Support Vector Machine

The slides are taken from
Prof. Andrew Moore’ s
SVM tutorial at

http://www.cs.cmu.edu/~awm/tutorials
and from M. Tan course
(The University of British Columbia)




Overview

* |Intro. to Support Vector Machines (SVM)

* Properties of SVM

 Discussion



Linear Classifiers (I(
X > f > yeSt

° denotes +1 w x + b>0 f(x,w,b) = sign(w x + b)

° denotes -1

How would you
classify this data?
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Any of these

would be fine..

..but which is
best?
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Linear Classifiers (F
X > f > yeSt

f(x,w,b) = sign(w x + D)

° denotes +1

° denotes -1

How would you
classify this data?

Misclassified
to +1 class



Classifier Margin )
X - f > yest

° denotes +1 f(x,w,b) = sign(w x + D)

denotes -1 : :
Define the margin

of a linear

- classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.




Maximum Marggn ?

” f > yest

1. Maximizing the margin is good
according to intuition and PAC theory
° denotes +1 2. Implies that only support vectors are
> denotes -1 ° important; other training examples
°° are ignorable.
T " [3. Empirically it works very very well.

° linear classifier

S . with the, um,
datapoints that ~ . maximum margin.
the r';n argin o This is the
E;‘Zmesi P ° simplest kind of
SVM (Called an
_—LSVM)

Linear SVM




What we know:
e w.x*+b=+1
e wW.x+b=-1
e w. (xt-x)=2

Re

matically
M=Margin Width




Linear SVM Mathematically

= Goal: 1) Correctly classify all training data
wx, +b=1 ify=+1

wx, +b=1 |ify=- }>
yi(wx, +b)=1 foralli,

2) Maximize the Margin | M = W
same as minimize —ww

2

=  We can formulate a Quadratic Optimization Problem and solve for w and b

1

=| Minimize <I>(W)=5Wtw

subject to y,(wx, +b) =1 Vi




Solving the Optimization Problem

Find w and b such that
®(w) =% wlw is minimized;
and for all {(X; ,);)}: y; (WTx; +b)>1

Need to optimize a quadratic function subject to linear
constraints.

Quadratic optimization problems are a well-known class of
mathematical programming problems, and many (rather

intricate) algorithms exist for solving them.
The solution involves constructing a dual problem where a

Lagrange multiplier a;is associated with every constraint in the
primary problem:

Find a,...a, such that

Q(0) =Xa, - V2L ooy yX;"X; is maximized and
(1) Zay,=0

(2) a; = 0 for all




The Optimization Problem Solution

The solution has the form:

W =XayX, b=y,- wix, for any x, such that a,= 0

Each non-zero a; indicates that corresponding x; is a
support vector.

Then the classifying function will have the form:
fx)=2ZayxTx +b
Notice that it relies on an inner product between the test

point x and the support vectors x; — we will return to this
later.

Also keep in mind that solving the optimization problem
involved computing the inner products x;"x; between all
pairs of training points.




Dataset with noise

° denotes +1 = Hard Margin: So far we require
all data points be classified correctly

° denotes -1

- No training error

= What if the training set is
noisy?

- Solution 1: use very powerful
kernels

OVERFITTING!




Soft Margin Classification

Slack variables i can be added to allow
misclassification of difficult or noisy examples.

What should our quadratic
optimization criterion be?

Minimize

1 R
—W.W+ CE &,
2

(o) k=1




Hard Margin v.s. Soft Margin

= The old formulation:

Find w and b such that

®(w) =% w'w is minimized and for all {(X; ,)’;)}
y, (WX, + b)> |

= The new formulation incorporating slack variables:

Find w and b such that

®(w) =% wlw + C2¢;  is minimized and for all {(X; ,y;)}
y;(wix;+b)>1-¢  and & >0 foralli

= Parameter C can be viewed as a way to control
overfitting.



Linear SVMs: Overview

= The classifier is a separating hyperplane.

= Most “important” training points are support vectors; they
define the hyperplane.

= Quadratic optimization algorithms can identify which training

points x; are support vectors with non-zero Lagrangian
multipliers a;.

= Both in the dual formulation of the problem and in the solution
training points appear only inside dot products:

Find a;...aysuch that

Q(0) =Xa; - 2XXa,0yyX;"X; iimized and
1) Xay;=0
(2) 0<a;<Cftorall g;

flx) = Zaiyl-xifx +b




Non-linear SVMs

= Datasets that are linearly separable with some noise
work out great:
9 —o | @—o

X

= But what are we going to do if the dataset is just too

hard? — —
0 X

= How about... mapping data to a higher-dimensional
space: y X2 °




Non-linear SVMs: Feature spaces

= General idea:

the original input space can always be

mapped to some higher-dimensional feature space
where the training set is separable:
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The “Kernel Trick”

= The linear classifier relies on dot product between vectors K(x;,x;)=x;"x;

= If every data point is mapped into high-dimensional space via some
transformation ®: x — @(x), the dot product becomes:

K(x;,x)= 0(x)) "o(x;)
m A kernel function is some function that corresponds to an inner product in
some expanded feature space.

= Example:
2-dimensional vectors x=[x; x,|; let K(x;,x)=(1 + x;'x;)*
Need to show that K(x;,x;)= @(x)) To(x)):
K(x;,x)=(1 + x;Tx;)*
=1+ xi12xj12 +2 XX XX xizzszz * zxille t 2xi2xj2
=1 x;? \2 X Xy Xi) \/inl \/inz]T [1 lez \2 XX szz \/Zxﬂ \/ijz]

= o(x) "o(x;), where ¢(x) = [1 x;° V2 x,x, x,7 \2x, V2x,]



Examples of Kernel Functions
= Linear: K(x;,x;)= x; 'x;
= Polynomial of power p: K(x;,X;)= (1+ x; Tx;)P

= Gaussian (radial-basis function network):

)

2
X - x|

20°

K(Xia Xj) = CXp(—

= Sigmoid: K(x;,X;)= tanh(ByX; ij +34)



Non-linear SVMs Mathematically

s Dual problem formulation:

Find «,...a, such that

Q(a) =2¢; - V222a.0yy,K(X;, X;) is maximized and
(1) Xay;=0

(2) a; =0 for all a;

m The solution is:

Sx) = Loy K(x;, X;)+ b

= Optimization techniques for finding ;" s remain the same!



Nonlinear SVM - Overview

= SVM locates a separating hyperplane in the
feature space and classify points in that

space

= |t does not need to represent the space
explicitly, simply by defining a kernel
function

= The kernel function plays the role of the dot
product in the feature space.



Properties of SVM

Flexibility in choosing a similarity function

Sparseness of solution when dealing with large data sets
- only support vectors are used to specify the separating hyperplane

Ability to handle large feature spaces
- complexity does not depend on the dimensionality of the feature space
Overfitting can be controlled by soft margin approach

Nice math property: a simple convex optimization problem which is
guaranteed to converge to a single global solution

Feature Selection



SVM Applications

* SVM has been used successfully in many real-

world problems

- text (and hypertext) categorization

- image classification

- bioinformatics (Protein classification,
Cancer classification)

- hand-written character recognition



Additional Resources

* An excellent tutorial on VC-dimension and Support Vector
Machines:

C.J.C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):955-974,
1998.

* The VC/SRM/SVM Bible:
Statistical Learning Theory by Vladimir Vapnik, Wiley-Interscience; 1998

http://www.kernel-machines.org/
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e Support Vector Machine Classification of Microarray
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Noble Grundy, David Lin, Nello Cristianini, Charles
Sugnet, Manuel Ares, Jr., David Haussler

* www.cs.utexas.edu/users/mooney/cs391L/svm.ppt

* Text categorization with Support Vector Machines:
learning with many relevant features

T. Joachims, ECML - 98



