Support Vector Machine

The slides are taken from Prof. Andrew Moore's SVM tutorial at

http://www.cs.cmu.edu/~awm/tutorials

and from M. Tan course (The University of British Columbia)

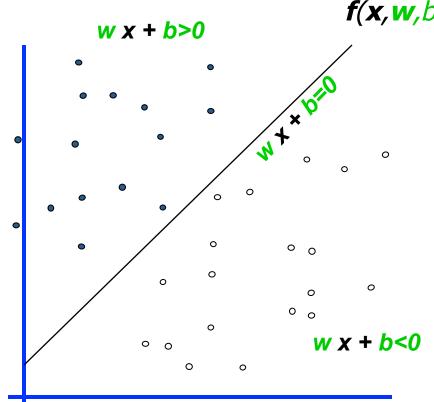
Overview

Intro. to Support Vector Machines (SVM)

Properties of SVM

Discussion

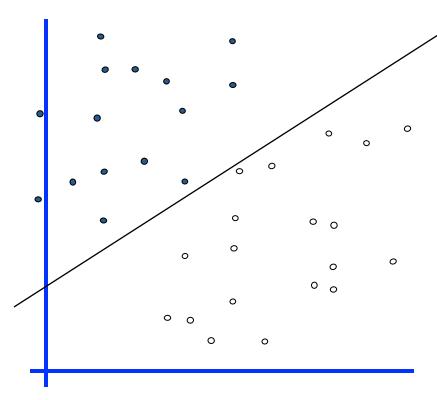
- denotes +1
- denotes -1



f(x, w, b) = sign(w x + b)

How would you classify this data?

- denotes +1
- ° denotes -1

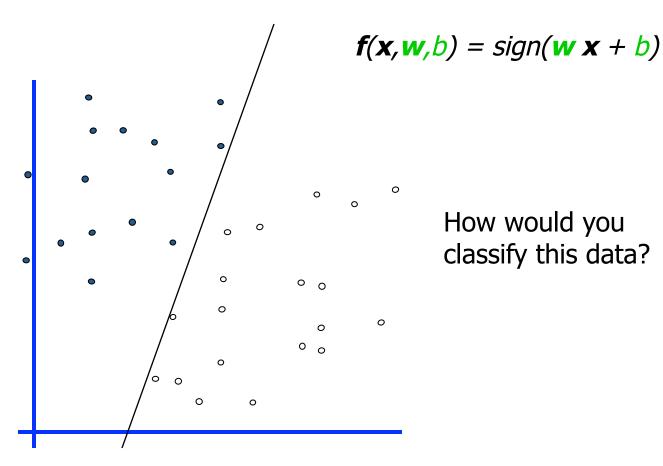


f(x, w, b) = sign(w x + b)

How would you classify this data?

Linear Classifiers

- denotes +1
- denotes -1

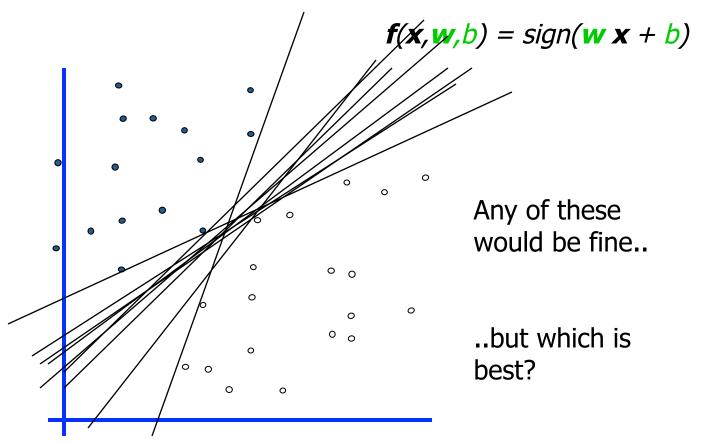


How would you classify this data?

Linear Classifiers

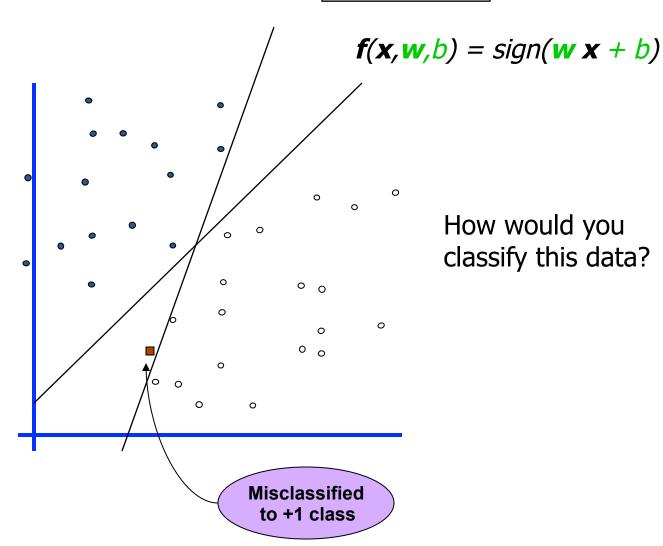
f yest

- denotes +1
- denotes -1



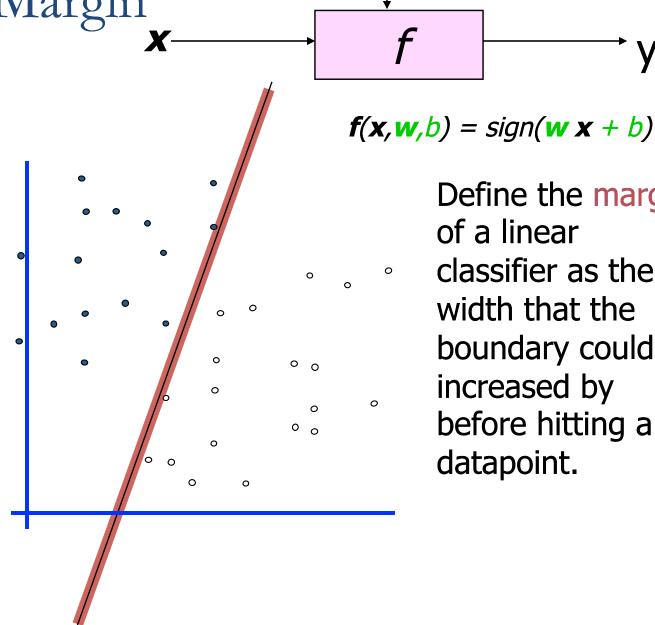
Linear Classifiers

- denotes +1
- denotes -1

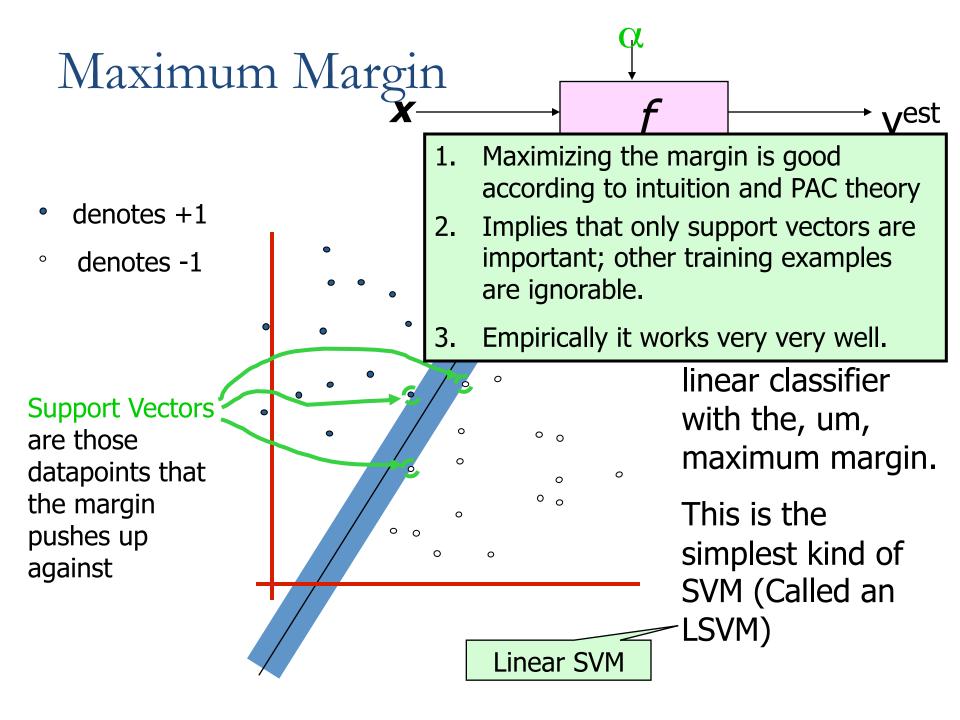


How would you classify this data? Classifier Margin

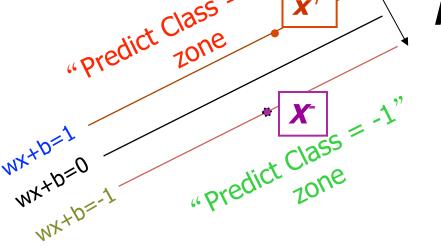
- denotes +1
- denotes -1



Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.



Linear SVM Mathematically M=Margin Width



What we know:

•
$$\mathbf{w} \cdot \mathbf{x}^+ + b = +1$$

•
$$\mathbf{w} \cdot \mathbf{x} + b = -1$$

•
$$\mathbf{w} \cdot (\mathbf{x}^+ - \mathbf{x}^{-1}) = 2$$

$$M = \frac{(x^{+} - x^{-}) \cdot w}{|w|} = \frac{2}{|w|}$$

Linear SVM Mathematically

Goal: 1) Correctly classify all training data

$$wx_i + b \ge 1 \qquad \text{if } y_i = +1 \\ wx_i + b \le 1 \qquad \text{if } y_i = -1 \\ y_i(wx_i + b) \ge 1 \qquad \text{for all i} \\ 2) \text{ Maximize the Margin} \qquad M = \frac{2}{|w|} \\ \text{same as minimize} \qquad \frac{1}{2} w^t w$$

- We can formulate a Quadratic Optimization Problem and solve for w and b
- Minimize $\Phi(w) = \frac{1}{2} w^t w$ subject to $y_i(wx_i + b) \ge 1$ $\forall i$

Solving the Optimization Problem

```
Find w and b such that \Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} is minimized; and for all \{(\mathbf{x_i}, y_i)\}: y_i(\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + b) \ge 1
```

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.
- The solution involves constructing a *dual problem* where a Lagrange multiplier α_i is associated with every constraint in the primary problem:

```
Find \alpha_1...\alpha_N such that
\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j} \text{ is maximized and}
(1) \sum \alpha_i y_i = 0
(2) \alpha_i \ge 0 for all \alpha_i
```

The Optimization Problem Solution

The solution has the form:

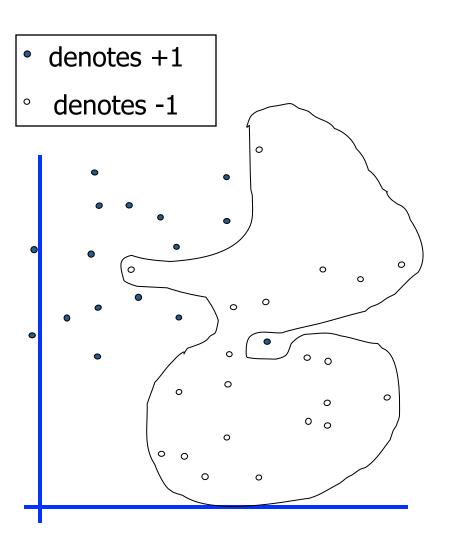
$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$
 $b = y_k - \mathbf{w^T} \mathbf{x_k}$ for any $\mathbf{x_k}$ such that $\alpha_k \neq 0$

- Each non-zero $α_i$ indicates that corresponding $\mathbf{x_i}$ is a support vector.
- Then the classifying function will have the form:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an inner product between the test point x and the support vectors x_i – we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products x_i^Tx_j between all pairs of training points.

Dataset with noise

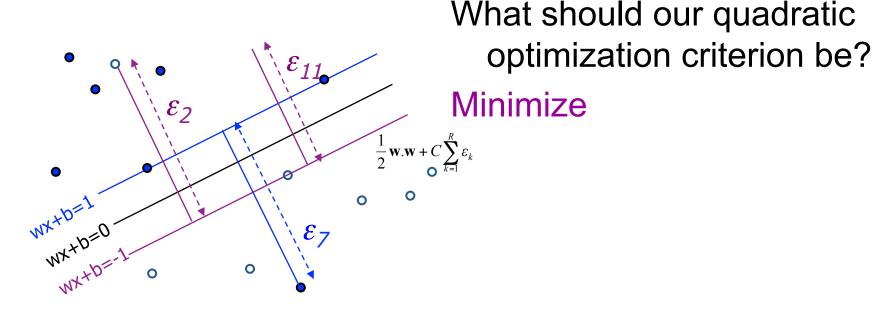


- Hard Margin: So far we require all data points be classified correctly
 - No training error
- What if the training set is noisy?
 - Solution 1: use very powerful kernels

OVERFITTING!

Soft Margin Classification

Slack variables ξi can be added to allow misclassification of difficult or noisy examples.



Hard Margin v.s. Soft Margin

The old formulation:

```
Find w and b such that \mathbf{\Phi}(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \text{ is minimized and for all } \{(\mathbf{x_i}, y_i)\}y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + \mathbf{b}) \ge 1
```

The new formulation incorporating slack variables:

```
Find w and b such that  \Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i} \xi_{i}  is minimized and for all \{(\mathbf{x_i}, y_i)\}  y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + b) \ge 1 - \xi_i  and \xi_i \ge 0 for all i
```

Parameter C can be viewed as a way to control overfitting.

Linear SVMs: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_i.
- Both in the dual formulation of the problem and in the solution training points appear only inside dot products:

```
Find \alpha_1...\alpha_N such that Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j x_i^T x_j is maximized and (1) \sum \alpha_i y_i = 0
```

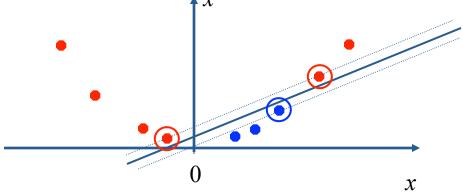
(2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i \mathbf{x} + \mathbf{b}$$

Non-linear SVMs

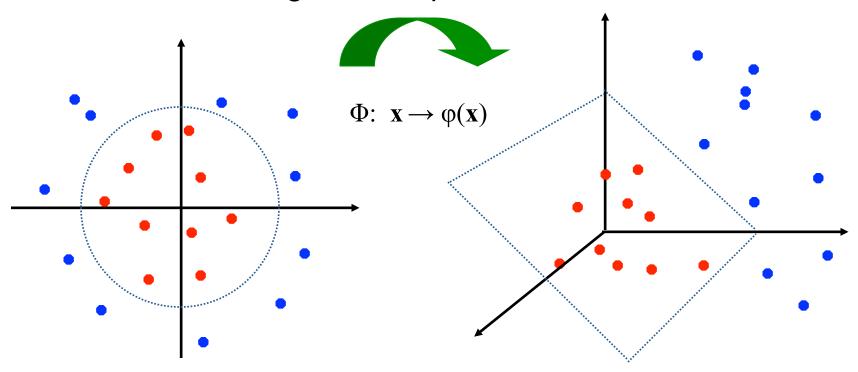
Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?



Non-linear SVMs: Feature spaces

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:



The "Kernel Trick"

- The linear classifier relies on dot product between vectors $K(x_i,x_j)=x_i^Tx_j$
- If every data point is mapped into high-dimensional space via some transformation Φ : $x \to \varphi(x)$, the dot product becomes:

$$K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i)^{\mathrm{T}} \varphi(\mathbf{x}_i)$$

- A kernel function is some function that corresponds to an inner product in some expanded feature space.
- **Example:**

2-dimensional vectors
$$\mathbf{x} = [x_1 \ x_2]$$
; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$,
Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$:
 $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$,

Examples of Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- Polynomial of power $p: K(\mathbf{x_i}, \mathbf{x_j}) = (1 + \mathbf{x_i}^T \mathbf{x_j})^p$
- Gaussian (radial-basis function network):

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \exp(-\frac{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2}}{2\sigma^{2}})$$

Sigmoid: K(x_i,x_j)= tanh(β₀x_i^Tx_j + β₁)

Non-linear SVMs Mathematically

Dual problem formulation:

Find $\alpha_1...\alpha_N$ such that $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j K(x_i, x_j)$ is maximized and

- $(1) \ \Sigma \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i

The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

• Optimization techniques for finding α_i 's remain the same!

Nonlinear SVM - Overview

- SVM locates a separating hyperplane in the feature space and classify points in that space
- It does not need to represent the space explicitly, simply by defining a kernel function
- The kernel function plays the role of the dot product in the feature space.

Properties of SVM

- Flexibility in choosing a similarity function
- Sparseness of solution when dealing with large data sets
 - only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
 - complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution
- Feature Selection

SVM Applications

- SVM has been used successfully in many realworld problems
 - text (and hypertext) categorization
 - image classification
 - bioinformatics (Protein classification,
 Cancer classification)
 - hand-written character recognition

Additional Resources

 An excellent tutorial on VC-dimension and Support Vector Machines:

C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):955-974, 1998.

The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, Wiley-Interscience; 1998

http://www.kernel-machines.org/

Reference

- Support Vector Machine Classification of Microarray Gene Expression Data, Michael P. S. Brown William Noble Grundy, David Lin, Nello Cristianini, Charles Sugnet, Manuel Ares, Jr., David Haussler
- www.cs.utexas.edu/users/mooney/cs391L/svm.ppt
- Text categorization with Support Vector Machines: learning with many relevant features
 - T. Joachims, ECML 98