
Reinforcement Learning

Multi-armed bandits

Or an MDP with a unique state

Akka Zemmari

General information

Some references:

• Reinforcement Learning: An Introduction, Sutton and Barto, 2018

• Deepmind Course on RL, D. Silver

• MVA Course on Reinforcement Learning, A. Lazaric

Gymnasium:

https://gymnasium.farama.org

AlphaGo the movie:

1

https://gymnasium.farama.org

About this lecture

Which route to take?

Bike Tram B Car

• 7 possible routes to go from Chartrons to the University

• Suppose no app to tell you which route is the fastest

• You can try a route each day and see how long it takes

• You want to converge to the best route as fast as possible

Tension between Exploration and Exploiting.

2

Which route to take?

Bike Tram B Car

• 7 possible routes to go from Chartrons to the University

• Suppose no app to tell you which route is the fastest

• You can try a route each day and see how long it takes

• You want to converge to the best route as fast as possible

Tension between Exploration and Exploiting.

2

Which route to take?

Bike Tram B Car

• 7 possible routes to go from Chartrons to the University

• Suppose no app to tell you which route is the fastest

• You can try a route each day and see how long it takes

• You want to converge to the best route as fast as possible

Tension between Exploration and Exploiting.

2

Multi-armed bandits

3

• arm = machine = action

• K arms: 1, 2, . . . ,K Each machine has a unknown reward

distribution: Dk , with mean µk = E[rk]. Rewards are bounded in

[0, 1].

Scenario

• for t = 1, 2, . . .

• choose an arm at ∈ {1, 2, . . . ,K}
• receive a reward rt ∼ Dat

We play either for a fixed number of steps T or indefinitely (finite or

infinite horizon).

4

Why bandits?

• Simplest form of RL, yet interesting!

• Good warm-up before tackling more complex problems

• Basic building block for more complex RL problems

• Actions don’t change the state of the environment

• Actions impact only immediate reward

5

• arm = machine = action

• K arms: 1, 2, . . . ,K

• Each machine has a unknown reward distribution: Dk , with mean µk

Goal

• find the best arm: a∗ = argmaxKk=1 µk

• maximize the cumulative reward over T time steps

R(T) =
T∑
t=1

rt

6

• arm = machine = action

• K arms: 1, 2, . . . ,K

• Unknown reward distribution: Dk , with mean µk

Goal

• find the best arm: a∗ = argmaxKk=1 µk

• we denote µ∗ = maxKk=1 µk = µa∗

• minimize the regret over T time steps

Regret

The regret over T rounds is the difference between the best expected

total reward and the expected total reward of the realized actions

L(T) = T · µ∗ − E[
T∑
t=1

rt]

7

Random Bandit

Showtime!

8

Wanted

Find a strategy σ that minimizes the regret

min
σ

L(T) ≡ max
σ

E[R(T)]

Algorithms

• Explore-then-Exploit

• ε-greedy

• UCB

• Thompson Sampling

9

Wanted

Find a strategy σ that minimizes the regret

min
σ

L(T) ≡ max
σ

E[R(T)]

Algorithms

• Explore-then-Exploit

• ε-greedy

• UCB

• Thompson Sampling

9

Challenges

Difficulties

Make choices based on incomplete statistics

Trade-off between

• exploitation: maximize performance based on current knowledge

• exploration: increase knowledge to improve future decisions

Best long-term strategy may involve short-term sacrifices.

10

Some notation

• rt : reward at time t

•

ri,t =

{
rt if action i was played at time t

0 otherwise

• ni (T): number of times action i was played up to time T

• µ̂i (T): empirical mean of rewards for action i up to time T

µ̂i (T) =
1

ni (T)

T∑
t=1

ri,t

11

Explore-then-Exploit

• Explore: Try each arm a fixed number of times, N.

• Compute: Estimate the mean reward µ̂i of each arm based on the

collected data.

• Exploit: Play the arm with the highest estimated mean reward for

the remaining time steps.

12

What can go wrong?

• Not enough exploration: We may not have enough data to

estimate the mean reward accurately.

• Too much exploration: We may waste time playing suboptimal

arms.

Problem

We don’t know in advance what number of plays are needed so that the

estimates are precise enough to separate the best arm from the others.

13

What can go wrong?

• Not enough exploration: We may not have enough data to

estimate the mean reward accurately.

• Too much exploration: We may waste time playing suboptimal

arms.

Problem

We don’t know in advance what number of plays are needed so that the

estimates are precise enough to separate the best arm from the others.

13

ε-greedy

Never stop exploring!

ε ∈]0, 1[.

Play =

Uniformly at random with probability ε,

arg max
i∈[1,K]

µ̂i (T) with probability 1− ε

14

How to update the mean estimates?

We need to maintain the estimates µ̂i (T) =
∑T

t=1 ri,t
ni (T) .

Compute the sum at each time step → update in O(T), this is not

efficient

Trick. Express µ̂i (T + 1) in terms of µ̂i (T) and ri,T+1.

µ̂i (T + 1) = µ̂i (T) +
1

ni (T + 1)
(ri,T+1 − µ̂i (T))

Now we can update in O(1).

15

How to update the mean estimates?

We need to maintain the estimates µ̂i (T) =
∑T

t=1 ri,t
ni (T) .

Compute the sum at each time step → update in O(T), this is not

efficient

Trick. Express µ̂i (T + 1) in terms of µ̂i (T) and ri,T+1.

µ̂i (T + 1) = µ̂i (T) +
1

ni (T + 1)
(ri,T+1 − µ̂i (T))

Now we can update in O(1).

15

Regret Analysis of ε-Greedy

At the blackboard

16

Issues with ε-Greedy:

• Exploration never stops

• Exploration does not take into account existing knowledge

• May take a long time to converge (i.e., so that argmax µ̂i (T) = a∗)

Question:

Can we beat a linear regret?

17

What is the best we can hope for?

Lower bound on the regret

Theorem (Lai and Robbins, 1985)

For any bandit algorithm, the regret satisfies

lim inf
T→∞

L(T) ≥ log(T) ·
∑

i :µi<µ∗

µ∗ − µi

DKL(Di || D∗)
= Ω(log(T))

where DKL(p, q) is the Kullback-Leibler divergence between the two

distributions p and q.

This is way better than a linear regret!. . .

. . . But can we achieve it in practice?

18

Upper Confidence Bound (UCB)

Also known as: Optimism in the Face of Uncertainty

Figure 1: Auer, P., Cesa-Bianchi, N. & Fischer, P

The UCB algorithm balances optimally exploration and exploitation by

considering the uncertainty in reward estimates.
19

UCB Algorithm

• At time T :

Play = arg max
i∈[1,K]

µ̂i (T) + c(i ,T)

where:

• c(i ,T) =
√

2 log(T)
ni (T)

.

Intuition Behind UCB

• When ni (T) is small (little information):

• c(i ,T) is large → we need to explore.

• When ni (T) is large (much information):

• c(i ,T) is small → play according to µ̂i (T). It happens exponentially

more often as T grows.

20

UCB Algorithm

• At time T :

Play = arg max
i∈[1,K]

µ̂i (T) + c(i ,T)

where:

• c(i ,T) =
√

2 log(T)
ni (T)

.

Intuition Behind UCB

• When ni (T) is small (little information):

• c(i ,T) is large → we need to explore.

• When ni (T) is large (much information):

• c(i ,T) is small → play according to µ̂i (T). It happens exponentially

more often as T grows.

20

The ci can can be seen as a confidence bounds.

21

Why c(i ,T) =
√

2 log(T)
ni (T)

?

Hoeffding’s inequality

Let X1,X2, . . . ,Xn be i.i.d. samples of a random variable X such that

X ∈ [0, 1]. µ = E[X]. Then, for any ε > 0,

P

(∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ ε

)
≤ 2 exp(−2nε2)

Intuition on the board. 22

UCB has a logarithmic regret

Theorem (Auer, Bianchi, and Fischer, 2002)

The UCB algorithm satisfies

L(T) ≤ 8 ·
∑

i :µi<µ∗

log(T)

∆i
+ O(

∑
i

∆i)

where ∆i = µ∗ − µi .

The regret is logarithmic in T . This is close to the lower bound!

23

A Bayesian Approach:

Thompson Sampling

What is a Bayesian approach?

To simplify, rewards are 0 or 1.

Key idea.

• Models what you observe as a distribution (belief) & update when

you observe new observations.

• Take action based on your belief using Bayesian inference.

24

Bayesian Bandits

Approximate the true reward distribution Di of machine i by a Beta

distribution Bi of parameters α(i , t) and β(i , t).

Di ≈ D̂i (t) = Bi (α(i , t), β(i , t))

• α(i , t): number of successes for arm i up to time t.

• β(i , t): number of failures for arm i up to time t.

• Bi (α, β) =
Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1

25

Thompson Sampling Algorithm

• Initialize α(i , 0) = 1 and β(i , 0) = 1 for all i (uniform prior).

• Repeat.

1. Sample a reward r̃i (t) from each Bi (α(i , t), β(i , t)).

2. Play the arm with the highest sampled reward.

3. Update the parameters α(i , t) and β(i , t) based on the observed

reward, by maximizing the probability to have seen the observed

reward with our model/belief.

Here, the update rule is simple. If we played arm i at time t and received

reward ri,t , then we update the parameters as follows:

α(i , t + 1) = α(i , t) + ri,t

β(i , t + 1) = β(i , t) + 1− ri,t

26

Optimality of Thompson Sampling

Theorem (Agrawal and Goyal, 2012)

Thompson Sampling achieves a logarithmic regret.

27

	General information
	About this lecture
	Multi-armed bandits
	A Bayesian Approach: Thompson Sampling

