Reinforcement Learning

Bellman Equations

aka Dynamic Programming

Akka Zemmari

Bellman Equations

Solving an MDP

Prediction

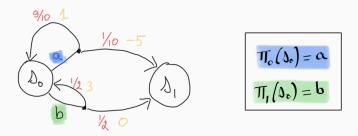
- **Estimate**: $v_{\pi}(s)$ or $q_{\pi}(s, a)$ for a given policy π Also called: Policy Evaluation
- Key Question:
 - > Given my strategy, what is my expected return?

Control

- Estimate: $\pi_*(s)$ or $q_*(s, a)$ Goal: Find the Optimal Policy
- Key Question:
 - > What is the optimal way to behave? For example, what is the best treatment?

Bellman Equations - An Example

Evaluate the value of two different policies for this simple MDP.



Blackboard.

Bellman Equations

Bellman Equations for Deterministic Policies

State-Value Function:

$$V^{\pi}(s) = \sum_{s' \in S, r \in R} p(s', r|s, \pi(s)) \left[r + \gamma V^{\pi}(s') \right]$$

Action-Value Function:

$$Q^{\pi}(s,a) = \sum_{s' \in S, r \in R} p(s',r|s,a) \left[r + \gamma Q^{\pi}(s',a') \right]$$

Richard E. Bellman (1920-1984)

The equations provide recursive relationships for evaluating a policy.

Bellman Equations

Bellman Equations for Deterministic Policies

State-Value Function:

$$V^{\pi}(s) = \sum_{s' \in S, r \in R} p(s', r|s, \pi(s)) \left[r + \gamma V^{\pi}(s') \right]$$

Action-Value Function:

$$Q^{\pi}(s, a) = \sum_{s' \in S, r \in R} p(s', r|s, a) \left[r + \gamma Q^{\pi}(s', a') \right]$$

Richard E. Bellman (1920-1984)

The equations provide recursive relationships for evaluating a policy.

Question. What if the policy is probabilistic? $\pi: S \times A \rightarrow [0,1]$

Optimal Bellman Equations

Same but for V^* and Q^* .

Optimal Bellman Equations

State-Value Function:

$$\forall s \in S, V^*(s) = \max_{a} \sum_{s' \in S, r \in R} p(s', r|s, a) [r + \gamma V^*(s')]$$

Action-Value Function:

$$\forall s \in S, a \in A, Q^*(s, a) = \sum_{s' \in S, r \in R} p(s', r|s, a) [r + \gamma V^*(s')]$$

Again, the equations provide recursive relationships for finding the optimal policy, but this time the system of equations is non-linear.

Unique Solution

Theorem

 V^* is the unique solution to the following system of equations:

$$\forall s \in S, \quad V(s) = \max_{a} \sum_{s' \in S, r \in R} p(s', r|s, a) [r + \gamma V(s')]$$

All(most) algorithms for solving MDPs are based on Bellman equations in some way.

6

Using Bellman Equations to

Estimate the Value of a Policy

First Idea: Solve the System of Equations

To estimate the value of a policy, solve the Bellman equations for each state:

$$\begin{cases} V^{\pi}(s_0) = \sum_{s',r} p(s',r \mid s_0,\pi(s_0)) \left[r + \gamma V^{\pi}(s') \right] \\ V^{\pi}(s_1) = \sum_{s',r} p(s',r \mid s_1,\pi(s_1)) \left[r + \gamma V^{\pi}(s') \right] \\ \vdots \\ V^{\pi}(s_N) = \sum_{s',r} p(s',r \mid s_N,\pi(s_N)) \left[r + \gamma V^{\pi}(s') \right] \end{cases}$$

This represents a system of linear equations.

Matrix Form

Let's rewrite the system of equations in matrix form.

$$V^{\pi}(s) = \sum_{s',r} p(s',r \mid s,\pi(s)) [r + \gamma V^{\pi}(s')]$$

can be written as:

$$V^{\pi}(s) = r(s,\pi(s)) + \gamma \sum_{s'} p(s'\mid s,\pi(s)) V^{\pi}(s')$$

where $r(s, \pi(s)) = \mathbb{E}[R_t \mid S_t = s, A_t = \pi(s)]$ is the expected reward for taking action $\pi(s)$ in state s.

Matrix Form

Thus we get

$$\begin{cases} V^{\pi}(s_0) = r(s_0, \pi(s_0)) + \gamma \sum_{s'} p(s' \mid s_0, \pi(s_0)) V^{\pi}(s') \\ V^{\pi}(s_1) = r(s_1, \pi(s_1)) + \gamma \sum_{s'} p(s' \mid s_1, \pi(s_1)) V^{\pi}(s') \\ \vdots \\ V^{\pi}(s_N) = r(s_N, \pi(s_N)) + \gamma \sum_{s'} p(s' \mid s_N, \pi(s_N)) V^{\pi}(s') \end{cases}$$

Let V^{π} and R^{π} be the vectors of values and rewards, and P^{π} the transition matrix. Then the system of equations can be written as:

Matrix Representation: $\mathbf{V}^{\pi} = \mathbf{R}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi}$

Matrix Form

Thus we get

$$\begin{cases} V^{\pi}(s_0) = r(s_0, \pi(s_0)) + \gamma \sum_{s'} p(s' \mid s_0, \pi(s_0)) V^{\pi}(s') \\ V^{\pi}(s_1) = r(s_1, \pi(s_1)) + \gamma \sum_{s'} p(s' \mid s_1, \pi(s_1)) V^{\pi}(s') \\ \vdots \\ V^{\pi}(s_N) = r(s_N, \pi(s_N)) + \gamma \sum_{s'} p(s' \mid s_N, \pi(s_N)) V^{\pi}(s') \end{cases}$$

Let V^{π} and R^{π} be the vectors of values and rewards, and P^{π} the transition matrix. Then the system of equations can be written as:

Matrix Representation: $V^{\pi} = R^{\pi} + \gamma P^{\pi} V^{\pi}$

Solution:
$$V^{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

Computational Complexity

$$\mathbf{V}^{\pi} = (\mathbf{I} - \gamma \mathbf{P}^{\pi})^{-1} \mathbf{R}^{\pi}$$

- Size of the matrix: $|S| \times |S|$
- Complexity of matrix inversion:
 - $O(|S|^3)$ using Gauss-Jordan elimination
 - $O(|S|^{2.807})$ using Strassen's algorithm
 - ullet $O(|S|^{2.376})$ using Coppersmith-Winograd algorithm

Computational Complexity

$$\mathbf{V}^{\pi} = (\mathbf{I} - \gamma \mathbf{P}^{\pi})^{-1} \mathbf{R}^{\pi}$$

- Size of the matrix: $|S| \times |S|$
- Complexity of matrix inversion:
 - $O(|S|^3)$ using Gauss-Jordan elimination
 - $O(|S|^{2.807})$ using Strassen's algorithm
 - $O(|S|^{2.376})$ using Coppersmith-Winograd algorithm

Problems

- This is too slow for large MDPs.
- This idea cannot be used for the optimal policy because the system of equations is non-linear :-(

Computational Complexity

$$\mathbf{V}^{\pi} = (\mathbf{I} - \gamma \mathbf{P}^{\pi})^{-1} \mathbf{R}^{\pi}$$

- Size of the matrix: $|S| \times |S|$
- Complexity of matrix inversion:
 - $O(|S|^3)$ using Gauss-Jordan elimination
 - $O(|S|^{2.807})$ using Strassen's algorithm
 - $O(|S|^{2.376})$ using Coppersmith-Winograd algorithm

Problems

- This is too slow for large MDPs.
- This idea cannot be used for the optimal policy because the system of equations is non-linear :-(

We need to find a **faster** and **more general** algorithm.

Iterative Methods

Fixed-Point computation

We have a function $f: \mathbb{R}^n \to \mathbb{R}^n$ and we want to find a fixed point: a point x^* such that $f(x^*) = x^*$.

α -contraction

A function is an α -contraction iff

$$\forall x, y \in \mathbb{R}^n, \quad \|f(x) - f(y)\| \le \alpha \|x - y\|$$

for some $\alpha \in [0, 1)$.

The killer theorem

Banach Theorem

If f is an α -contraction, then

- there exists a unique fixed point x*
- the sequence $x_{k+1} = f(x_k)$ converges to x^* for any initial point x_0
- it converges exponentially fast: $||x^* x_k|| \le \frac{\alpha^k}{1-\alpha} ||x_1 x_0||$

We can use this to solve the Bellman equations

Three main algorithms derived from Banach's theorem:

- Policy Evaluation. Find the value V^{π} of a policy π .
- Value Iteration. Find the optimal value function V*.
- **Policy Iteration.** Find the optimal policy π^* .

Given a policy π , we define the Bellman operator $T^{\pi}: \mathbb{R}^{|S|} \to \mathbb{R}^{|S|}$ as:

$$(\mathcal{T}^{\pi}(\mathbf{V}))_{s} = \sum_{s',r} p(s',r\mid s,\pi(s)) [r + \gamma \mathbf{V}(s')]$$

Finding the value of a policy is equivalent to finding the fixed point of T^{π} , i.e. $\mathbf{V}^{\pi} = T^{\pi}(\mathbf{V}^{\pi})$.

It is possible to prove that T^{π} is a α -contraction, therefore we can apply Banach's theorem to find the fixed point.

Policy Evaluation Algorithm

- 1. Initialize V_0 randomly
- 2. Repeat until convergence:
 - For each state s, update

$$V_{k+1}(s) = \sum_{s',r} p(s',r \mid s,\pi(s)) [r + \gamma V_k(s')]$$

Policy Evaluation Algorithm

- 1. Initialize V_0 randomly
- 2. Repeat until convergence:
 - For each state s, update $V_{k+1}(s) = \sum_{s',r} p(s',r \mid s,\pi(s)) [r + \gamma V_k(s')]$

What does until convergence mean?

- The difference between two consecutive values is smaller than a threshold: $\|V_{k+1}^{\pi} V_{k}^{\pi}\| < \epsilon$
- There is a fixed number of iterations: "repeat N times"
- . . .

Value Iteration

This is very similar to Policy Iteration. We define the optimal Bellman operator $T^*: \mathbb{R}^{|S|} \to \mathbb{R}^{|S|}$ as:

$$(T^*(\mathbf{V}))_s = \max_a \sum_{s',r} p(s',r \mid s,a) [r + \gamma \mathbf{V}(s')]$$

Value Iteration Algorithm

- 1. Initialize V_0 randomly
- 2. Repeat until convergence:
 - For each state s, update $V_{k+1}(s) = \max_a \sum_{s',r} p(s',r \mid s,a) [r + \gamma V_k(s')]$

Optimal Policy

Once we have the optimal value function V^* , we can find the optimal policy π^* by taking the greedy policy with respect to V^* :

$$\pi^*(s) = \arg\max_{a} \sum_{s',r} p(s',r \mid s,a) [r + \gamma \mathbf{V}^*(s')]$$

We can also apply directly Value Iteration to find the optimal action-value function \mathbf{Q}^* , in which case we get the optimal policy directly using:

$$\pi^*(s) = \arg\max_a \mathbf{Q}^*(s,a)$$

Optimal Policy

Once we have the optimal value function V^* , we can find the optimal policy π^* by taking the greedy policy with respect to V^* :

$$\pi^*(s) = \arg\max_{a} \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma \mathbf{V}^*(s')\right]$$

We can also apply directly Value Iteration to find the optimal action-value function \mathbf{Q}^* , in which case we get the optimal policy directly using:

$$\pi^*(s) = \arg\max_{a} \mathbf{Q}^*(s, a)$$

Question. Why is it not the best idea to use the optimal action-value function \mathbf{Q}^* to find the optimal policy?

Policy Iteration

Value Iteration: $V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \ldots \rightarrow V^*$

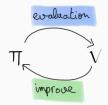
Policy Iteration: $\pi_0 \to \pi_1 \to \pi_2 \to \ldots \to \pi^*$

-> strategy improvement.

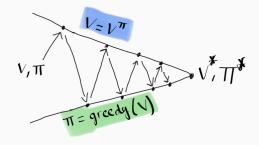
It works in two steps that are repeated until convergence:

$$\pi_k \to V^{\pi_k} \to \pi_{k+1}$$

- Evaluation. $\pi_k \to V^{\pi_k}$
 - Compute the value function V^{π_k} for the policy π_k .
 - How? Use policy evaluation.
- Improvement. $V^{\pi_k} \to \pi_{k+1}$
 - Define a new policy π_{k+1} that is greedy with respect to Q^{π_k} .
 - $\pi_{k+1}(s) = \arg\max_a Q^{\pi_k}(s,a)$



Policy Iteration's loop



Policy Iteration's convergence

Value Iteration vs Policy Iteration

- Value Iteration is simpler and often faster.
- Value Iteration. Convergence is only asymptotic.
- Policy Iteration is more stable and can be more efficient in some cases.
- Policy Iteration is guaranteed to converge to the optimal policy in a finite number of steps, while Value Iteration converges to the optimal value function but not necessarily in a finite number of steps.
- In Policy Iteration we know when to stop: when the policy does not change anymore, it means we have found the optimal policy.
- Policy Iteration. More expensive per iteration because it requires policy evaluation.

Summary

 Bellman Equations provide recursive relationships for the value of a policy or the optimal value of an MDP.

$$V^{\pi}(s) = \sum_{s',r} p(s',r \mid s,\pi(s)) [r + \gamma V^{\pi}(s')]$$
$$V^{*}(s) = \max_{s} \sum_{t} p(s',r \mid s,a) [r + \gamma V^{*}(s')]$$

 Iterative Methods are used to solve the Bellman equations. Based on fixed-point computation and Banach's theorem.

$$X_{k+1} = f(X_k)$$

 Policy Evaluation, Value Iteration, and Policy Iteration are powerful examples of iterative methods applied to MDPs.