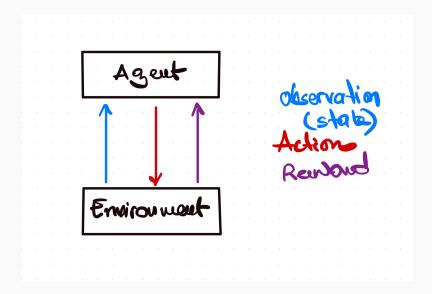
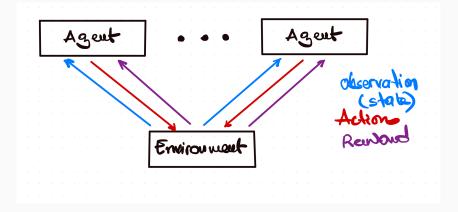
Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) aka "Playing with others" Akka Zemmari

What we have seen so far



What we will see today



This course is mainly based on the following references:

- *Multi-Agent Reinforcement Learning: Foundations and Modern Approaches* by Stefano V. Albrecht, Filippos Christianos and Lukas Schäfer.
- The course on RL by Stefano V. Albrecht
- The courses on RL from huggingface.co

Introduction to Multi-Agent Reinforcement Learning (MARL)

• Multi-Agent Reinforcement Learning (MARL) involves multiple agents interacting within a shared environment.

- Multi-Agent Reinforcement Learning (MARL) involves multiple agents interacting within a shared environment.
- Each agent learns to maximize its own reward by adjusting its actions based on interactions with both the environment and other agents.

- Multi-Agent Reinforcement Learning (MARL) involves multiple agents interacting within a shared environment.
- Each agent learns to maximize its own reward by adjusting its actions based on interactions with both the environment and other agents.
- MARL combines elements from both Reinforcement Learning (RL) and Game Theory.

¹Images from https://huggingface.co

¹Images from https://huggingface.co

¹Images from https://huggingface.co

Questions: What's common in these systems? what's different?

¹Images from https://huggingface.co

- Autonomous vehicles: Coordination among multiple self-driving cars.
- Robotics: Multiple robots cooperating in tasks like warehouse management.
- Finance: Agents optimizing trading strategies in competitive markets.
- Gaming: Simulations where agents cooperate or compete, e.g., in real-time strategy games.

Challenges in MARL

• Coordination: How agents can learn to work together effectively.

- Coordination: How agents can learn to work together effectively.
- **Competition:** Learning in competitive scenarios, where one agent's gain might be another's loss.

- Coordination: How agents can learn to work together effectively.
- **Competition:** Learning in competitive scenarios, where one agent's gain might be another's loss.
- **Communication:** Effective ways for agents to share information without compromising performance.

• **Cooperative models:** All agents work together to achieve a shared goal.

- **Cooperative models:** All agents work together to achieve a shared goal.
- **Competitive models:** Agents pursue individual goals that may conflict with others' objectives.

- **Cooperative models:** All agents work together to achieve a shared goal.
- **Competitive models:** Agents pursue individual goals that may conflict with others' objectives.
- **Mixed models:** Some agents cooperate while others compete, leading to complex dynamics.

- **Cooperative models:** All agents work together to achieve a shared goal.
- **Competitive models:** Agents pursue individual goals that may conflict with others' objectives.
- **Mixed models:** Some agents cooperate while others compete, leading to complex dynamics.
- Policies in MARL can be independent or dependent, influencing how agents learn in shared environments.

Standard models for multi-agent interaction:

- Normal-form game
- Repeated game
- Stochastic game

Normal-form game consists of:

Normal-form game consists of:

• A set of agents $N = \{1, 2, ..., n\}.$

Normal-form game

Normal-form game consists of:

- A set of agents $N = \{1, 2, ..., n\}.$
- For each agent $i \in N$:
 - A set of actions $A_i = \{a_{i,1}, a_{i,2}, ..., a_{i,m_i}\}.$
 - A utility function :

$$u_i: A = A_1 \times A_2 \times \ldots \times A_n \to \mathbb{R}.$$

Normal-form game

Normal-form game consists of:

- A set of agents $N = \{1, 2, \dots, n\}$.
- For each agent $i \in N$:
 - A set of actions $A_i = \{a_{i,1}, a_{i,2}, ..., a_{i,m_i}\}.$
 - A utility function :

$$u_i: A = A_1 \times A_2 \times \ldots \times A_n \to \mathbb{R}.$$

Each agent *i* uses its policy $\pi_i : A_i \to [0, 1]$ to choose an action a_i with probability $\pi_i(a_i)$, and receives a payoff (reward) $u_i(a_1, a_2, \ldots, a_n)$.

Thus, the expected reward for agent i is:

$$U_i(\pi_1,\pi_2,\ldots,\pi_n)=\sum_{a\in A}u_i(a)\prod_{j=1}^n\pi_j(a_j).$$

- Two prisoners are arrested for a crime and interrogated separately.
- Each prisoner can either confess (C) or remain silent (S).

- Two prisoners are arrested for a crime and interrogated separately.
- Each prisoner can either confess (C) or remain silent (S).

Reward matrix for the prisoners:

	Prisoner 2: C	Prisoner 2: S
Prisoner 1: C	(-1, -1)	(-5, 0)
Prisoner 1: S	(0, -5)	(-3, -3)

- Two players, three actions: Rock, Paper, Scissors.
- Reck beats Scissors, Scissors beats Paper, Paper beats Rock.

- Two players, three actions: Rock, Paper, Scissors.
- Reck beats Scissors, Scissors beats Paper, Paper beats Rock.

Reward matrix for the player:

	Player 2: Rock	Player 2: Paper	Player 2: Scissors
Player 1: Rock	(0, 0)	(-1, 1)	(1, -1)
Player 1: Paper	(1, -1)	(0, 0)	(-1, 1)
Player 1: Scissors	(-1, 1)	(1, -1)	(0, 0)

 $\bullet\,$ Normal-form game is single interaction \rightarrow no experience

 $\bullet\,$ Normal-form game is single interaction \rightarrow no experience

Repeated game:

- Repeat the same normal-form game for time steps $t = 0, 1, 2, 3, \cdots$
- At time *t*, each agent *i*:
 - selects policy π_i^t ,
 - samples action a_i^t with probability $\pi_i^t(a_i^t)$,
 - receives reward $u_i(a^t)$, where $a^t = (a_1^t, a_2^t, \dots, a_n^t)$.

 $\bullet\,$ Normal-form game is single interaction \rightarrow no experience

Repeated game:

- Repeat the same normal-form game for time steps $t = 0, 1, 2, 3, \cdots$
- At time t, each agent i:
 - selects policy π_i^t ,
 - samples action a_i^t with probability $\pi_i^t(a_i^t)$,
 - receives reward $u_i(a^t)$, where $a^t = (a_1^t, a_2^t, \dots, a_n^t)$.
- Learning: modify policy π_i^t based on history $H^t = (a^0, a^1, \dots, a^{t-1})$.

• Agents interact in a dynamic environment with uncertain outcomes.

• Agents interact in a dynamic environment with uncertain outcomes.

Stochastic game:

- At time t, each agent i:
 - selects policy π_i^t ,
 - samples action a_i^t with probability $\pi_i^t(a_i^t)$,
 - receives reward $u_i(a^t)$, where $a^t = (a_1^t, a_2^t, \dots, a_n^t)$.
- The environment is stochastic, with transition probabilities P(s'|s, a).
- Learning: modify policy π_i^t based on history $H^t = (a^0, a^1, \dots, a^{t-1})$.

Stochastic game

Agents interact in shared environment

- Environment has states, and actions have effect on state
- Agents choose actions based on observed state

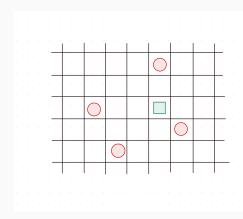
Stochastic game

Agents interact in shared environment

- Environment has states, and actions have effect on state
- Agents choose actions based on observed state

Example: Predator-prey

- Predator agents must catch prey agents.
- States: positions of agents in the environment.
- Actions: up, down, left, right.



Stochastic game (or Markov game)

Definition (Stochastic game)

A stochastic game consists of:

- Finite set of agents $N = \{1, 2, \dots, n\}$.
- Finite set of states S, with subset of terminal states $\overline{S} \subset S$.
- For each agent $i \in N$:
 - Finite set of actions A_i.
 - Reward function $\mathcal{R}_{i}: S \times \mathcal{A} \times S \rightarrow \mathbb{R}$, where $A = A_1 \times A_2 \times \ldots \times A_n$.
- State transition probabilities $P : S \times A \times S \rightarrow [0, 1]$ s.t.: $\forall s \in S, a \in A : \sum_{s' \in S} P(s, a, s') = 1.$
- Initial state distribution $\mu : S \to [0, 1]$ s.t.: $\sum_{s \in S} \mu(s) = 1$ and $\forall s \in S : \mu(s) = 0$.

Stochastic game (or Markov game)

Definition (Stochastic game)

A stochastic game consists of:

- Finite set of agents $N = \{1, 2, \dots, n\}$.
- Finite set of states S, with subset of terminal states $\bar{S} \subset S$.
- For each agent $i \in N$:
 - Finite set of actions A_i.
 - Reward function $\mathcal{R}_{i}: S \times \mathcal{A} \times S \rightarrow \mathbb{R}$, where $A = A_1 \times A_2 \times \ldots \times A_n$.
- State transition probabilities $P : S \times A \times S \rightarrow [0, 1]$ s.t.: $\forall s \in S, a \in A : \sum_{s' \in S} P(s, a, s') = 1.$
- Initial state distribution $\mu : S \to [0, 1]$ s.t.: $\sum_{s \in S} \mu(s) = 1$ and $\forall s \in S : \mu(s) = 0$.

Remark

It's a generalization of Markov Decision Process (MDP) to multiple agents.

- Game starts in initial state $s_0 \in S$.
- At time t, each agent i:
 - Observes current state *s*_t.
 - Chooses action a_i^t with probability $\pi_i(s_t, a_i^t)$.
 - Receives reward $u_i(s_t, a_1^t, \ldots, a_n^t)$.
- Game transitions into next state s_{t+1} with probability $P(s_t, a, s_{t+1})$.
- Repeat T times or until terminal state is reached.

 \Rightarrow Learning is now based on state-action history $H_t = (s_0, a_0, s_1, a_1, \dots, s_t)$ Given policy profile $\pi = (\pi_1, \pi_2, ..., \pi_n)$, what is expected return to agent *i* in state *s*?

Given policy profile $\pi = (\pi_1, \pi_2, ..., \pi_n)$, what is expected return to agent *i* in state *s*?

Analogous to Bellman equation in MDP:

$$U_i(s,\pi) = \sum_{a \in A} \left(\prod_{j \in N} \pi_j(s,a_j) \right) \left[u_i(s,a) + \gamma \sum_{s' \in S} P(s,a,s') U_i(s',\pi) \right]$$

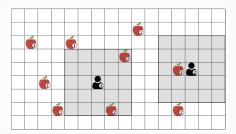
Definition (Partially observable stochastic game)

A partially observable stochastic game (POSG) is defined by the same elements of a stochastic game and additionally defines for each agent $i \in I$:

- Finite set of observations O_i.
- Observation function $\mathcal{O}_i : A \times S \times O_i \rightarrow [0,1]$ such that

$$orall a \in A, s \in S: \sum_{o_i \in O_i} \mathcal{O}_i(a, s, o_i) = 1$$

- In stochastic games the agents, can directly observe the environment state and the chosen actions of all agents
- In a POSG, the agents receive "observations" that carry some incomplete information about the environment state and agents' actions.



Simple (naive) approach:

For each agent *i*, consider the other agents as part of the environment.

Whiteboard time!

If agent rewards differ, $u_i \neq u_j$, what should π optimise?

Many solution concepts exist:

- Minimax solution
- Nash/correlated equilibrium
- Pareto-optimality
- Social welfare & fairness
- No-regret
- Targeted optimality & safety

Intuitions: see Whiteboard

Datails: see next session