V1(B1). With a similar argument, we can set
I(a,φ2(v)) = ψ(I(a, v)) for all (v, a) ∈ E(B1). We are able to route froma ∈ V1(B1)

to V (Bδ+1) \ {φ1(v),φ1(a)}, wherea is the unique node ofV1(B1) such that{a,a} is an
edge ofE(GMδ ). We addφ1(a) andφ1(a) to any arc incident ofa allowing shortest route
from a. So,|I(a, v)|� k + 2 for all (a, v) ∈E(Bδ+1).
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The routing from anyv ∈ V2(B2) and any fromV1(B2) is defined similarly since the
graphBδ+1 is the same ifB1 and B2 are exchanged. In total, for every arc(u, v) ∈
E(Bδ+1), we have|I(u, v)|� k + 2, that is at most 2δ+ 4 forBδ .

We complete the proof by Theorem 3.1 applied on the edges{aj , bj }. ✷
4.2. An upper bound for compactnessα

In this section we show that compactnessα of a generaln-node graph is not bounded
for α > 1. Note that forα = 1, a tight lower bound exists. It has been shown in [18] that
for every graphG, IRS(G)� n/4+o(n), whereas there exists a worst-case graphG0 with
IRS(G0)� n/4− o(n). We first present a general upper bound:

Theorem 4.2. For everyn-node graphG and everyα � δ(G),

IRSα(G)� 1

α

(
n− 1− δ(G))+ 1.

Proof. It suffices to consider any shortest pathk-IRS1 for G (for instance, choosingk �
n/4+ o(n)), and to apply Theorem 3.3 remarking that all the arcs have non-empty labels.

4.3. A lower bound for compactnessα

We will show that there exists some worst-case graphs with compactnessα at least
n/αO(1). Therefore this shows an asymptotic optimal lower bound for the compactness
of shortest path IRSα with constantα. It is quite complicated to build “by hand” small
counter-exampleG with, for instance, IRS2(G) > 1. Indeed, we need to argue for such
G, that whatever is the node-labelling, whatever are the shortest paths, and mainly, what-
ever are the deflecting paths, one cannot code the routing table with one interval. The first
counter-example with IRS2(G) > 1 that we are able to build (we will not draw it here) has
roughly 105 nodes. That is why we present in this paper an existential lower bound only,
holding also for unboundedα. We will mainly use the fact that any shortest pathα-adaptive
routing table combined with a suitable selection functionS implements a standard routing
table (α = 1). So, up to an additive term of|S| one can lower bound the compactness of
theα-adaptive routing table thanks to theΩ(n logd) bit/node lower bound of [19].

For this purpose, let us present the graphHp,δ introduced by [19], and defined induc-
tively on p for all integersp � 1 andδ � 2. Let T ih,δ be a completeδ-ary tree of height

h whose all its leaves are labelledi. For h = 0, we setT i0,δ as a tree composed of a sin-
gle node labelledi. For everym � 2, we defineTp,δ,m as the tree composed ofm trees
T 1
p−1,δ, T

2
p−1,δ, . . . , T

m
p−1,δ, all connected by their root to a single node of degreem. This

node is labelledp + 1 and forms the root ofTp,δ,m. Note that form = δ, a Tp,δ,δ tree is
isomorphic to a completeδ-ary tree of heightp, and thus hasδp leaves.
Hp,δ has two distinguished subsets of nodes:Ap = {1, . . . , p} andBp = {1, . . . , δ}p the

set of all the words of lengthp on the alphabet{1, . . . , δ}.H1,δ is isomorphic toK1,δ, where
A1= {1} is reduced to the unique node of degreeδ in K1,δ , and whereB1 = {1, . . . , δ} is
the set of nodes of degree 1. TheHp+1,δ graph is composed of a copy ofHp,δ, a copy of
Tp,δ,δ, and of the set of nodesBp+1, connected as follows:
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(1) Every nodeu ∈ Bp is connected to the nodesu i ∈ Bp+1, for everyi ∈ {1, . . . , δ};
(2) Every leaf ofTp,δ,δ labelledi is connected to exactlyδ nodesu i ∈ Bp+1 such that

no two leaves are connected to the same node ofBp+1 (leaving some freedom in the
connections).

The setAp+1 is composed of the setAp of Hp,δ, and of the root ofTp,δ,δ. See Fig. 2.
For every integerm such that 2� m � δ, let us define theHp,δ,m graph composed of

aHp,δ graph, aTp,δ,m tree, and a set ofmδp nodes,Bmp = {1, . . . , δ}p × {1, . . . ,m}. The
connections betweenBp , Bmp , and the leaves ofTp,δ,m are similar to the connections in
a Hp+1,δ graph excepted thatm may be smaller thanδ (everyu ∈ Bp is connected to
u i ∈ Bmp for everyi ∈ {1, . . . ,m}). TheHp,δ,m graph is an induced subgraph ofHp+1,δ.
Let us denote byAmp the set of modes composed ofAp and of the root of theTp,δ,m tree.

Fig. 2. The recursive construction of theHp+1,δ graph, andH3,2.
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Fig. 3. A graphGπ ∈H1,3,2, and its modificationH0: the dashed sets induced a clique inH0 and are missing
fromGπ .

Lemma 4.3. For all integersp � 1, andδ,m� 2, Hp,δ,m has at most2(m+ 2)δp nodes,
anddeg(x)= 2 if x ∈ Bmp , deg(x)=m if x is the root ofTp,δ,m, anddeg(x)� δ otherwise.

Given a permutationπ of Bmp , let us denote byGπ the graph composed of two copies
of Hp,δ,m whoseBmp sets are connected by the perfect matching defined byπ (see Fig. 3,
for an example). LetHp,δ,m denote the family composed of all theGπ graphs, for all
permutationsπ of Bmp . For eachG ∈Hp,δ,m, we denote byA(G) (respectivelyB(G)) the
set of nodes composed of both setsAmp (respectivelyBmp ) of each copy ofHp,δ,m forming
G. The nodes ofA(G) are drawn in black on Fig. 3.

In [19], it is shown the following important lemma:

Lemma 4.4 (Gavoille and Perennes [19]).For all integersp, δ,m � 2, m � δ, and such
that δp→+∞, there exists a graphG0 ∈Hp,δ,m such that every shortest path routing
table onG0 has a size ofM bits5 for a node ofA(G0) such that

M � mδp

2(p+ 1)
log

(
mδp

)−O

(
mδp

p

)
.

This result is based on the uniqueness of the shortest paths between the nodes ofA(G0)

and the nodes ofB(G0). In order to prove our result, one transformG0 into a new graph
H0 such thatδ(H0) � δ, and such that Lemma 4.4 holds forH0 as well. It consists on
connecting all the nodes ofBmp by a clique in each copy ofHp,δ,m (so making the degree
of the nodes ofB(G0) larger thanδ in H0). Then, for the root of bothTp,δ,m trees, we add
a clique ofδ + 1 nodes and select from themδ −m nodes that we connect to the root (so
making the degree of nodes at leastδ, and exactlyδ for all the nodes ofA(G0) in H0).
See Fig. 3. InH0, the shortest paths betweenA(G0) andB(G0) are not modified, and has
2(δ+ 1) more nodes thanG0.

We are now ready to prove a lower bound on compactnessα of n-node graphs.

5 We assume that all logarithms are in base two.
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Theorem 4.5. There exist a constantc � 31 such that for everyn large enough, and for
every integerα � (n/18)1/(2c), there exists a graphH0 with at mostn nodes such that

IRSα(H0) >
1

2790
· n
αc
.

Proof. From Theorem 4.1, for everyn, there exists a graphG with 2t+3 � n nodes and
such that IRS1(G)� 2t > n/16 for t = �logn� − 3. Thus the result is true forα = 1.

Assumeα � 2. Let us fixc= 31, and letδ = αc . We consider the graphH0, the modified
graphG0 ∈Hp,δ,m, for some parametersp, δ,m� 2 such thatm� δ andδp→+∞. Let
N denote the number of nodes ofH0. We will fix later the values ofp, δ,m as a function
of n in order to prove thatN � n. Let x ∈A(G0) be a node ofH0 for which the size of any
shortest path routing table is of size at leastM (bound given by Lemma 4.4). Note that by
construction ofH0, deg(x)= δ.

Consider onH0 any shortest pathk-IRSα , (L,I). Thisα-adaptive IRS is an implemen-
tation inx of a particular shortest pathα-adaptive routing table. This implementation can
be done inx with at most�δ log

(
N
2k

)� bits. Indeed, for theδ output ports ofx it suffices to

store at mostk intervals of labels. There is at most
(
N
2k

)
ways to choosek sub-intervals of

[1,N]. So, a total of�δ log
(
N
2k

)� bits for x, remarking that a sequence ofp integers taken
from {1, . . . , q} can be coded on� log(qp)� bits since there areqp such sequences.

Now, it is easy to transform any shortest pathα-adaptive routing tables into a shortest
path 1-adaptive routing table, i.e., a standard routing table, adding�N logα� extra bits per
node: for each destination label we specify the output port leading to a shortest path, and
there are exactlyα possible output ports. Thus,H0 has a shortest path routing table inx of
size at most⌈

δ log

(
N

2k

)⌉
+�N logα�

using an implementation of the deterministic version of(L,I). From Lemma 4.4, it turns
out forx that:

(4.2)δ log

(
N

2k

)
+N logα + 2>M.

We have to prove thatH0 has at mostn nodes and thatk � n/αO(1). Let us fix now
p, δ,m, and let us prove that:

(4.3)N � n < 4
(
m+ 3+ o(1)

)
δp.

Let p be the largest integer such thatn � 16δp + 2(δ + 1). Clearly, δp → +∞ as
n→+∞. Letm= �(n− 2(δ+ 1)/(4δp)�−2. Let us show thatp, δ, andm are all greater
than 2.

First,δ � 2 becauseδ = αc , andα, c� 2. Forp, α � (n/18)1/(2c) implies 18(αc)2 � n,
i.e.,n� 18δ2. But 18δ2 � 16δ2+2(δ+1) for δ � 2, hence the equationn� 16δp+2(δ+
1) has a solution forp � 2. Form, sincen� 16δp+2(δ+1), then(n−2(δ+1))/(4δp)�
4, and thus�(n− 2(δ+ 1)/(4δp)� − 2 � 2, provingm� 2.
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LetX= 4(m+2)δp+2(δ+1), and letY = n−2(δ+1). Note thatm+2= �Y/(4δp)�.
We have:

X = 4δp
⌊
Y

4δp

⌋
+ 2(δ+ 1)

= Y − (
Y mod 4δp

)+ 2(δ+ 1)

= n− (
Y mod 4δp

)
.

Therefore,

(4.4)X � n < X+ 4δp.

From Lemma 4.3, the number of nodes ofG0 is at most 2·2(m+2)δp, and thus the number
of nodes ofH0 is N � 4(m+ 2)δp + 2(δ + 1), i.e.,N �X. By Eq. (4.4) we have proved
thatH0 has at mostn nodes, and more precisely that:

N � n < 4(m+ 2)δp + 4δp + 2(δ+ 1)

< 4
(
m+ 3+ o(1)

)
δp

remarking that 2(δ+ 1)= o(δp), and proving therefore Eq. (4.3).
In Eq. (4.2), we bound

(
N

2k

)
�

(
n

2k

)
�

(
en

2k

)2k

� ten/t ,

wheret = en/(2k). Eq. (4.2) becomes (usingδ = αc , N � n, andM→+∞)

(4.5)δ log
(
ten/t

)+ n logα �M

(4.6)�⇒ αcen
logt

t
+ n logα �M

(4.7)�⇒ n

(
αce logt

t
+ logα

)
�M

(4.8)�⇒ nβ �M,

whereβ = (αce logt)/t + logα. From Lemma 4.4 we have a lower bound onM, and
plugging in Eq. (4.8) the upper bound onn of Eq. (4.3), we obtain that:

4
(
m+ 3+ o(1)

)
δpβ >

mδp

2(p+ 1)
log

(
mδp

)−O

(
mδp

p

)

�⇒ β >
m log(mδp)

8(p+ 1)(m+ 3+ o(1))

neglecting the second order term O(mδp/p). We remark thatp,m� 2, thus

m log(mδp)

8(p+ 1)(m+ 3+ o(1))
� 2 log(2δp)

8(p+ 1)(5+ o(1))
>

p logδ

4(p+ 1)(5+ o(1))

>
2 logδ

4 · 3(5+ o(1))
>

logδ

30+ o(1)
.
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Replacingβ andδ, we obtain:

(4.9)
αce logt

t
+ logα � c logα

30+ o(1)

(4.10)�⇒ αc logt

t
� 1

e

(
c

30+ o(1)
− 1

)
logα

(4.11)�⇒ αc logt

t
� γ logα,

whereγ = (c/(30+ o(1))− 1)/e. Becausec = 31, we haveγ > 0 (for n large enough),
and since logα � 1, it follows that:

(4.12)(4.11)�⇒ αc � γ t

logt
(4.13)�⇒ c logα � log(γ t)− log logt .

Note thatk � en/(2t). We consider two cases. Ift � 235, thenk � en/236. Since 236/e >

2790αc for c= 31 andα � 2, it follows in this case that:

k >
n

2790αc
.

If t > 235, then we check that (asγ → 0.001226. . . asn→+∞):

log(γ t)− log logt >
2

3
logt

thus by Eq. (4.13)c logα > 2
3 logt . Bounding logt < (3c logα)/2, Eq. (4.11) becomes:

αc3c logα

2t
� γ logα

�⇒ t � 3c

2γ
αc

�⇒ k � eγ

3cαc
n=

(
c/(30+ o(1))− 1

3c
· 1

αc

)
n

>
1

90cαc
· n (asn→+∞)

>
1

2790
· n
αc

that completes the proof.✷

5. Conclusion

We showed thatα-adaptive routing tables onn-node graphs, that are routing tables
mapping each destination on exactlyα directions, have compactness at mostn/α (i.e.,
requiren/α intervals of destination labels per link), computable in polynomial time. We
proved also that, if at least one shortest path must be represented, there aren-node graphs
for which everyα-adaptive routing table has compactness larger thann/αO(1).
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In the other side, it is known that ifall the shortest paths must be represented, then such
routing tables require compactnessn/4 for some worst-case graphs. Therefore, it would
be interesting to study the compactness ofβ-shortest pathα-adaptive routing tables, a
natural extension of shortest pathα-adaptive routing tables, that map each destination on
α directions and whose at leastβ must be on a shortest path. The present paper concerns
β = 1.

We stress also that ourn/αO(1)-lower bound is not a serious obstacle for the study of
graphs having small compactness, even forα = 2. Indeed, due to some large constants in
this existential lower bound, the smallest example of graphs we can prove by Theorem 4.5
to have a compactness greater than 1 must have more than 242 nodes. It suggests that the
class of graphs supporting shortest path 2-adaptive routing tables is rather large, and it
would be interesting to develop this study to various class of concrete networks.
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