Machine Learning and Classification

A. Zemmari

LaBRI - University of Bordeaux

Nov. 28, 2017

(ロ)、(型)、(E)、(E)、 E) の(の)

What is Machine Learning

- "The goal of machine learning is to build computer systems that can adapt and learn from their experience." - Tom Dietterich
- To learn: to acquire knowledge by study, experience or being taught.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is Machine Learning

Machine Learning

・ロト ・ 雪 ト ・ ヨ ト

æ

Magic?

No, more like gardening:

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?

イロト イ押ト イヨト イヨト

- Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
- What price for this stock, 6 months from now?

12.84 +3.56s 🔺		
23.90 +12.3% 🔺		
(5.89 +5.34× 🔺		
5.34 -7.89× 🔻		
7.34 +5.97%	100.08 120	. 000
.89 +2.13% 🔺	564.23 900	, 998
45 +6.43% 🔺	765.90 600	0,00
67 -11.6× 🔻		
64 +23.1x 🔺	893.23 13	20,0
9 +5.56% 🔺	128.98 3	20,
8 -3.67× 🔻		
4 +11.3x 🔺	765.23	150
	400 04	
- +Z.54% 🔺	432.24	7.5

- Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
- What price for this stock, 6 months from now?
- Is this handwritten number a 7?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
- What price for this stock, 6 months from now?
- Is this handwritten number a 7?
- Is this e-mail I just received a spam ?

- Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
- What price for this stock, 6 months from now?
- Is this handwritten number a 7?
- Is this e-mail I just received a spam ?
- Can I cluster together diferent customers? words? genes?

Learning Models

- Supervised Learning: Assumes that the training examples are classified (labelled by class labels).
- The correct results are known in advance and are given as input to the model during the learning process.
- The construction of a precise training, validation and test set is crucial.
- Predictive data mining methods are supervised. They are used to induce models or theories (such as decision trees or rule sets) from class-labeled data, later used for prediction and classification.

Supervised Learning

					Attrib-1	Attrib-2	Attrib-3	Class
Attrib-1	Attrib-2	Attrib-3	Class		No Yes	85 111	175 10	?
Yes No No	80 95 77	125 100 111	No No No		No Yes No	68 200 19	130 15 215	? ? ?
Yes No Yes No No No	101 250 1 65 140 19 200	120 95 115 220 85 175 90	No Yes No Yes No Yes Yes					Test Set
			L]	→	Training		earn ssifier	Mode

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Unsupervised Learning

- Unsupervised Learning Concern about the instances when class labels are unknown and model is provided with incomplete information.
- Can be used to cluster the input data in classes on the basis of their statistical properties.
- The labeling can be carried out even if the labels are only available for a small number of objects representative of the desired classes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Unsupervised Learning

Figure: Unsupervised Learning

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What exactly is deep learning ?

Why is it generally better than other methods on image, speech and certain other types of data?

The short answers

- Deep Learning means using a neural network with several layers of nodes between input and output.
- The series of layers between input & output do feature identification and processing in a series of stages, just as our brains seem to.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- What exactly is deep learning ?
- Why is it generally better than other methods on image, speech and certain other types of data?

The short answers

- Deep Learning means using a neural network with several layers of nodes between input and output.
- The series of layers between input & output do feature identification and processing in a series of stages, just as our brains seem to.

What exactly is deep learning ?

Why is it generally better than other methods on image, speech and certain other types of data?

The short answers

- Deep Learning means using a neural network with several layers of nodes between input and output.
- The series of layers between input & output do feature identification and processing in a series of stages, just as our brains seem to.

What exactly is deep learning ?

Why is it generally better than other methods on image, speech and certain other types of data?

The short answers

- Deep Learning means using a neural network with several layers of nodes between input and output.
- The series of layers between input & output do feature identification and processing in a series of stages, just as our brains seem to.

In this presentation: we focus on supervised machine learning & deep learning.

General Methodolgy

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 ____のへぐ

How to evaluate a classification

 If the dataset is large enough: split the dataset samples into two subsets: Training Set (60%) and Test Set (40%).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

otherwise: use cross-validation.

How to evaluate a classification

 If the dataset is large enough: split the dataset samples into two subsets: Training Set (60%) and Test Set (40%).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

otherwise: use cross-validation.

How to evaluate a classification

Evaluation Metrics

Table: Evaluation parameters

 $Precision(P) = \frac{TP}{TP + FP}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Some Machine Learning Algorithms

- Naive Bayes classification.
- Perceptron and Multi-layers Perceptron.
- Support vector machines and kernel methods.
- Neural networks.
- Logistic Regression.
- Deep Learning: Convolutional Neural Networks.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► ...