Machine Learning: Naive Bayes Classifiers

A. Zemmari

LaBRI - Université de Bordeaux

Nov. 28, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An Example and a Bit of Intuition

S(ex)	H(eight) (m)	W(eight) (kg)	F(oot) size (cm)	
М	1.82	82	30	
M	1.80	86	28	
M	1.70	77	30	
М	1.80	75	25	
F	1.52	45	15	
F	1.65	68	20	
F	1.68	59	18	
F	1.75	68	23	

Question : Is (1.81, 59, 21) male or female?

An Example and a Bit of Intuition

S(ex)	H(eight) (m)	W(eight) (kg)	F(oot) size (cm)	
M	1.82	82	30	
M	1.80	86	28	
M	1.70	77	30	
М	1.80	75	25	
F	1.52	45	15	
F	1.65	68	20	
F	1.68	59	18	
F	1.75	68	23	

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Question : Is (1.81, 59, 21) male or female?

In other words:

$$\mathbb{P}r(S = M \mid (H, W, F) = (1.81, 59, 21)) \\> \mathbb{P}r(S = F \mid (H, W, F) = (1.81, 59, 21)) ? (1)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Bayes Law:

$$\mathbb{P}r(S = M \mid H, W, F) = \frac{\mathbb{P}r(S) \times \mathbb{P}r(H, W, F \mid S)}{\mathbb{P}r(H, W, F)}$$

In other words:

$$\mathsf{posterior} = \frac{\mathsf{prior} \times \mathsf{likelihood}}{\mathsf{evidence}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

But $\mathbb{P}r(H, W, F)$ does not depend on *S*, so the question boils down to:

$$\mathbb{P}r(S = M) \times \mathbb{P}r(H, W, F \mid S = M) \\ > \mathbb{P}r(S = F) \times \mathbb{P}r(H, W, F \mid S = F)$$

Bayes Law:

$$\mathbb{P}r(S = M \mid H, W, F) = \frac{\mathbb{P}r(S) \times \mathbb{P}r(H, W, F \mid S)}{\mathbb{P}r(H, W, F)}$$

In other words:

$$\mathsf{posterior} = \frac{\mathsf{prior} \times \mathsf{likelihood}}{\mathsf{evidence}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

But $\mathbb{P}r(H, W, F)$ does not depend on *S*, so the question boils down to:

$$\mathbb{P}r(S = M) \times \mathbb{P}r(H, W, F \mid S = M) \\ > \mathbb{P}r(S = F) \times \mathbb{P}r(H, W, F \mid S = F)$$

Bayes Law:

$$\mathbb{P}r(S = M \mid H, W, F) = \frac{\mathbb{P}r(S) \times \mathbb{P}r(H, W, F \mid S)}{\mathbb{P}r(H, W, F)}$$

In other words:

$$\mathsf{posterior} = \frac{\mathsf{prior} \times \mathsf{likelihood}}{\mathsf{evidence}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

But $\mathbb{P}r(H, W, F)$ does not depend on *S*, so the question boils down to:

$$\mathbb{P}r(S = M) \times \mathbb{P}r(H, W, F \mid S = M) \\ > \mathbb{P}r(S = F) \times \mathbb{P}r(H, W, F \mid S = F)$$

• $\mathbb{P}r(S)$ is easy to estimate.

• What about $\mathbb{P}r(H, W, F \mid S)$?

- $\mathbb{P}r(S)$ is easy to estimate.
- What about $\mathbb{P}r(H, W, F \mid S)$?

We have:

$\mathbb{P}r(H, W, F \mid S) = \mathbb{P}r(H \mid S) \times \mathbb{P}r(W \mid S, H) \times \mathbb{P}r(F \mid S, W, H)$

Naive Bayes:

 $\mathbb{P}r(W \mid S, H) = \mathbb{P}r(W \mid S) \text{ et } \mathbb{P}r(F \mid S, W, H) = \mathbb{P}r(F \mid S)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We have:

 $\mathbb{P}r(H, W, F \mid S) = \mathbb{P}r(H \mid S) \times \mathbb{P}r(W \mid S, H) \times \mathbb{P}r(F \mid S, W, H)$

Naive Bayes:

 $\mathbb{P}r(W \mid S, H) = \mathbb{P}r(W \mid S)$ et $\mathbb{P}r(F \mid S, W, H) = \mathbb{P}r(F \mid S)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$\mathbb{P}r(W \mid S, H) = \mathbb{P}r(W \mid S)$

what does that mean?

"Among male individuals, the weight is independent of the height" What do you think? Despite that naive assumption, Naive Bayes classifiers perform very well !

Let's formalize that a little more.

$$\mathbb{P}r(W \mid S, H) = \mathbb{P}r(W \mid S)$$

what does that mean? "Among male individuals, the weight is independent of the height" What do you think? Despite that naive assumption, Naive Bayes classifiers perform very well !

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbb{P}r(W \mid S, H) = \mathbb{P}r(W \mid S)$$

what does that mean?

"Among male individuals, the weight is independent of the height" What do you think?

Despite that naive assumption, Naive Bayes classifiers perform very well ! Let's formalize that a little more.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathbb{P}r(W \mid S, H) = \mathbb{P}r(W \mid S)$

what does that mean? "Among male individuals, the weight is independent of the height" What do you think? Despite that naive assumption, Naive Bayes classifiers perform very well !

Let's formalize that a little more.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathbb{P}r(W \mid S, H) = \mathbb{P}r(W \mid S)$

what does that mean? "Among male individuals, the weight is independent of the height" What do you think? Despite that naive assumption, Naive Bayes classifiers perform very well ! Let's formalize that a little more.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Naive Bayes classifiers in one slide!

$$\mathbb{P}r(Y \mid X_1, \cdots, X_n) = \frac{\mathbb{P}r(Y) \times \mathbb{P}r(X_1, \cdots, X_n \mid Y)}{\mathbb{P}r(X_1, \cdots, X_n)}$$

Naive conditional independence assump.:

$$\forall i \neq j, \mathbb{P}r(X_i \mid Y, X_j) = \mathbb{P}r(X_i \mid Y)$$

$$\Rightarrow \mathbb{P}r(Y \mid X_1, \cdots, X_n) = \frac{1}{Z} \times \mathbb{P}r(Y) \times \prod_{i=1}^n \mathbb{P}r(X_i \mid Y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Naive Bayes classifiers in one slide!

$$\mathbb{P}r(Y \mid X_1, \cdots, X_n) = \frac{\mathbb{P}r(Y) \times \mathbb{P}r(X_1, \cdots, X_n \mid Y)}{\mathbb{P}r(X_1, \cdots, X_n)}$$

Naive conditional independence assump .:

$$\forall i \neq j, \mathbb{P}r(X_i \mid Y, X_j) = \mathbb{P}r(X_i \mid Y)$$

$$\Rightarrow \mathbb{P}r(Y \mid X_1, \cdots, X_n) = \frac{1}{Z} \times \mathbb{P}r(Y) \times \prod_{i=1}^n \mathbb{P}r(X_i \mid Y)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Naive Bayes classifiers in one slide!

$$\mathbb{P}r(Y \mid X_1, \cdots, X_n) = \frac{\mathbb{P}r(Y) \times \mathbb{P}r(X_1, \cdots, X_n \mid Y)}{\mathbb{P}r(X_1, \cdots, X_n)}$$

Naive conditional independence assump .:

$$\forall i \neq j, \mathbb{P}r(X_i \mid Y, X_j) = \mathbb{P}r(X_i \mid Y)$$

$$\Rightarrow \mathbb{P}r(Y \mid X_1, \cdots, X_n) = \frac{1}{Z} \times \mathbb{P}r(Y) \times \prod_{i=1}^n \mathbb{P}r(X_i \mid Y)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\mathbb{P}r(S \mid H, W, F) = \frac{1}{Z} \times \mathbb{P}r(S) \times \mathbb{P}r(H \mid S) \times \mathbb{P}r(W \mid S) \times \mathbb{P}r(F \mid S)$$

S(ex)	H(eight) (m)	W(eight) (kg)	F(oot) size (cm)	
М	1.82	82	30	
М	1.80	86	28	
Μ	1.70	77	30	
М	1.80	75	25	
F	1.52	45	15	
F	1.65	68	20	
F	1.68	59	18	
F	1.75	68	23	

$$\mathbb{P}r(S = M) =?$$

 $\mathbb{P}r(H = 1.81 | S = M) =?$
 $\mathbb{P}r(W = 59 | S = M) =?$
 $\mathbb{P}r(F = 21 | S = M) =?$

(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathbb{P}r(S \mid H, W, F) = \frac{1}{Z} \times \mathbb{P}r(S) \times \mathbb{P}r(H \mid S) \times \mathbb{P}r(W \mid S) \times \mathbb{P}r(F \mid S)$$

S is discrete, H,W and F are assumed Gaussian.

S	\hat{p}_S	$\hat{\mu}_{H S}$	$\hat{\sigma}_{H S}$	$\hat{\mu}_{W S}$	$\hat{\sigma}_{W S}$	$\hat{\mu}_{F S}$	$\hat{\sigma}_{F S}$
М	0.5	1.78	0.0469	80	4.3012	28.25	2.0463
F	0.5	1.65	0.0834	60	9.4074	19	2.9154

$$\mathbb{P}r(S = M \mid 1.81, 59, 21) = \frac{1}{Z} \times 0.5 \times \frac{e^{-\frac{(1.78 - 1.81)^2}{2.0.0469^2}}}{\sqrt{2\pi 0.0469^2}} \times \frac{e^{-\frac{(80 - 59)^2}{2.4.3012^2}}}{\sqrt{2\pi 4.3012^2}} \times \frac{e^{-\frac{(28.25 - 21)^2}{2.2.0463^2}}}{\sqrt{2\pi 2.0463^2}} = \frac{1}{Z} \times 7.854.10^{-10}$$

 $\mathbb{P}r(S = F \mid 1.81, 59, 21) = \frac{1}{Z} \times 1.730.10^{-3}$

$$\mathbb{P}r(S \mid H, W, F) = \frac{1}{Z} \times \mathbb{P}r(S) \times \mathbb{P}r(H \mid S) \times \mathbb{P}r(W \mid S) \times \mathbb{P}r(F \mid S)$$

Conclusion: given the data, (1.81m, 59kg, 21cm) is more likely to be female.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Features

$$\mathbb{P}r(Y \mid X_1, \cdots, X_n) = \frac{1}{Z} \times \mathbb{P}r(Y) \times \prod_{i=1}^n \mathbb{P}r(X_i \mid Y)$$

► Continuous X_i:

Assume normal distribution $\rightarrow X_i \mid Y = y \sim \mathcal{N}(\mu_{iy}, \sigma_{iy})$

► Binary X_i:

Assume Bernoulli distribution $\rightarrow X_i \mid Y = y \sim \mathcal{B}(p_{iy})$

Algorithm

Train:

For all possible values of Y and X_i , compute $\hat{\mathbb{P}}r(Y = y)$ and $\hat{\mathbb{P}}r(X_i = x_i | Y = y)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Predict:

Given (x_1, x_2, \dots, x_n) , return y that maximizes $\hat{\mathbb{P}}r(Y = y)\hat{\mathbb{P}}r(X_i = x_i | Y = y)$