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Rl : Agent interacting with an environment

Figure 1: Agent interacting with an environment
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Introduction to MDPs

A Markov Decision Process (MDP) is defined as a tuple:

M = (S ,A,P ,R , γ)

• S : set of states

• A: set of actions

• P : transition probability function P(s ′|s, a):
P : S × A× S → [0, 1]

(s, a, s ′) 7→ P(s ′, s, a) = Pr(st+1 = s ′ | st = s, at = a)

• R: reward function R(s, a)

R : S × A → R

• γ: discount factor
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Introduction to MDPs

Toy Example

The grid world is a simple MDP with a 2D grid of states.

Figure 2: Grid world
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Introduction to MDPs

Dynamic of the MDP

• The Dynamic of the MDP is defined by the transition

probability function P(s ′|s, a) and the reward function

R(s, a).

• It can also be caracterized by:

p(s ′, r | s, a) = Pr(st+1 = s ′, rt+1 = r | st = s, at = a)
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Policy and Value Functions

• A policy π is a mapping from states to actions:

π : S → A

• More generally, a policy can be stochastic. π(a, s) (or

π(a|s)) is the probability of taking action a in state s:

π : S × A → [0, 1]

(s, a) 7→ π(a, s) = Pr(at = a | st = s)
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Policy and Value Functions

The ultimate goal of an agent is to find a policy π that

maximizes the expected sum of rewards:

π∗ = argmax
π

E

[
∞∑
t=0

γtR(st , at)

]
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Policy and Value Functions

Figure 3: Question: Starting from state s1 wich policy is best?

(See the blackboard)
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Policy and Value Functions

How to evaluate a policy?

Let vi be the value of state si under policy π.

First method :

v1 = r1 + γr2 + γ2r3 + · · ·
v2 = r2 + γr3 + γ2r4 + · · ·
v3 = r3 + γr4 + γ2r1 + · · ·
v4 = r4 + γr1 + γ2r2 + · · ·
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Policy and Value Functions

How to evaluate a policy?

Let vi be the value of state si under policy π.

Rewriting the equations:

v1 = r1 + γ (r2 + γr3 + · · · ) = r1 + γv2
v2 = r2 + γ (r3 + γr4 + · · · ) = r2 + γv3
v3 = r3 + γ (r4 + γr1 + · · · ) = r3 + γv4
v4 = r4 + γ (r1 + γr2 + · · · ) = r4 + γv1
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Policy and Value Functions

How to evaluate a policy?

Let vi be the value of state si under policy π.

Rewriting the equations in a matrix form:
v1
v2
v3
v4

 =


r1
r2
r3
r4

+


γv2
γv3
γv4
γv1

 =


r1
r2
r3
r4

+γ


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0




v1
v2
v3
v4
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Policy and Value Functions

How to evaluate a policy?

Let vi be the value of state si under policy π.

Wich can be written as:

v = r + γPv

→ this is the Bellman equation
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Policy and Value Functions

More formally, back to the schema of RL:

We have the following notations and random variables:

• t: time step

• St : state at time t

• At : action at time t at state St

• Rt+1: reward at time t + 1 after taking action At at state

St

• St+1: state at time t +1 after taking action At at state St
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Policy and Value Functions

More formally, back to the schema of RL:

The steps are determined by the following distributions (we

assume we know them, this is the model-based approach):

• St → At by π(At = a|St = s)

• St ,At → St+1 by P(St+1 = s ′|St = s,At = a)

• St ,At → Rt+1 by p(Rt+1 = r |St = s,At = a)
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Policy and Value Functions

Consider a trajectory of states, actions and rewards (described

by the r.v. above):

St
At−→ St+1,Rt+1

At+1−−→ St+2,Rt+2
At+2−−→→ · · ·

The discounted return is:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1

The value function is the expected return:

vπ(s) = Eπ [Gt | St = s]

15



Policy and Value Functions

Definition:

The value function or state-value function vπ(s) is defined as:

vπ(s) = Eπ [Gt | St = s] = Eπ

[
∞∑
t=0

γtR(st , at) | s0 = s

]
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Policy and Value Functions

Remarks:

• It is a function of s. It is a conditional expectation with

the condition that the state starts from s.

• It is based on the policy π. For a different policy, the

state value may be different.

• If the policy, the transition function and the reward

function are all deterministic, then the

value function is simply the return, i.e., the sum of the

rewards along the trajectory.
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Policy and Value Functions

Back to our Example

Rewriting the equations:

vπ1(s1) = 0 + γ + γ2 + · · · = γ
1−γ

vπ2(s1) = −1 + γ + γ2 + · · · = −1 + γ
1−γ

vπ3(s1) = 0.5
(
−1 + γ

1−γ

)
+ 0.5

(
γ

1−γ

)
= −0.5 + γ

1−γ
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Policy and q-value functions

Intuition and Definition: Similar to the value function, the

action-value function or q-value function caracterizes the value

of taking an action in a state under a policy.

It is the expected return starting from state s, taking action a,

and then following policy π:

qπ(s, a) = Eπ [Gt | St = s,At = a]

=
∑

r P(r | s, a)r + γ
∑

s′ P(s
′ | s, a)vπ(s ′)
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Policy state and q-value functions

Let’s rewrite the equation for th value function, considering

the action taken at time t:

vπ(s) = Eπ [Gt | St = s]

=
∑

a π(a|s)Eπ [Gt | St = s,At = a]

=
∑

a π(a|s)qπ(s, a)
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Policy and q-value functions

Example:

qπ(s1, a1) = −1 + γvπ(s1)

qπ(s1, a2) = −1 + γvπ(s2)

qπ(s1, a3) = 0 + γvπ(s3)

qπ(s1, a4) = −1 + γvπ(s1)

qπ(s1, a5) = 0 + γvπ(s1)
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Summary

• A Markov Decision Process (MDP) is defined as a tuple:

M = (S ,A,P ,R , γ)

• The value function

vπ(s) = Eπ [Gt | St = s]

is the expected return starting from state s under policy

π.

• The action-value function

qπ(s, a) = Eπ [Gt | St = s,At = a]

is the expected return starting from state s, taking action

a, and then following policy π.
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Summary

• The Bellman equation is a recursive equation that

caracterizes the value function:

vπ(s) =
∑

a π(a|s)qπ(s, a)
=

∑
a π(a|s) (

∑
r P(r | s, a)r + γ

∑
s′ P(s

′ | s, a)vπ(s ′))

• The Bellman equation in matrix form is:

vπ = rπ + γPπvπ

• How to solve the Bellman equation? See the next lecture.
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