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Election Problem
Bit Complexity of the MIS Problem

Colouring Problem
Conclusion and Perspectives

Election in Trees

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

Akka Zemmari Habilitation à diriger des recherches
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Election in Trees

A tree T is given ;

while T is not reduced to a leaf do remove a leaf from T

The elected vertex is the surviving one.

Goal of study

To determine the chances of being elected for each vertex.
To guide the “ballot” toward a given probability distribution by
imposing “locally computable” control structures.
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Election in Trees

Combinatorial Approach [Y. Métivier and N. Saheb in CAAP’94]

All leaf-removal sequences have the same probability:

px(T ) =
C x

T

C ∅
T

.

C x

T
: the number of leaf-removal sequences yielding to the election of x

C∅
T
: the total number of leaf-removal sequences.
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Election in Trees

Combinatorial Approach

Theorem.

In a tree, the median vertex(ices) has(have) the highest probability
of being elected.
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Locally Uniform Approach

At each step all leaves have the same probability of being removed.
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Election in Trees

Locally Uniform Approach

At each step all leaves have the same probability of being removed.

qx ({x}) = 1.

qx (T ) =
1

|F (T )|

∑

f ∈F (T ),f 6=x

qx (T − {f }) .

Akka Zemmari Habilitation à diriger des recherches
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Election in Trees

Locally Guided Election

Each leaf v is active:
it has a lifetime L(v) which is exponentially distributed

Pr (L(v) ≤ t) = 1 − e−λ(v)t , ∀t ∈ R
+.

⇐⇒

probability of its death in the interval [t, t + h) is λ(v)h + o(h), as
h → 0.

λ(v): death rate of v . It must be determined at the instant where
v has become a leaf by the local information received from the
removed leaves on its side.
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Election in Trees

Question:

How to choose the λ-assignment to guide the “ballot” towards
a given probability distribution over the set of vertices ?

In particular, is it possible to guide it towards a uniform
election ?

Akka Zemmari Habilitation à diriger des recherches
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Election in Trees

An application: Uniform Model

Initially all vertices v have the same weight ω(v) = 1.
(Anonymity)

Once a leaf has been vanished, its father recuperates its
weight.

The death rate for a leaf v is its weight: λ(v) = ω(v) .
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Election in Trees

Theorem.

In the last model of election, all vertices of the tree have the same
probability 1

n
of being elected.
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Election in Trees

Election Duration

Let T a tree of size n, and Dn the uniform election duration on T .

Lemma.

The density function of the random variable Dn is

f (t) = n(n − 1)e−2t
(

1 − e−t
)n−2

.

Theorem.

The expected value of Dn is
∑

n

i=2
1
i

= Hn − 1, where Hn is the nth
harmonic number.
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Election in Trees

Generalisation

To other classes of graphs

Each vertex v has a weight ω(v) 6= 1.
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Election in Trees

Other classes of graphs

k-trees

Polyominoids
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Election in Trees

To more general classes ?

How to distinguish vertices which can start generating a life
duration ?

When a vertex vanishes, which vertex will collect the
transmitted weight ?
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Election in Trees

Non uniform weights

ω(v) is an integer

ω(v) ∈ R
+
∗ .

⇒ The probability that a vertex v is elected is proportional to its
initial weight.
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The MIS Problem

Definition.

Let G = (V ,E ) be a graph. An independent set is a subset U of
V s.t.,

∀u, v ∈ U, {u, v} 6∈ E ,

U is maximal if ∀v ∈ V \ U, U ∪ {v} is not an independent set.
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The MIS Problem

Definition.

Let G = (V ,E ) be a graph. An independent set is a subset U of
V s.t.,

∀u, v ∈ U, {u, v} 6∈ E ,

U is maximal if ∀v ∈ V \ U, U ∪ {v} is not an independent set.

. . .
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The graph is supposed anonymous

We propose a distributed and randomised algorithm.

We study:

its average complexity,
its bit complexity,
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Election Problem
Bit Complexity of the MIS Problem

Colouring Problem
Conclusion and Perspectives

A General Schema

Akka Zemmari Habilitation à diriger des recherches
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Related Works and Comparisons

Knowledge Time Message size Bit complexity
(on average) (number of bits) (per channel)

Luby (Lynch) Size of the graph O(log n) log n O(log2
n)

Luby Maximum degree O(log2
n) log n O(log3

n)
(Peleg) in 2-Neighbourhood

Luby Maximum of O(log n) log n O(log2
n)

(Wattenhofer) neighbours degrees
Algorithm C no knowledge O(log n) 1 O(log n)
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Algorithm A: A Real Based Algorithm

A phase of the algorithm:

each vertex u, still in the graph, generates a random variable
x(u);

u sends x(u) to all its neighbours still in the graph;

u receives x(v) from each neighbour v , still in the graph;

u is included in the independent set if its x is a local minimum,
i.e., x(u) < x(v) for each neighbour v of u
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Analysis of Algorithm A

Lemma.

In any phase, the expected number of edges removed from the
remaining graph G is at least half the number of edges in G .

Corollary.

There are constants k1 and K1 such that for any graph G = (V ,E )
of n vertices the number of phases to remove all edges from G is:

1 less than k1 log n on average,

2 less than K1 log n with probability 1 − o(n−1).
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Algorithm B: A Bit Based Algorithm

Main idea: simulates exchanges of real numbers by exchanges of
bits which define real numbers, most significant first.

One phase of exchange of real numbers is replaced by a

phase composed of a sequence of rounds
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Algorithm B: A Bit Based Algorithm

In each round:

u generates uniformly one bit b(u) ∈ {0, 1};

u sends b(u) to all its active neighbours;

u receives b(v) from each active neighbour v ,

u makes a decision:

u is IN − MIS
u is NOT − IN − MIS
u is INELIGIBLE : when a vertex u sends this message it means
that until the end of the current phase u cannot be in the MIS.
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Analysis of Algorithm B

Theorem.

Algorithm B constructs an MIS for any arbitrary graph of size
n ≥ 1 in O(log2n) exchanges of bits on average and with high
probability.
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Algorithm C: An Optimal Bit Complexity Algorithm

Main Idea: desynchronisation of phases between edges in
algorithm B

If, in a round, u breaks the symmetry with v1 and does not break
the symmetry with v2 then u considers that a phase with v1 is
completed and starts, in anticipation, a new phase with v1 and it
continues the previous phase with v2.
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Analysis of Algorithm C

Theorem.

The randomised distributed MIS Algorithm C for arbitrary graphs
of size n halts in time O(log n) with probability 1 − o(n−1), each
message containing 1 bit.

Corollary.

The bit complexity per channel of Algorithm C is O(log n).
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The Problem

Definition.

Let G = (V ,E ) be a simple connected undirected graph. A proper
vertex colouring for G is an assignment of a colour c(v) to each
vertex v , such that any two adjacent vertices have a different
colour, i.e., c(v) 6= c(u) for every {u, v} ∈ E .
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Theorem.

Johansson’s Algorithm runs in O(log n) rounds on average and
w.h.p.

Remark.

Messages are of size O (log n), and hence, its average bit
complexity is O

(

log2 n
)

.
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Theorem. [Kothapalli et al.]

If only one bit can be sent along each edge in a round, then every
distributed vertex colouring algorithm (in which every node has the
same initial state and initially only knows its own edges) needs at
least Ω(log n) rounds w.h.p.
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Analysis of the Algorithm

Expected Time Complexity

Lemma.

In any phase of the algorithm, the expected number of edges
removed from the residual graph G is half the number of its edges.

Corollary.

There are constants k1 and K1 such that for any graph G of n
vertices, the number of phases to remove all edges from G is:

less than k1 log n on average,

less than K1 log n w.h.p.
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Analysis of the Algorithm

Theorem.

Algorithm Fast Colour computes a colouring for any arbitrary
graph of size n in time O(log n) w.h.p., each message containing 1
bit.
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Analysis of the Algorithm

Local Complexity

Proposition

Let G = (V ,E ) be a connected graph and v ∈ V with
d(v) = d → ∞. Let Ld denote the number of bits generated by v
before it obtains its final colour. Then

E (Ld) = log2 d +
1

2
+

γ

log 2
+ Q (log2 d) + O

(

d−2
)

,

where Q (u) = − 1
log 2

∑

k∈Z\{0} Γ
(

2ikπ
log 2

)

e−2ikπu is a Fourier series

with period 1 and with an amplitude which does not exceed 10−6.
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Analysis of the Algorithm

Local Complexity

Lemma.

If d → ∞, then we have

Var (Ld ) =

(

1

log 2
− 1

)

log2 d +
1

12
+

1

6

π2

(log 2)2
−P (log2 d)+O

(

d−2
)

,

where P(u) = Q(u)2 +
(

2u + 2γ

log 2 − 2
log 2

)

Q(u).

Proposition

The ratio Rd between Ld and log2 d tends in probability to 1 as d
tends to ∞.
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Conclusion and Perspectives

Election Problem

is there any “totally fair” algorithm for any class of graph ?
can we design a one-pass distributed algorithm which
implements the p-distribution ?

Bit Complexity

of the 2-MIS problem ?
of the distance 2 colouring problem ?

Colouring Problem

the main challenge: reduce the number of colours
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