Machine Learning:
 Naive Bayes Classifiers

A. Zemmari
LaBRI - Université de Bordeaux

Nov. 28, 2017

An Example and a Bit of Intuition

S(ex)	H(eight) (m)	W(eight) (kg)	F(oot) size (cm)
M	1.82	82	30
M	1.80	86	28
M	1.70	77	30
M	1.80	75	25
F	1.52	45	15
F	1.65	68	20
F	1.68	59	18
F	1.75	68	23

An Example and a Bit of Intuition

S(ex)	H (eight) (m)	W(eight) (kg)	F (oot) size (cm)
M	1.82	82	30
M	1.80	86	28
M	1.70	77	30
M	1.80	75	25
F	1.52	45	15
F	1.65	68	20
F	1.68	59	18
F	1.75	68	23

- Question: Is $(1.81,59,21)$ male or female?

In other words:

$$
\begin{aligned}
& \operatorname{Pr}(S=M \mid(H, W, F)=(1.81,59,21)) \\
& \quad>\operatorname{Pr}(S=F \mid(H, W, F)=(1.81,59,21)) ?(1)
\end{aligned}
$$

Bayes Law:

$$
\operatorname{Pr}(S=M \mid H, W, F)=\frac{\operatorname{Pr}(S) \times \operatorname{Pr}(H, W, F \mid S)}{\operatorname{Pr}(H, W, F)}
$$

In other words:

prior \times likelihood

But $\operatorname{Pr}(H, W, F)$ does not depend on S, so the question boils

 down to:$$
\begin{aligned}
& \mathbb{P r}(S=M) \times \mathbb{P r}(H, W, F \mid S=M) \\
& \quad>\operatorname{Pr}(S=F) \times \mathbb{P} r(H, W, F \mid S=F)
\end{aligned}
$$

Bayes Law:

$$
\operatorname{Pr}(S=M \mid H, W, F)=\frac{\operatorname{Pr}(S) \times \operatorname{Pr}(H, W, F \mid S)}{\operatorname{Pr}(H, W, F)}
$$

In other words:

$$
\text { posterior }=\frac{\text { prior } \times \text { likelihood }}{\text { evidence }}
$$

But $\operatorname{Pr}(H, W, F)$ does not depend on S, so the question boils

 down to:$$
\begin{aligned}
& \mathbb{P r}(S=M) \times \mathbb{P r}(H, W, F \mid S=M) \\
& \quad>\operatorname{Pr}(S=F) \times \mathbb{P r}(H, W, F \mid S=F)
\end{aligned}
$$

Bayes Law:

$$
\operatorname{Pr}(S=M \mid H, W, F)=\frac{\mathbb{P r}(S) \times \operatorname{Pr}(H, W, F \mid S)}{\operatorname{Pr}(H, W, F)}
$$

In other words:

$$
\text { posterior }=\frac{\text { prior } \times \text { likelihood }}{\text { evidence }}
$$

But $\operatorname{Pr}(H, W, F)$ does not depend on S, so the question boils down to:

$$
\begin{aligned}
& \mathbb{P r}(S=M) \times \mathbb{P r}(H, W, F \mid S=M) \\
& \quad>\operatorname{Pr}(S=F) \times \mathbb{P} r(H, W, F \mid S=F)
\end{aligned}
$$

- $\operatorname{Pr}(S)$ is easy to estimate.
- What about $\operatorname{Pr}(H, W, F \mid S)$?
- $\operatorname{Pr}(S)$ is easy to estimate.
- What about $\operatorname{Pr}(H, W, F \mid S)$?

Naive Bayes Hypothesis

We have:
$\operatorname{Pr}(H, W, F \mid S)=\mathbb{P} r(H \mid S) \times \operatorname{Pr}(W \mid S, H) \times \operatorname{Pr}(F \mid S, W, H)$
Naive Bayes:

$$
\mathbb{P r}(W \mid S, H)=\mathbb{P r}(W \mid S) \text { et } \mathbb{P r}(F \mid S, W, H)=\mathbb{P r}(F \mid S)
$$

Naive Bayes Hypothesis

We have:

$$
\mathbb{P r}(H, W, F \mid S)=\mathbb{P r}(H \mid S) \times \mathbb{P r}(W \mid S, H) \times \operatorname{Pr}(F \mid S, W, H)
$$

Naive Bayes:

$$
\mathbb{P r}(W \mid S, H)=\mathbb{P} r(W \mid S) \text { et } \mathbb{P r}(F \mid S, W, H)=\mathbb{P r}(F \mid S)
$$

Naive Bayes Hypothesis

$$
\begin{gathered}
\operatorname{Pr}(W \mid S, H)=\mathbb{P r}(W \mid S) \\
\text { what does that mean? }
\end{gathered}
$$

"Among male individuals, the weight is independent of the height" What do you think?
Despite that naive assumption, Naive Bayes classifiers perform very well!
Let's formalize that a little more.

Naive Bayes Hypothesis

$$
\begin{gathered}
\operatorname{Pr}(W \mid S, H)=\mathbb{P r}(W \mid S) \\
\text { what does that mean? }
\end{gathered}
$$

"Among male individuals, the weight is independent of the height"

Despite that naive assumption, Naive Bayes classifiers perform very

Let's formalize that a little more.

Naive Bayes Hypothesis

$$
\mathbb{P r}(W \mid S, H)=\mathbb{P r}(W \mid S)
$$

what does that mean?
"Among male individuals, the weight is independent of the height" What do you think?
Despite that naive assumption, Naive Bayes classifiers perform very

Let's formalize that a little more.

Naive Bayes Hypothesis

$$
\operatorname{Pr}(W \mid S, H)=\mathbb{P r}(W \mid S)
$$

what does that mean?
"Among male individuals, the weight is independent of the height" What do you think?
Despite that naive assumption, Naive Bayes classifiers perform very well!
Let's formalize that a little more.

Naive Bayes Hypothesis

$$
\mathbb{P r}(W \mid S, H)=\mathbb{P r}(W \mid S)
$$

what does that mean?
"Among male individuals, the weight is independent of the height" What do you think?
Despite that naive assumption, Naive Bayes classifiers perform very well!
Let's formalize that a little more.

Naive Bayes classifiers in one slide!

$$
\operatorname{Pr}\left(Y \mid X_{1}, \cdots, X_{n}\right)=\frac{\operatorname{Pr}(Y) \times \operatorname{Pr}\left(X_{1}, \cdots, X_{n} \mid Y\right)}{\operatorname{Pr}\left(X_{1}, \cdots X_{n}\right)}
$$

Naive conditional independence assump.

Naive Bayes classifiers in one slide!

$$
\mathbb{P r}\left(Y \mid X_{1}, \cdots, X_{n}\right)=\frac{\operatorname{Pr}(Y) \times \operatorname{Pr}\left(X_{1}, \cdots, X_{n} \mid Y\right)}{\operatorname{Pr}\left(X_{1}, \cdots X_{n}\right)}
$$

Naive conditional independence assump.:

$$
\forall i \neq j, \operatorname{Pr}\left(X_{i} \mid Y, X_{j}\right)=\mathbb{P r}\left(X_{i} \mid Y\right)
$$

Naive Bayes classifiers in one slide!

$$
\operatorname{Pr}\left(Y \mid X_{1}, \cdots, X_{n}\right)=\frac{\operatorname{Pr}(Y) \times \operatorname{Pr}\left(X_{1}, \cdots, X_{n} \mid Y\right)}{\operatorname{Pr}\left(X_{1}, \cdots X_{n}\right)}
$$

Naive conditional independence assump.:

$$
\begin{gathered}
\forall i \neq j, \mathbb{P r}\left(X_{i} \mid Y, X_{j}\right)=\mathbb{P r}\left(X_{i} \mid Y\right) \\
\Rightarrow \operatorname{Pr}\left(Y \mid X_{1}, \cdots, X_{n}\right)=\frac{1}{Z} \times \operatorname{Pr}(Y) \times \prod_{i=1}^{n} \operatorname{Pr}\left(X_{i} \mid Y\right)
\end{gathered}
$$

Back to the example

$$
\mathbb{P r}(S \mid H, W, F)=\frac{1}{Z} \times \mathbb{P} r(S) \times \mathbb{P} r(H \mid S) \times \mathbb{P} r(W \mid S) \times \mathbb{P} r(F \mid S)
$$

S(ex)	H (eight) (m)	W(eight) (kg)	F (oot) size (cm)
M	1.82	82	30
M	1.80	86	28
M	1.70	77	30
M	1.80	75	25
F	1.52	45	15
F	1.65	68	20
F	1.68	59	18
F	1.75	68	23

Back to the example

$$
\begin{align*}
\operatorname{Pr}(S=M) & =? \tag{1}\\
\operatorname{Pr}(H=1.81 \mid S=M) & =? \\
\mathbb{P r}(W=59 \mid S=M) & =? \\
\mathbb{P r}(F=21 \mid S=M) & =?
\end{align*}
$$

Back to the example

$\operatorname{Pr}(S \mid H, W, F)=\frac{1}{Z} \times \operatorname{Pr}(S) \times \operatorname{Pr}(H \mid S) \times \operatorname{Pr}(W \mid S) \times \operatorname{Pr}(F \mid S)$
S is discrete, H, W and F are assumed Gaussian.

S	\hat{p}_{S}	$\hat{\mu}_{H \mid S}$	$\hat{\sigma}_{H \mid S}$	$\hat{\mu}_{W \mid S}$	$\hat{\sigma}_{W \mid S}$	$\hat{\mu}_{F \mid S}$	$\hat{\sigma}_{F \mid S}$
M	0.5	1.78	0.0469	80	4.3012	28.25	2.0463
F	0.5	1.65	0.0834	60	9.4074	19	2.9154

$$
\begin{aligned}
\operatorname{Pr}(S=M \mid 1.81,59,21) & =\frac{1}{Z} \times 0.5 \times \frac{e^{-\frac{(1.78-1.81)^{2}}{2.0 .0469^{2}}}}{\sqrt{2 \pi 0.0469^{2}}} \times \frac{e^{-\frac{(80-59)^{2}}{2.4 .3011^{2}}}}{\sqrt{2 \pi 4.3012^{2}}} \times \frac{e^{-\frac{(28.25-21)^{2}}{2.2 .20663^{2}}}}{\sqrt{2 \pi 2.0463^{2}}} \\
& =\frac{1}{Z} \times 7.854 .10^{-10}
\end{aligned}
$$

$$
\operatorname{Pr}(S=F \mid 1.81,59,21)=\frac{1}{Z} \times 1.730 .10^{-3}
$$

Back to the example

$\mathbb{P} r(S \mid H, W, F)=\frac{1}{Z} \times \operatorname{Pr}(S) \times \operatorname{Pr}(H \mid S) \times \mathbb{P} r(W \mid S) \times \operatorname{Pr}(F \mid S)$
Conclusion: given the data, $(1.81 \mathrm{~m}, 59 \mathrm{~kg}, 21 \mathrm{~cm})$ is more likely to be female.

Features

$$
\operatorname{Pr}\left(Y \mid X_{1}, \cdots, X_{n}\right)=\frac{1}{Z} \times \mathbb{P} r(Y) \times \prod_{i=1}^{n} \operatorname{Pr}\left(X_{i} \mid Y\right)
$$

- Continuous X_{i} :

Assume normal distribution $\rightarrow X_{i} \mid Y=y \sim \mathcal{N}\left(\mu_{i y}, \sigma_{i y}\right)$

- Binary X_{i} :

Assume Bernoulli distribution $\rightarrow X_{i} \mid Y=y \sim \mathcal{B}\left(p_{i y}\right)$

Algorithm

- Train:

For all possible values of Y and X_{i}, compute $\hat{\operatorname{Pr}}(Y=y)$ and $\hat{\operatorname{Pr}}\left(X_{i}=x_{i} \mid Y=y\right)$

- Predict:

Given $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, return y that maximizes $\hat{\mathbb{P}} r(Y=y) \hat{\mathbb{P}} r\left(X_{i}=x_{i} \mid Y=y\right)$

