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Introduction
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Discleamer

This chapter aims to introduce the mathematical concepts,

notions, and notations that we will use throughout this course.

It is clearly a reminder and not a complete course. Each

concept discussed here would deserve several chapters to be

fully developed, but the focus is on fundamentals, definitions,

and some useful theorems (without proofs) for the following.
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Probability Theory Reminders



Random Variables

• Definition: A random variable (r.v.) is a function that

assigns a real number to each possible outcome of a

random experiment.

There are two main types of random variables:

• Discrete: Takes a finite or countable number of values

(e.g., rolling a die).

• Continuous: Takes an uncountable set of values,

usually intervals of real numbers (e.g., measuring a

person’s height).

• Notation: Let X be a r.v.. We denote Pr (X = x) the

probability that X takes the value x (discrete) or fX (x)

the probability density function (continuous).
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Discrete Probability Distributions

• Definition: The probability distribution of a discrete r.v.

is a list of probabilities associated with each possible

value.

• Common Examples:

• Bernoulli: X ∼ B(p), with Pr (X = 1) = p and

P(X = 0) = 1− p.

• Binomial: X ∼ Bin(n, p), with

Pr (X = k) =
(n
k

)
pk(1− p)n−k .

• Poisson: X ∼ Poisson(λ), with Pr (X = k) = λke−λ

k! .

• Link with RL: Discrete distributions often model rewards

(distributed discretely) or choices of actions in an

environment.
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Continuous Probability Distributions

• Definition: The probability distribution of a continuous

r.v. is described by a probability density function (pdf)

fX (x), where Pr (a ≤ X ≤ b) =
∫ b

a
fX (x)dx .

• Common Examples:

• Normal (Gaussian): X ∼ N (µ, σ2), with

fX (x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

• Exponential: X ∼ Exp(λ), with fX (x) = λe−λx for

x ≥ 0.

• Uniform: X ∼ Uniform(a, b), with fX (x) =
1

b−a for x in

[a, b].

• Link with RL: useful for modeling continuous rewards or

actions in continuous environments (e.g., continuous

control).
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Cumulative Distribution Function (CDF)

• Definition: The cumulative distribution function of a r.v.

X , discrete or continuous, is defined by

FX (x) = Pr (X ≤ x).

• Properties:

• Monotonic: FX (x) is a non-decreasing function.

• Limits: limx→−∞ FX (x) = 0 and limx→∞ FX (x) = 1.

• Use in RL: It allows evaluating the cumulative probability

of obtaining a reward or being in a certain state.
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Expectation, Variance, and Moments

Expectation

• Definition: The expectation (or mean) of a r.v. is the

average value that this r.v. takes over a large number of

realizations of the random experiment.

• Formulation:

• For a discrete r.v. X with probability function

Pr (X = xi ):

E[X ] =
∑
i

xi · Pr (X = xi )

• For a continuous r.v. X with probability density fX (x):

E[X ] =

∫ ∞

−∞
x · fX (x) dx
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Expectation, Variance, and Moments

Expectation

• Properties:

• Linearity: E[aX + b] = aE[X ] + b for constants a and b.

• Sum: If X and Y are two random variables, then

E[X + Y ] = E[X ] + E[Y ].

• Link with RL: Expectation is used to calculate the

expected value of a reward, state, or action. It is

fundamental for policy evaluation in RL, notably in

Bellman equations.
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Expectation, Variance, and Moments

Variance

• Definition: Variance measures the dispersion of the

values of a random variable around its expectation.

• Formulation:

• For a random variable X :

Var(X ) = E
[
(X − E[X ])2

]
• For a discrete variable:

Var(X ) =
∑
i

(xi − E[X ])2 · Pr (X = xi )

• For a continuous variable:

Var(X ) =

∫ ∞

−∞
(x − E[X ])2 · fX (x) dx
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Expectation, Variance, and Moments

Variance

• Properties:

• Non-negativity: Var(X ) ≥ 0, with Var(X ) = 0 if and

only if X is a constant.

• Relation to expectation: Var(X ) = E[X 2]− (E[X ])2.

• Link with RL: Variance is useful for evaluating the

uncertainty or variability of rewards and transitions in an

environment.
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Expectation, Variance, and Moments

Covariance and Correlation

• Definition of Covariance: Covariance measures how

two random variables vary together.

Cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]

• Correlation: Correlation is a normalized version of

covariance, measuring the strength and direction of the

linear relationship between two random variables.

ρX ,Y =
Cov(X ,Y )√

Var(X ) · Var(Y )
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Expectation, Variance, and Moments

Covariance and Correlation

• Properties:

• Cov(X ,Y ) > 0: Indicates that X and Y tend to increase

together.

• Cov(X ,Y ) < 0: Indicates that X increases when Y

decreases.

• ρX ,Y ranges between -1 (perfect negative correlation)

and 1 (perfect positive correlation).

• Link with RL: Covariance and correlation can be used to

understand the relationships between different variables in

an environment, such as actions and rewards, or

successive states.
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Expectation, Variance, and Moments

Higher-Order Moments

• Moments: The k-th order moments of a random

variable X are given by E[X k ].

• First moment: The expectation E[X ], representing the

mean.

• Second moment: E[X 2], related to the variance.

• Third moment: Skewness, measuring the asymmetry of

the distribution relative to its mean.

• Fourth moment: Kurtosis, measuring the concentration

of values around the mean (the ”tail size” of the

distribution).

• Link with RL: Higher-order moments can be used to

more finely characterize reward distributions or state

transitions. 12



Expectation, Variance, and Moments

Applications in Reinforcement Learning

• Policy Evaluation: Use of expectation to calculate the

expected value of policies.

• Risk Management: Use of variance and higher-order

moments to assess and minimize uncertainty in outcomes

in stochastic environments.

• Policy Optimization: Adjustment of policies based on

the moments of reward distributions, to maximize

expected reward while minimizing risk.
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Inequalities and Limit Theorems

Markov Inequality

• Statement: For a non-negative random variable X and a

threshold a > 0, Markov’s inequality states that:

Pr (X ≥ a) ≤ E[X ]

a

• Application: Used to obtain bounds on the probabilities

of rare events.

• Link with RL: Can be used to evaluate the probabilities

of large errors in value estimates.
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Inequalities and Limit Theorems

Chebyshev’s Inequality

• Statement: For a random variable X with expectation µ

and variance σ2, Chebyshev’s inequality states that for

any k > 0:

Pr (|X − µ| ≥ kσ) ≤ 1

k2

• Application: Used to obtain bounds on deviations from

the mean.

• Link with RL: Used to assess the stability of value

estimates and potential deviation from the expected

value.
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Inequalities and Limit Theorems

Law of Large Numbers

• Statement: The law of large numbers states that the

empirical average of a large number of independent and

identically distributed random variables converges to their

expectation.

• Formulation:

1

n

n∑
i=1

Xi
p−→ E[X ] as n → ∞

• Application: Ensures that estimates based on samples

become accurate with a large number of samples.

• Link with RL: Ensures that average reward estimates

converge to their true value as more samples are collected.
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Inequalities and Limit Theorems

Central Limit Theorem

• Statement: The central limit theorem states that the

sum (or average) of many independent identically

distributed random variables tends towards a normal

distribution, regardless of the original distribution of the

variables.

• Formulation:

1√
n

n∑
i=1

(Xi − E[Xi ])
d−→ N (0, σ2) as n → ∞

• Application: Used for probabilistic approximations and

to derive confidence intervals.

• Link with RL: Enables predictions on the distribution of

value estimates, facilitating policy performance analysis. 17



Statistical Inference



Parametric Estimation

Point Estimators

• Definition: A point estimator is a statistic computed

from the sample and used to estimate an unknown

population parameter (e.g., mean or variance).

• Properties of Estimators:

• Bias: An estimator is biased if its expectation is not

equal to the parameter being estimated.

• Consistency: An estimator is consistent if, as the

sample size increases, the estimation converges in

probability to the parameter being estimated.

• Efficiency: An estimator is efficient if it has the smallest

variance among all unbiased estimators.

• Link with RL: Point estimators are used in evaluating

policy performance and for estimating value functions. 18



Parametric Estimation

Confidence Interval Estimation

• Definition: A confidence interval is an interval

constructed from sample data such that, under certain

assumptions, it contains the value of the unknown

parameter with a given probability (confidence level).

• Calculating a Confidence Interval:

• For the mean µ of a normal distribution with known

variance σ2, a 1− α confidence interval is given by:[
X̄ − zα/2 ·

σ√
n
, X̄ + zα/2 ·

σ√
n

]
where X̄ is the sample mean and zα/2 is the quantile of

the normal distribution.

• Link with RL: Confidence intervals are used to quantify

uncertainty in policy value estimates and in decisions

made by the agent.
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Hypothesis Testing

Hypothesis Formulation

• Null Hypothesis H0: This is the hypothesis to be tested,

often formulated as a hypothesis of no effect or status

quo.

• Alternative Hypothesis H1: This is the hypothesis

accepted if the data provides sufficient evidence against

H0.

• Significance Levels and Errors:

• Type I Error (α): Rejecting H0 when it is true.

• Type II Error (β): Failing to reject H0 when it is false.

• Link with RL: Hypothesis tests can be used to compare

different policies or validate reward models.
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Hypothesis Testing

• Parametric Tests: Based on specific assumptions about

the distribution of data (e.g., Student’s t-test, ANOVA).

• Non-Parametric Tests: No strong assumptions about

the data distribution (e.g., Wilcoxon test, Kruskal-Wallis

test).

• Link with RL: Parametric tests are used when data

assumptions are met, while non-parametric tests offer an

alternative when these assumptions are not verified.
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Hypothesis Testing

Test Power and Sample Size

• Test Power: Probability of rejecting H0 when H1 is true.

Power depends on the sample size, the effect to be

detected, and the significance level.

• Calculating Sample Size: For a test with power 1− β

and significance level α, the sample size can be

determined to ensure that the test detects an effect of a

given size.

• Link with RL: Sufficient test power is essential to ensure

that optimal policies are detected and validated with

statistical confidence.
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Optimization and Differential

Calculus



Basic Concepts in Optimization

Optimization Problems

• Definition: An optimization problem involves finding the

values of a set of variables that minimize or maximize an

objective function, often under constraints.

min
x∈Rn

f (x) or max
x∈Rn

f (x)

• Constrained Optimization: Optimization under

constraints that can be equalities or inequalities.

• Link with RL: Optimization problems appear in

reinforcement learning in the form of maximizing

cumulative rewards and optimizing value functions.
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Basic Concepts in Optimization

Solution Methods

• Exact Methods:

• Gradient Method: Uses the gradient of the objective

function to find a local optimal point by following the

direction of maximum descent.

xk+1 = xk − α∇f (xk)

• Newton’s Method: Uses second derivative information

(Hessian) to accelerate convergence to a critical point.
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Basic Concepts in Optimization

Solution Methods

• Approximate Methods:

• Stochastic Gradient Descent (SGD): A variant of the

gradient method where only stochastic estimates of the

gradient are used, allowing optimization of non-convex

functions and large-scale problems.

• Link with RL: GD methods are used in algorithms like

Q-learning and Policy Gradient to optimize value

functions and policies.
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Differential Calculus

Derivatives and Gradients

• Derivative of a Function: The derivative of f (x) with

respect to x is the limit of the rate of change of the

function as x changes.

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)

∆x

• Gradient: For a function f (x1, . . . , xn), the gradient is a

vector containing the partial derivatives with respect to

each variable.

∇f (x) =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
• Link with RL: Gradients are used to adjust parameters

in RL, such as policy gradient methods.
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Differential Calculus

Derivatives of Vector Functions

• Jacobian: This is the matrix of partial derivatives of a

vector function f : Rn → Rm, containing all partial

derivatives with respect to each input variable.

Jf(x) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


• Link with RL: Jacobians are relevant in neural networks

and in calculating gradients for multidimensional outputs

in deep RL algorithms.
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Fixed Point and Its Usage in

Reinforcement Learning



Introduction to Fixed Point

A fixed point of a function is a point that remains unchanged

when the function is applied to it. Formally, if f is a function,

then x is a fixed point of f if:

f (x) = x .

Fixed points appear in various contexts in mathematics,

optimization, and dynamical systems modeling.

In reinforcement learning (RL), fixed points are fundamental

because they allow us to formulate and solve equations that

define the optimal values of states or policies.
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Banach Fixed Point Theorem

The Banach Fixed Point Theorem, also known as the

Contraction Mapping Theorem, is a key mathematical tool in

the analysis of fixed points. It states that any contraction

mapping defined on a complete metric space has a unique

fixed point, and repeated application of the function converges

to this fixed point.

Theorem: Let (X , d) be a complete metric space, and let

T : X → X be a contraction (i.e., there exists a 0 < c < 1

such that d(T (x),T (y)) ≤ cḋ(x , y) for all x , y ∈ X ). Then

T has a unique fixed point, and for any x0 ∈ X , the sequence

defined by xn+1 = T (xn) converges to this fixed point.
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Usage of Fixed Points in RL

In RL, fixed points are crucial for understanding and solving

Bellman equations, which are at the core of RL algorithms

such as policy evaluation, value iteration, and Q−learning.
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