Reinforcement Learning

Model-Free Reinforcement Learning aka "Playing without the rules" Akka Zemmari

Learning without knowing the rules

MDP is not fully known.

- Set of states S and actions A are known
- p(s', r|s, a) is unknown

Wanted

- model-free prediction. Evaluate the value function in an unknown MDP
- model-free control. Optimize the value function in an unknown MDP

1. Monte Carlo methods

2. Temporal Difference methods

- 2.1 SARSA (on-policy learning)
- 2.2 Q-learning (off-policy learning)
- 2.3 Double Q-learning

Monte Carlo methods

See blackboard for discussion on the topic (law of large numbers).

Recap last lectures

Optimal Bellman Equations

• State-Value function:

$$\forall s \in S, V^*(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V^*(s')]$$

• Action-Value function:

$$\forall s \in S, a \in A, Q^*(s, a) = \sum_{s', r} p(s', r | s, a) [r + \gamma V^*(s')]$$

Optimal policy

- $\pi^*(s) = \arg \max_a Q^*(s, a)$
- with the form of the policy improvement step:

$$\pi^{k+1}(s) = rg\max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V^{\pi^k}(s')]$$

Recap last lectures

Optimal Bellman Equations

• State-Value function:

$$\forall s \in S, V^*(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V^*(s')]$$

• Action-Value function:

$$\forall s \in S, a \in A, Q^*(s, a) = \sum_{s', r} p(s', r | s, a) [r + \gamma V^*(s')]$$

Optimal policy

- $\pi^*(s) = \arg \max_a Q^*(s, a)$
- with the form of the policy improvement step:

$$\pi^{k+1}(s) = rg\max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V^{\pi^k}(s')]$$

Problem: All these equations are model-based, since they require the knowledge of the transition probabilities p(s', r|s, a).

How can we turn these model-based equations into model-free ones?

The expressions can be rewritten as:

• State-Value function:

$$\forall s \in S, V^*(s) = \max_{a} \mathbb{E}[G_t | S_t = s, A_t = a]$$

• Action-Value function:

$$\forall s \in S, a \in A, Q^*(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$

We want to evaluate the value function of a policy π .

Most natural idea. Monte Carlo.

Sample N trajectories from s_0 using policy π :

i-th trajectory: $s_0^i = s_0, a_0^i, r_0^i, s_1^i, a_1^i, r_1^i, s_2^i, a_2^i, r_2^i, \dots$

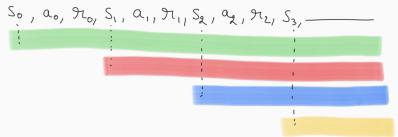
i-th total reward. $G^i = r_0^i + \gamma r_1^i + \gamma^2 r_2^i + \dots$

Then, we can compute the empirical average of the returns:

$$\widehat{V}^{\pi}(s_0) = rac{1}{N}\sum_{i=1}^N G^i$$

What about others states? $s \neq s_0$?

Idea. One trajectory \Rightarrow many trajectories from different starting states.



Question

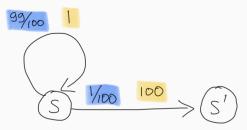
 $\widehat{V}^{\pi}(s)=$ average of total reward over all trajectories

- 1. which start in the first occurrence of s?
- 2. which start in any occurrence of s?
- 3. which start in the last occurrence of s?

Answer

- 1. and 2. converges to $V^{\pi}(s)$ for all state s visited by the policy π
- 3. does not.

Counter-example to 3.



Which one to use

 $\widehat{V}^{\pi}(s)=$ average of total reward over all trajectories

- 1. which start in the first occurrence of s?
- 2. which start in any occurrence of s?
- 3. which start in the last occurrence of s?

We will use 2. because it is easier to compute and give more data.

- 1. Input: policy π
- 2. Initialize:
 - V(s) = 0 for all $s \in S$
 - N(s) = 0 for all $s \in S$ (number of visits to s)
- 3. Repeat:
 - Generate a trajectory $s_0, a_0, r_0, s_1, a_1, r_1, \dots s_T, a_T, r_T$ using π
 - For all time steps $t \leq T$:
 - $G = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$
 - $N(s_t) = N(s_t) + 1$
 - $V(s_t) = V(s_t) + \frac{1}{N(s_t)}(G V(s_t))$

Complexity question.

It takes $O(T^2)$ time for one trajectory.

Can we do better?

Trick. Going backward in time.

- *G* = 0
- For all time steps $t = T, T 1, \dots, 0$:
 - $G = r_t + \gamma G$
 - $N(s_t) = N(s_t) + 1$
 - $V(s_t) = V(s_t) + \frac{1}{N(s_t)}(G V(s_t))$

This time, it takes O(T) time for one trajectory.

Still one last problem

It converges only for states that are visited by the policy π . We might miss a lot of them.

Showtime

Main idea: Set aside a small amount of time for exploration. ε -Greedy Policy π^{ε}

The policy $\pi^{\varepsilon}(s)$ is defined as:

 $\pi^{\varepsilon}(s) = \begin{cases} \pi(s) & \text{with probability } 1 - \varepsilon \\ (\text{uniform}) \text{ random action}, & \text{with probability } \varepsilon \end{cases}$

Main idea: Set aside a small amount of time for exploration by using π^{ε} .

- 1. Input: policy π
- 2. Initialize:
 - V(s) = 0 for all $s \in S$
 - N(s) = 0 for all $s \in S$ (number of visits to s)
- 3. Repeat:
 - Generate a trajectory $s_0, a_0, r_0, s_1, a_1, r_1, \dots s_T, a_T, r_T$ using π^{ε}
 - *G* = 0
 - For all time steps $t = T, T 1, \dots, 0$:
 - $G = r_t + \gamma G$
 - $N(s_t) = N(s_t) + 1$
 - $V(s_t) = V(s_t) + \frac{1}{N(s_t)}(G V(s_t))$

Same idea as policy iteration, but using $\pi^{\varepsilon}.$ The evaluation part is made using Monte Carlo.

- 1. Initialize
 - $Q(s,a) \leftarrow 0$ for all $s \in S, a \in A$
 - $\pi(s) \leftarrow \arg \max_a Q(s, a)$ for all $s \in S$
- 2. Repeat:
 - Generate a trajectory $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T, a_T, r_T$ using π^{ε}
 - *G* = 0
 - For all time steps $t = T, T 1, \dots, 0$:
 - $G = r_t + \gamma G$
 - $N(s_t, a_t) = N(s_t, a_t) + 1$
 - $Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s_t, a_t)}(G Q(s_t, a_t))$
 - Update the policy. $\pi(s) = \arg \max_a Q(s, a)$

Bootstrapping

What if trajectories are too long? Or never ends? (online setting)

 $\bullet \rightarrow$ use bootstrapping: estimating using estimates.

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

$$\approx r_t + \gamma \widehat{V}(s_{t+1})$$