
Reinforcement Learning

Model-Free Reinforcement Learning

aka ”Playing without the rules”

Akka Zemmari



About today

Learning without knowing the rules

MDP is not fully known.

• Set of states S and actions A are known

• p(s ′, r |s, a) is unknown

Wanted

• model-free prediction. Evaluate the value function in an unknown

MDP

• model-free control. Optimize the value function in an unknown

MDP
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Plan of the day

1. Monte Carlo methods

2. Temporal Difference methods

2.1 SARSA (on-policy learning)

2.2 Q-learning (off-policy learning)

2.3 Double Q-learning
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Monte Carlo methods



Intuition about Monte Carlo methods

See blackboard for discussion on the topic (law of large numbers).
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Recap last lectures

Optimal Bellman Equations

• State-Value function:

∀s ∈ S ,V ∗(s) = max
a

∑
s′,r

p(s ′, r |s, a)[r + γV ∗(s ′)]

• Action-Value function:

∀s ∈ S , a ∈ A,Q∗(s, a) =
∑
s′,r

p(s ′, r |s, a)[r + γV ∗(s ′)]

Optimal policy

• π∗(s) = argmaxa Q
∗(s, a)

• with the form of the policy improvement step:

πk+1(s) = argmax
a

∑
s′,r

p(s ′, r |s, a)[r + γV πk

(s ′)]

Problem: All these equations are model-based, since they require

the knowledge of the transition probabilities p(s ′, r |s, a).
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Recap last lectures

How can we turn these model-based equations into model-free

ones?
The expressions can be rewritten as:

• State-Value function:

∀s ∈ S ,V ∗(s) = max
a

E[Gt |St = s,At = a]

• Action-Value function:

∀s ∈ S , a ∈ A,Q∗(s, a) = E[Gt |St = s,At = a]
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Monte Carlo policy evaluation

We want to evaluate the value function of a policy π.

Most natural idea. Monte Carlo.

Sample N trajectories from s0 using policy π:

i-th trajectory: s i0 = s0, a
i
0, r

i
0, s

i
1, a

i
1, r

i
1, s

i
2, a

i
2, r

i
2, . . .

i-th total reward. G i = r i0 + γr i1 + γ2r i2 + . . .

Then, we can compute the empirical average of the returns:

V̂ π(s0) =
1

N

N∑
i=1

G i
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Monte Carlo policy evaluation

What about others states? s ̸= s0?

Idea. One trajectory ⇒ many trajectories from different starting states.

7



Monte Carlo policy evaluation

Question

V̂ π(s) = average of total reward over all trajectories

1. which start in the first occurrence of s?

2. which start in any occurrence of s?

3. which start in the last occurrence of s?
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Monte Carlo policy evaluation

Answer

• 1. and 2. converges to V π(s) for all state s visited by the policy π

• 3. does not.

Counter-example to 3.
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Monte Carlo policy evaluation

Which one to use

V̂ π(s) = average of total reward over all trajectories

1. which start in the first occurrence of s?

2. which start in any occurrence of s?

3. which start in the last occurrence of s?

We will use 2. because it is easier to compute and give more data.
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Algorithm - Monte Carlo policy evaluation

1. Input: policy π

2. Initialize:

• V (s) = 0 for all s ∈ S

• N(s) = 0 for all s ∈ S (number of visits to s)

3. Repeat:

• Generate a trajectory s0, a0, r0, s1, a1, r1, . . . sT , aT , rT using π

• For all time steps t ≤ T :

• G = rt + γrt+1 + γ2rt+2 + . . .

• N(st) = N(st) + 1

• V (st) = V (st) +
1

N(st )
(G − V (st))

Complexity question.

It takes O(T 2) time for one trajectory.

Can we do better?
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Algorithm - Monte Carlo policy evaluation

Trick. Going backward in time.

• G = 0

• For all time steps t = T ,T − 1, . . . , 0:

• G = rt + γG

• N(st) = N(st) + 1

• V (st) = V (st) +
1

N(st )
(G − V (st))

This time, it takes O(T ) time for one trajectory.

Still one last problem

It converges only for states that are visited by the policy π. We might

miss a lot of them.

Showtime
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Monte Carlo Policy Evaluation with ε-Greedy Exploration

Main idea: Set aside a small amount of time for exploration.

ε-Greedy Policy πε

The policy πε(s) is defined as:

πε(s) =

{
π(s) with probability 1− ε

(uniform) random action, with probability ε
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Algorithm revisited - Monte Carlo policy evaluation

Main idea: Set aside a small amount of time for exploration by using πε.

1. Input: policy π

2. Initialize:

• V (s) = 0 for all s ∈ S

• N(s) = 0 for all s ∈ S (number of visits to s)

3. Repeat:

• Generate a trajectory s0, a0, r0, s1, a1, r1, . . . sT , aT , rT using πε

• G = 0

• For all time steps t = T ,T − 1, . . . , 0:

• G = rt + γG

• N(st) = N(st) + 1

• V (st) = V (st) +
1

N(st )
(G − V (st))
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Monte Carlo for control

Same idea as policy iteration, but using πε. The evaluation part is made

using Monte Carlo.

1. Initialize

• Q(s, a)← 0 for all s ∈ S , a ∈ A

• π(s)← argmaxa Q(s, a) for all s ∈ S

2. Repeat:

• Generate a trajectory s0, a0, r0, s1, a1, r1, . . . sT , aT , rT using πε

• G = 0

• For all time steps t = T ,T − 1, . . . , 0:

• G = rt + γG

• N(st , at) = N(st , at) + 1

• Q(st , at) = Q(st , at) +
1

N(st ,at )
(G − Q(st , at))

• Update the policy. π(s) = argmaxa Q(s, a)
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Bootstrapping



Monte Carlo methods caveats

What if trajectories are too long? Or never ends? (online setting)

• → use bootstrapping: estimating using estimates.

Gt = rt + γrt+1 + γ2rt+2 + . . .

≈ rt + γV̂ (st+1)
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