Reinforcement Learning

Basic Concepts in RL

Akka Zemmari

Introduction

Agent

Environment

State

Action

Reward

Episode

Introduction

RL in a nutshell

Figure 1: RL: An agent interacting with an environment

Key Concepts:

- Agent
- Environment
- Action
- Reward
- Episode

Toy Example

Figure 2: Toy Example: Grid World

- The agent navigates from a starting position to a goal while avoiding obstacles.
- Hands-on: see files Grid.py and starter_grid.py.

Agent

Agent: The learner or decision maker that interacts with the environment.

Components:

- Policy
- Value Function
- Model

- In the toy example, the agent is the robot navigating the grid world.

Environment

Environment: The external system with which the agent interacts.

Components:

- State
- Action
- Reward

State

State: A representation of the environment.

Figure 3: Toy Example: the state is the position of the robot in the Grid World.

Action

Action

Action: The set of possible moves the agent can make.

Figure 4: Toy Example: the agent can move up (a_1) , right (a_2) , down (a_3) , left (a_4) , or stay in its place (a_5) .

Reward

Reward: A scalar feedback signal from the environment.

Figure 5: Toy Example: the agent receives a reward of +1 when reaching the goal, -1 when hitting an obstacle or get out of the boundary, and 0 otherwise.

Reward

Reward: Tabular representation (suitable for programming).

	a ₁	a ₂	a ₃	a ₄	a ₅
<i>s</i> ₁	-1	0	0	-1	0
<i>s</i> ₂	-1	0	0	0	0
<i>S</i> 3	-1	-1	-1	0	0
<i>S</i> ₄	0	0	-1	-1	0
<i>S</i> 5	0	-1	0	0	0
<i>s</i> ₆	0	-1	+1	0	-1
<i>S</i> ₇	0	0	-1	-1	-1
<i>S</i> ₈	0	+1	-1	-1	0
S 9	-1	-1	-1	0	+1

Return: The sum of rewards over time steps.

A trajectory is a sequence of states, actions, and rewards:

$$s_1 \xrightarrow{r_1}_{a_1} s_2 \xrightarrow{r_2}_{a_2} s_3 \xrightarrow{r_3}_{a_3} \dots \xrightarrow{r_{T-1}}_{a_{T-1}} s_T.$$
(1)

The return is the sum of rewards:

$$return = r_1 + r_2 + \ldots + r_{T-1}.$$
 (2)

Return: The sum of rewards over time steps.

Figure 6: Toy Example: trajectories and returns.

Discounted Return: The sum of rewards over time steps with a discount factor γ .

Definition:

discounted return = $r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots + \gamma^{T-1} r_{T-1}$. (3)

- $\gamma \in [0,1]$ is the discount factor:
 - γ = 0: the agent is myopic (only cares about the immediate reward).
 - $\gamma = 1$: the agent is far-sighted (cares about all future rewards).
- Toy Example: see whiteboard.

Episode

Episode

Episode: A sequence of time steps where the agent interacts with the environment.

Figure 7: Toy Example: an episode in the grid world.

- An episode is usually assumed to terminate in a finite number of time steps. Tasks with episodes are called episodic tasks.