Reinforcement Learning

Multi-armed bandits Or an MDP with a unique state Akka Zemmari

General information

Some references:

- Reinforcement Learning: An Introduction, Sutton and Barto, 2018
- Deepmind Course on RL, D. Silver
- MVA Course on Reinforcement Learning, A. Lazaric

An API standard for reinforcement learning with a diverse collection of reference environments

Gymnasium:

https://gymnasium.farama.org

AlphaGo the movie:

About this lecture

Which route to take?

Which route to take?

- 7 possible routes to go from Chartrons to the University
- Suppose no app to tell you which route is the fastest
- You can try a route each day and see how long it takes
- You want to converge to the best route as fast as possible

Which route to take?

- 7 possible routes to go from Chartrons to the University
- Suppose no app to tell you which route is the fastest
- You can try a route each day and see how long it takes
- You want to converge to the best route as fast as possible

Tension between Exploration and Exploiting.

Multi-armed bandits

- arm = machine = action
- K arms: 1,2,..., K Each machine has a unknown reward distribution: D_k, with mean μ_k = E[r_k]. Rewards are bounded in [0,1].

Scenario

- for t = 1, 2, ...
 - choose an arm $a_t \in \{1, 2, \dots, K\}$
 - receive a reward $r_t \sim \mathcal{D}_{a_t}$

We play either for a fixed number of steps T or indefinitely (finite or infinite horizon).

- Simplest form of RL, yet interesting!
- Good warm-up before tackling more complex problems
- Basic building block for more complex RL problems
- Actions don't change the state of the environment
- Actions impact only immediate reward

- arm = machine = action
- *K* arms: 1, 2, ..., *K*
- Each machine has a unknown reward distribution: \mathcal{D}_k , with mean μ_k

Goal

- find the best arm: $a^* = \arg \max_{k=1}^{K} \mu_k$
- maximize the cumulative reward over T time steps

$$R(T) = \sum_{t=1}^{T} r_t$$

- arm = machine = action
- *K* arms: 1, 2, ..., *K*
- Unknown reward distribution: \mathcal{D}_k , with mean μ_k

Goal

- find the best arm: $a^* = \arg \max_{k=1}^{K} \mu_k$
- we denote $\mu^* = \max_{k=1}^{K} \mu_k = \mu_{a^*}$
- minimize the regret over T time steps

Regret

The regret over T rounds is the difference between the best expected total reward and the expected total reward of the realized actions

$$L(T) = T \cdot \mu^* - \mathbb{E}[\sum_{t=1}^T r_t]$$

Random Bandit

Showtime!

Find a strategy σ that minimizes the regret

$$\min_{\sigma} L(T) \equiv \max_{\sigma} \mathbb{E}[R(T)]$$

Find a strategy σ that minimizes the regret

$$\min_{\sigma} L(T) \equiv \max_{\sigma} \mathbb{E}[R(T)]$$

Algorithms

- Explore-then-Exploit
- ε -greedy
- UCB
- Thompson Sampling

Difficulties

Make choices based on incomplete statistics

Trade-off between

- exploitation: maximize performance based on current knowledge
- exploration: increase knowledge to improve future decisions

Best long-term strategy may involve short-term sacrifices.

• *r_t*: reward at time *t*

$$r_{i,t} = \begin{cases} r_t & \text{if action } i \text{ was played at time } t \\ 0 & \text{otherwise} \end{cases}$$

- $n_i(T)$: number of times action *i* was played up to time T
- $\hat{\mu}_i(T)$: empirical mean of rewards for action *i* up to time *T*

$$\hat{\mu}_i(T) = \frac{1}{n_i(T)} \sum_{t=1}^T r_{i,t}$$

- Explore: Try each arm a fixed number of times, N.
- **Compute:** Estimate the mean reward $\hat{\mu}_i$ of each arm based on the collected data.
- **Exploit:** Play the arm with the highest estimated mean reward for the remaining time steps.

What can go wrong?

- Not enough exploration: We may not have enough data to estimate the mean reward accurately.
- **Too much exploration:** We may waste time playing suboptimal arms.

Problem

We don't know in advance what number of plays are needed so that the estimates are precise enough to separate the best arm from the others.

Never stop exploring!

 $\varepsilon \in]0,1[.$

$$\mathsf{Play} = \begin{cases} \mathsf{Uniformly at random} & \mathsf{with probability } \varepsilon, \\ \arg \max_{i \in [1, K]} \hat{\mu}_i(T) & \mathsf{with probability } 1 - \varepsilon \end{cases}$$

We need to maintain the estimates $\hat{\mu}_i(T) = \frac{\sum_{t=1}^T r_{i,t}}{n_i(T)}$.

Compute the sum at each time step \rightarrow update in O(T), this is not efficient

We need to maintain the estimates $\hat{\mu}_i(T) = \frac{\sum_{t=1}^T r_{i,t}}{n_i(T)}$.

Compute the sum at each time step \rightarrow update in O(T), this is not efficient

Trick. Express $\hat{\mu}_i(T+1)$ in terms of $\hat{\mu}_i(T)$ and $r_{i,T+1}$.

$$\hat{\mu}_i(T+1) = \hat{\mu}_i(T) + \frac{1}{n_i(T+1)}(r_{i,T+1} - \hat{\mu}_i(T))$$

Now we can update in O(1).

At the blackboard

Issues with ε -Greedy:

- Exploration never stops
- Exploration does not take into account existing knowledge
- May take a long time to converge (i.e., so that $\arg \max \hat{\mu}_i(T) = a^*$)

Question:

Can we beat a linear regret?

Lower bound on the regret

Theorem (Lai and Robbins, 1985)

For any bandit algorithm, the regret satisfies

$$\liminf_{T \to \infty} L(T) \ge \log(T) \cdot \sum_{i: \mu_i < \mu^*} \frac{\mu^* - \mu_i}{D_{\mathcal{KL}}(\mathcal{D}_i || \mathcal{D}_*)} = \Omega(\log(T))$$

where $D_{KL}(p, q)$ is the Kullback-Leibler divergence between the two distributions p and q.

This is way better than a linear regret!...

... But can we achieve it in practice?

Upper Confidence Bound (UCB)

Also known as: Optimism in the Face of Uncertainty

Figure 1: Auer, P., Cesa-Bianchi, N. & Fischer, P

The UCB algorithm balances **optimally** exploration and exploitation by considering the uncertainty in reward estimates.

UCB Algorithm

• At time T:

$$\mathsf{Play} = \arg \max_{i \in [1,K]} \hat{\mu}_i(T) + c(i,T)$$

where:

•
$$c(i, T) = \sqrt{\frac{2\log(T)}{n_i(T)}}$$
.

UCB Algorithm

• At time T:

$$\mathsf{Play} = \arg \max_{i \in [1, \mathcal{K}]} \hat{\mu}_i(\mathcal{T}) + c(i, \mathcal{T})$$

where:

•
$$c(i, T) = \sqrt{\frac{2\log(T)}{n_i(T)}}$$
.

Intuition Behind UCB

- When $n_i(T)$ is small (little information):
 - c(i, T) is large \rightarrow we need to **explore**.
- When $n_i(T)$ is large (much information):
 - c(i, T) is small → play according to µ̂_i(T). It happens exponentially more often as T grows.

Why
$$c(i, T) = \sqrt{\frac{2\log(T)}{n_i(T)}}$$
?

Hoeffding's inequality

Let X_1, X_2, \ldots, X_n be i.i.d. samples of a random variable X such that $X \in [0, 1]$. $\mu = \mathbb{E}[X]$. Then, for any $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|\geq\varepsilon\right)\leq2\exp(-2n\varepsilon^{2})$$

Intuition on the board.

Theorem (Auer, Bianchi, and Fischer, 2002)

The UCB algorithm satisfies

$$L(T) \leq 8 \cdot \sum_{i:\mu_i < \mu^*} \frac{\log(T)}{\Delta_i} + O(\sum_i \Delta_i)$$

where $\Delta_i = \mu^* - \mu_i$.

The regret is logarithmic in T. This is close to the lower bound!

A Bayesian Approach: Thompson Sampling To simplify, rewards are 0 or 1.

Key idea.

- Models what you observe as a distribution (**belief**) & update when you observe new observations.
- Take action based on your belief using Bayesian inference.

Bayesian Bandits

Approximate the true reward distribution \mathcal{D}_i of machine *i* by a Beta distribution \mathcal{B}_i of parameters $\alpha(i, t)$ and $\beta(i, t)$.

$$\mathcal{D}_i \approx \widehat{\mathcal{D}}_i(t) = \mathcal{B}_i(\alpha(i,t),\beta(i,t))$$

- $\alpha(i, t)$: number of successes for arm i up to time t.
- $\beta(i, t)$: number of failures for arm *i* up to time *t*.
- $\mathcal{B}_i(\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$

Thompson Sampling Algorithm

- Initialize $\alpha(i, 0) = 1$ and $\beta(i, 0) = 1$ for all *i* (uniform prior).
- Repeat.
 - 1. **Sample** a reward $\tilde{r}_i(t)$ from each $\mathcal{B}_i(\alpha(i, t), \beta(i, t))$.
 - 2. Play the arm with the highest sampled reward.
 - Update the parameters α(i, t) and β(i, t) based on the observed reward, by maximizing the probability to have seen the observed reward with our model/belief.

Here, the update rule is simple. If we played arm *i* at time *t* and received reward $r_{i,t}$, then we update the parameters as follows:

 $\alpha(i, t+1) = \alpha(i, t) + r_{i,t}$ $\beta(i, t+1) = \beta(i, t) + 1 - r_{i,t}$

Theorem (Agrawal and Goyal, 2012)

Thompson Sampling achieves a logarithmic regret.