
Machine Learning:
Naive Bayes Classifiers

A. Zemmari

LaBRI - Université de Bordeaux
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An Example and a Bit of Intuition

S(ex) H(eight) (m) W(eight) (kg) F(oot) size (cm)

M 1.82 82 30
M 1.80 86 28
M 1.70 77 30
M 1.80 75 25
F 1.52 45 15
F 1.65 68 20
F 1.68 59 18
F 1.75 68 23

I Question : Is (1.81, 59, 21) male or female?
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In other words:

Pr (S = M | (H,W ,F ) = (1.81, 59, 21))
> Pr (S = F | (H,W ,F ) = (1.81, 59, 21)) ? (1)



Bayes Law:

Pr (S = M | H,W ,F ) =
Pr (S)× Pr (H,W ,F | S)

Pr (H,W ,F )

In other words:

posterior =
prior× likelihood

evidence

But Pr (H,W ,F ) does not depend on S , so the question boils
down to:

Pr (S = M)× Pr (H,W ,F | S = M)
> Pr (S = F )× Pr (H,W ,F | S = F )
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Naive Bayes Hypothesis

Pr (W | S ,H) = Pr (W | S)

what does that mean?
”Among male individuals, the weight is independent of the height”

What do you think?
Despite that naive assumption, Naive Bayes classifiers perform very

well !
Let’s formalize that a little more.
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Naive Bayes classifiers in one slide!

Pr (Y | X1, · · · ,Xn) =
Pr (Y )× Pr (X1, · · · ,Xn | Y )

Pr (X1, · · ·Xn)

Naive conditional independence assump.:

∀i 6= j , Pr (Xi | Y ,Xj) = Pr (Xi | Y )

⇒ Pr (Y | X1, · · · ,Xn) =
1

Z
× Pr (Y )×

n∏
i=1

Pr (Xi | Y )
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Back to the example

Pr (S | H,W ,F ) =
1

Z
×Pr (S)×Pr (H | S)×Pr (W | S)×Pr (F | S)
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Back to the example

Pr (S = M) =? (1)

Pr (H = 1.81 | S = M) =?

Pr (W = 59 | S = M) =?

Pr (F = 21 | S = M) =?



Back to the example

Pr (S | H,W ,F ) =
1

Z
×Pr (S)×Pr (H | S)×Pr (W | S)×Pr (F | S)

S is discrete, H,W and F are assumed Gaussian.

S p̂S µ̂H|S σ̂H|S µ̂W |S σ̂W |S µ̂F |S σ̂F |S
M 0.5 1.78 0.0469 80 4.3012 28.25 2.0463

F 0.5 1.65 0.0834 60 9.4074 19 2.9154

Pr (S = M | 1.81, 59, 21)= 1
Z × 0.5× e

− (1.78−1.81)2

2.0.04692
√

2π0.04692
× e

− (80−59)2

2.4.30122
√

2π4.30122
× e

− (28.25−21)2

2.2.04632
√

2π2.04632

= 1
Z × 7.854.10−10

Pr (S = F | 1.81, 59, 21)= 1
Z × 1.730.10−3



Back to the example

Pr (S | H,W ,F ) =
1

Z
×Pr (S)×Pr (H | S)×Pr (W | S)×Pr (F | S)

Conclusion: given the data, (1.81m, 59kg, 21cm) is more likely to
be female.



Features

Pr (Y | X1, · · · ,Xn) =
1

Z
× Pr (Y )×

n∏
i=1

Pr (Xi | Y )

I Continuous Xi :
Assume normal distribution → Xi | Y = y ∼ N (µiy , σiy )

I Binary Xi :
Assume Bernoulli distribution → Xi | Y = y ∼ B (piy )



Algorithm

I Train:
For all possible values of Y and Xi , compute P̂r (Y = y) and
P̂r (Xi = xi | Y = y)

I Predict:
Given (x1, x2, · · · , xn), return y that maximizes
P̂r (Y = y) P̂r (Xi = xi | Y = y)


