
Master 2 Computer Science

Advanced Neural Networks Architectures

Useful Tools

Akka Zemmari

Introduction

Introduction to GPUs

or how to speed up deep learning

Introduction to Dataloaders

or how to load and preprocess data

Overview of Keras, PyTorch, and PyTorch Lightning

or how to choose the right framework for your DL project

Introduction

0

Discleamer

This chapter aims to introduce some useful tools that we will use

throughout this course.

The content serves as a brief overview rather than a comprehensive

course, providing only the essential elements.

Each concept mentioned could warrant several chapters for a

thorough exploration, but the emphasis is on their practical use.

1

Introduction to GPUs

or how to speed up deep learning

What is a GPU, and why is it essential for deep learning?

What is a GPU?

A Graphics Processing Unit (GPU) is a specialized processor

originally designed to accelerate graphics rendering, primarily for

video games and other visual applications.

Unlike a Central Processing Unit (CPU), which is designed to

handle a wide range of tasks sequentially, a GPU is optimized for

performing many calculations simultaneously, making it highly

effective for parallel processing.

2

What is a GPU, and why is it essential for deep learning?

What is a GPU?

• Architecture: GPUs consist of thousands of smaller, efficient

cores designed to handle multiple tasks simultaneously. This is

in contrast to CPUs, which have fewer cores optimized for

sequential processing.

• Key Features: Massive Parallelism, the ability to perform

many operations simultaneously.

• High Throughput: Handles a high number of tasks

concurrently, improving performance on workloads involving

numerous small, independent calculations.

3

What is a GPU, and why is it essential for deep learning?

GPU vs. CPU: Key Differences

• Parallel vs. Serial Processing: GPUs excel at parallel tasks,

while CPUs are designed for sequential tasks.

• Architecture: A CPU typically has 4-16 cores, optimized for

high-speed execution of individual tasks, while a GPU may

have thousands of smaller cores designed to handle numerous,

concurrent operations.

• Memory Bandwidth: GPUs have higher memory bandwidth

compared to CPUs, allowing faster data access, which is

crucial for deep learning models that process large

datasets.

4

What is a GPU, and why is it essential for deep learning?

Why GPUs Are Essential for Deep Learning

Deep learning involves training complex neural networks on large

datasets, requiring millions or even billions of calculations.

These operations are often repetitive, involving matrix

multiplications and additions, which are computationally

intensive but highly parallelizable.

5

What is a GPU, and why is it essential for deep learning?

Why GPUs Are Essential for Deep Learning

• Speed: GPUs accelerate training times by handling multiple

computations simultaneously. A task that might take days on

a CPU can often be completed in hours on a GPU.

• Scalability: The parallel architecture of GPUs allows them to

scale easily with the complexity and size of neural networks.

As deep learning models grow larger, with more layers and

neurons, GPUs can handle this increased workload efficiently.

6

What is a GPU, and why is it essential for deep learning?

Why GPUs Are Essential for Deep Learning

• Specialized Libraries: Many deep learning frameworks (e.g.,

TensorFlow, PyTorch) leverage GPU-optimized libraries like

CUDA (Compute Unified Device Architecture) and cuDNN

(CUDA Deep Neural Network library), which are specifically

designed to maximize GPU performance.

• Support for Large Data: Deep learning often involves

processing vast amounts of data (e.g., images, videos, text),

and GPUs are well-suited for this because of their high

memory bandwidth and capacity to handle large-scale data

processing.

7

What is a GPU, and why is it essential for deep learning?

Applications of GPUs in Deep Learning

• Computer Vision: GPUs enable rapid training of convolutional

neural networks (CNNs) for tasks like image classification,

object detection, and segmentation.

• Natural Language Processing (NLP): GPUs are used to train

recurrent neural networks (RNNs) and transformers for tasks

like language translation, and text generation.

• Generative Models: Training of generative models like GANs

(Generative Adversarial Networks) and VAEs (Variational

Autoencoders) relies heavily on the computational power of

GPUs.

• ...

8

What is a GPU, and why is it essential for deep learning?

Conclusion GPUs are essential for deep learning due to their

ability to handle the massive parallel processing requirements of

neural networks.

By significantly reducing training time, scaling with model

complexity, and efficiently managing large datasets, GPUs have

become the backbone of modern deep learning applications.

Their use has democratized access to powerful AI models, enabling

rapid advancements in fields ranging from autonomous vehicles to

medical imaging and beyond.

9

Overview of major GPU providers: NVIDIA, AMD.

NVIDIA:

Market Leader: Dominates AI and deep learning sectors with

cutting-edge technologies.

Key Technologies:

- CUDA: Parallel computing platform optimized for deep learning.

- cuDNN: Accelerated library for neural networks.

- TensorRT: Inference optimizer for AI deployment.

10

Overview of major GPU providers: NVIDIA, AMD.

AMD:

Challenger: Known for high-performance, cost-effective GPUs.

Focus on open-source solutions, competitive performance, and

cloud collaborations.

Key Technologies:

- ROCm: Open-source platform for high-performance computing.

- MIOpen: Library for deep learning acceleration on AMD GPUs.

11

Introduction to GPU computing libraries (CUDA, cuDNN).

CUDA (Compute Unified Device Architecture)

Developed by NVIDIA, CUDA is a parallel computing platform and

application programming interface (API) model.

- Parallel Processing: Enables the execution of thousands of

threads simultaneously, significantly speeding up tasks like matrix

operations.

- Ease of Use: Integrates with popular programming languages (C,

C++, Python, Fortran), making it accessible for developers.

- Broad Ecosystem: Supports major deep learning frameworks

(TensorFlow, PyTorch)

12

Introduction to GPU computing libraries (CUDA, cuDNN).

cuDNN (CUDA Deep Neural Network library)

Developed by NVIDIA, cuDNN is a GPU-accelerated library

specifically designed for deep learning.

Provides highly optimized primitives for deep neural network

building blocks.

- Optimized Routines: Includes high-performance implementations

of forward and backward convolution, activation functions,

pooling, and normalization.

- Compatibility: Compatible with popular deep learning frameworks

such as TensorFlow, PyTorch, and Caffe.

13

Introduction to GPU computing libraries (CUDA, cuDNN).

Synergy of CUDA and cuDNN in AI Workflows

Real-World Applications:

Used in training state-of-the-art models in computer vision (e.g.,

CNNs for image classification), natural language processing (e.g.,

transformers), and generative models (e.g., GANs).

Supports rapid prototyping and deployment, allowing organizations

to move from research to production with minimal code changes.

Conclusion: CUDA and cuDNN are foundational technologies in

GPU-accelerated deep learning.

14

Hands on

CPU vs. GPU: A Practical Comparison

download the file Lab 1.py from the course repository and

complete it.

15

Introduction to Dataloaders

or how to load and preprocess data

Introduction

What are Dataloaders?

Definition: Dataloaders are utilities used to efficiently load and

preprocess data batches for machine learning models. Importance:

They help streamline the process of preparing data, ensuring

efficient and scalable training.

16

Role in Deep Learning Pipelines

Purpose:

- Efficient Loading: Ensure data is loaded and made available in a

way that does not bottleneck the training process.

- Preprocessing: Perform necessary transformations on data, such

as normalization and augmentation.

Pipeline Placement:

- Data Collection: Raw data is gathered.

- Dataloader: Data is passed through a Dataloader for batching

and preprocessing.

- Model Training: Batches are fed to the model for training.

17

Optimisation for GPUs

Challenges with Large Datasets:

- Memory Limitations: GPUs have limited memory which can be

quickly exhausted with large datasets.

- Data Transfer Bottlenecks: Moving data between CPU and GPU

can become a bottleneck.

Solutions:

- Efficient Data Loading: Implement techniques to reduce the

overhead of loading data.

-Asynchronous Loading: Use asynchronous processes to preload

data while the GPU is training.

18

Concepts: Batch Processing

What is Batch Processing?

Definition: Splitting the dataset into smaller batches that are

processed sequentially.

Advantages:

- Efficient Computation: Allows parallel processing on GPUs,

making better use of computational resources.

- Hardware Utilization: Reduces the overhead of processing large

datasets in one go.

19

Concepts: Shuffle

What is Shuffling?

Definition: Randomly reordering the data before feeding it into the

model.

Why Shuffle?

- Avoiding Bias: Prevents the model from learning patterns based

on the order of the data.

- Improving Generalization: Helps the model generalize better by

providing varied training samples.

20

Concepts: Data Augmentation

What is Data Augmentation?

Definition: Techniques used to artificially increase the size of a

dataset by applying transformations (e.g., rotations, translations).

Benefits:

- Increasing Dataset Size: Helps in creating more training samples

from the existing data.

- Improving Robustness: Makes the model more robust to

variations in the input data.

21

Best Practices

Efficient Data Loading Tips:

- Use Efficient Formats: Store data in formats that are quick to

read (e.g., HDF5, TFRecord).

- Minimize Overhead: Reduce the amount of preprocessing done

on the fly to avoid bottlenecks.

Common Pitfalls:

- Memory Overload: Avoid loading too much data into memory at

once.

- Inefficient Transfers: Ensure data transfer between CPU and

GPU is optimized to prevent slowdowns.

22

Summary

Recap of Key Points:

- Role of Dataloaders: Key component in managing data for

training models.

- Concepts: Understanding batch processing, shuffling, and

augmentation.

- Optimisation: Techniques to improve data loading efficiency and

GPU utilization.

23

Hands on

Data Loading and Preprocessing in PyTorch

download the file Lab 2.py from the course repository and

complete it.

24

Overview of Keras, PyTorch, and

PyTorch Lightning

or how to choose the right framework for your DL

project

Introduction to Deep Learning Frameworks

Purpose of Frameworks:

- Simplify the development and deployment of deep learning

models.

- Provide pre-built functions, layers, and tools for building neural

networks.

Popular Frameworks:

- Keras: User-friendly, high-level API often used with TensorFlow.

- PyTorch: Flexible, dynamic framework popular in research and

production.

- PyTorch Lightning: A lightweight wrapper around PyTorch for

cleaner code and easier experimentation.

25

Keras - Key Features and Use Cases

Keras Overview:

- High-level API: Designed to be user-friendly, modular, and easy

to extend.

- Integration: Often used as an API within TensorFlow but can

work independently.

Key Features:

- Simple and Intuitive Syntax: Great for beginners and rapid

prototyping.

- Extensive Pre-trained Models: Easy access to models like VGG,

ResNet, and more via keras.applications.

- High-Level Abstractions: Simplifies model building, training, and

evaluation.

Use Cases:

- Ideal for rapid prototyping and educational purposes.

- Widely used in small to medium-sized projects where ease of use

is prioritized.

- Suitable for model deployment through TensorFlow Serving.

26

PyTorch - Key Features and Use Cases

PyTorch Overview:

- Dynamic Computation Graphs: Changes during runtime,

providing more flexibility and debugging ease.

- Pythonic: Feels natural for Python developers, offering direct

integration with Python data structures.

Key Features:

- Autograd: Automatic differentiation for gradient computation.

- Rich Ecosystem: Strong community support with libraries like

torchvision for images and torchaudio for audio processing.

- Extensive Control: Allows granular control over training loops,

model layers, and optimizations.

Use Cases:

- Preferred for research and development due to its flexibility.

- Commonly used in computer vision, NLP, and reinforcement

learning.

- Industry adoption: Increasingly used in production environments

due to its performance and community support.

27

PyTorch Lightning - Key Features and Use Cases

PyTorch Lightning Overview:

- Wrapper for PyTorch: Simplifies training loops while retaining

PyTorch’s flexibility.

- Structured Code: Enforces a clear separation between model

definition, training, and validation.

Key Features:

- Reduce Boilerplate: Automatically handles training, validation,

and testing logic.

- Scalable Training: Easy integration with multi-GPU, TPU, and

distributed training setups.

- Logging and Callbacks: Built-in support for logging

(TensorBoard, WandB) and customizable callbacks.

Use Cases:

- Ideal for academic research with complex models needing rapid

iteration.

- Used in production to reduce code complexity and improve model

reproducibility.

- Facilitates experimentation with hyperparameter tuning and

multi-GPU setups.

28

Main Differences Between Keras, PyTorch, and PyTorch Light-

ning

Ease of Use:

- Keras: Easiest for beginners; minimal code needed for training.

- PyTorch: Flexible, but requires more manual handling of training

loops.

- PyTorch Lightning: Eases PyTorch development with structured

code.

Flexibility:

- Keras: High-level, but can be limiting for complex custom

models.

- PyTorch: Full control over all aspects of the training process.

- PyTorch Lightning: Balances flexibility with ease of use, keeping

control within the model definition.

Scalability:

- Keras: Limited built-in support for distributed training.

- PyTorch: Native support for distributed data parallelism. -

PyTorch Lightning: Seamlessly scales to multi-GPU and

multi-node setups.

29

Keras Project Structure

Typical Keras Project Layout:

- Data Preparation: Load and preprocess data using

tf.keras.preprocessing.

- Model Definition: Define the model architecture using the

Sequential or Functional API.

- Compilation: Compile the model with optimizer, loss, and

metrics.

- Training: Use model.fit() to train the model with callbacks for

monitoring.

- Evaluation and Prediction: Evaluate model performance using

model.evaluate() and make predictions.

30

Keras Project Structure

Example Structure:

|-- data.py # Data loading and preprocessing

|-- model.py # Model definition

|-- train.py # Training script

|-- evaluate.py # Evaluation script

|-- requirements.txt # Dependencies

31

PyTorch Project Structure

Typical PyTorch Project Layout:

- Data Loading: Use torch.utils.data for loading and

preprocessing data.

- Model Definition: Define the model class inheriting from

nn.Module.

- Training Loop: Write custom training, validation, and testing

loops.

- Loss and Optimizer: Define loss functions and optimizers (e.g.,

torch.optim.SGD).

- Checkpoints: Save and load model checkpoints during training.

32

PyTorch Project Structure

Example Structure:
|-- data loader.py # Data loading and transformations

|-- model.py # Model definition (nn.Module)

|-- train.py # Training and validation loops

|-- test.py # Testing and inference

|-- utils.py # Utility functions (metrics, logging)

|-- config.yaml # Configuration file for hyperparameters

33

PyTorch Lightning Project Structure

Typical PyTorch Lightning Project Layout:

- Data Module: Use pl.LightningDataModule to handle data

loading and preprocessing.

- Lightning Module: Define model logic, training steps, validation

steps, and testing steps.

- Trainer: Use Trainer to handle training, validation, testing, and

scaling.

- Callbacks: Use callbacks for early stopping, logging, and

checkpointing.

34

PyTorch Lightning Project Structure

Example Structure:

|-- data module.py # LightningDataModule for data handling

|-- model.py # LightningModule for model definition

|-- train.py # Training and testing script using Trainer

|-- callbacks.py # Custom callbacks (e.g., checkpointing)

|-- config.yaml # Configuration file for hyperparameters

|-- requirements.txt # Dependencies

35

Choosing the Right Framework

When to Use Keras:

- Best for beginners and quick prototyping.

- Suitable for projects that do not require complex customization.

When to Use PyTorch:

- Ideal for research and projects requiring full control over model

design and training.

- Preferred in academia due to its dynamic nature and debugging

ease.

When to Use PyTorch Lightning:

- Great for scaling PyTorch models with less code complexity.

- Suitable for researchers and production environments needing

rapid iteration and clean code. 36

Conclusion and Best Practices

Framework Choice:

- No single best framework; it depends on project requirements and

team expertise.

- Leverage Keras for simplicity, PyTorch for flexibility, and PyTorch

Lightning for structured PyTorch development.

Best Practices:

- Modular Code: Keep data, model, and training logic separate.

- Version Control: Use version control (Git) for tracking

experiments.

- Scalability: Consider scalability needs early in development.

Final Thoughts:

- Mastering multiple frameworks enhances versatility and allows for

optimal tool selection based on specific project needs.

37

Hands on

Data Loading and Preprocessing in PyTorch

download the file Lab 3.py from the course repository and

complete it.

38

	Introduction
	Introduction to GPUs or how to speed up deep learning
	Introduction to Dataloaders or how to load and preprocess data
	Overview of Keras, PyTorch, and PyTorch Lightning or how to choose the right framework for your DL project

