
Reinforcement Learning

Monte-Carlo Tree Search (MCTS)

Or how to combine learning and planning

Akka Zemmari

1



Introduction to Monte-Carlo Tree Search (MCTS)

• Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm.

• Combines random sampling with systematic tree expansion.

• Widely used in board games (e.g., Go, Chess) and sequential

decision-making problems.

• Effective for large and complex state spaces.

2



Introduction to Monte-Carlo Tree Search (MCTS)

• Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm.

• Combines random sampling with systematic tree expansion.

• Widely used in board games (e.g., Go, Chess) and sequential

decision-making problems.

• Effective for large and complex state spaces.

2



Introduction to Monte-Carlo Tree Search (MCTS)

• Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm.

• Combines random sampling with systematic tree expansion.

• Widely used in board games (e.g., Go, Chess) and sequential

decision-making problems.

• Effective for large and complex state spaces.

2



Introduction to Monte-Carlo Tree Search (MCTS)

• Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm.

• Combines random sampling with systematic tree expansion.

• Widely used in board games (e.g., Go, Chess) and sequential

decision-making problems.

• Effective for large and complex state spaces.

2



Core Idea of MCTS

• Incrementally builds a search tree based on simulations.

Monte Carlo Tree Search1 in a Nutshell

1Sutton et al.

3



Core Idea of MCTS

• Operates in four key steps:

1. Selection: Traverse the tree to select a promising node.

2. Expansion: Add a new child node to the tree.

3. Simulation: Perform random simulations from the new node.

4. Backpropagation: Update node values based on simulation results.

4



Core Idea of MCTS

• Operates in four key steps:

1. Selection: Traverse the tree to select a promising node.

2. Expansion: Add a new child node to the tree.

3. Simulation: Perform random simulations from the new node.

4. Backpropagation: Update node values based on simulation results.

4



Core Idea of MCTS

• Operates in four key steps:

1. Selection: Traverse the tree to select a promising node.

2. Expansion: Add a new child node to the tree.

3. Simulation: Perform random simulations from the new node.

4. Backpropagation: Update node values based on simulation results.

4



Core Idea of MCTS

• Operates in four key steps:

1. Selection: Traverse the tree to select a promising node.

2. Expansion: Add a new child node to the tree.

3. Simulation: Perform random simulations from the new node.

4. Backpropagation: Update node values based on simulation results.

4



Step 1: Selection

• Traverse the tree using a selection policy (e.g., UCT).

• Upper Confidence (Bounds) for trees (UCT):

UCT =
wi

ni
+ C

√
lnN

ni

where:

• wi : Number of wins for node i ,

• ni : Number of visits for node i ,

• N: Total visits to the parent node,

• C : Exploration hyperparameter.

Remark: In the illustration, we do not realy use the UCB formula, but

the idea is the same.

5



Step 1: Selection

• Traverse the tree using a selection policy (e.g., UCT).

• Upper Confidence (Bounds) for trees (UCT):

UCT =
wi

ni
+ C

√
lnN

ni

where:

• wi : Number of wins for node i ,

• ni : Number of visits for node i ,

• N: Total visits to the parent node,

• C : Exploration hyperparameter.

Remark: In the illustration, we do not realy use the UCB formula, but

the idea is the same.

5



Step 1: Selection

• Traverse the tree using a selection policy (e.g., UCT).

• Upper Confidence (Bounds) for trees (UCT):

UCT =
wi

ni
+ C

√
lnN

ni

where:

• wi : Number of wins for node i ,

• ni : Number of visits for node i ,

• N: Total visits to the parent node,

• C : Exploration hyperparameter.

Remark: In the illustration, we do not realy use the UCB formula, but

the idea is the same.

5



Step 1: Selection

• Traverse the tree using a selection policy (e.g., UCT).

• Upper Confidence (Bounds) for trees (UCT):

UCT =
wi

ni
+ C

√
lnN

ni

where:

• wi : Number of wins for node i ,

• ni : Number of visits for node i ,

• N: Total visits to the parent node,

• C : Exploration hyperparameter.

Remark: In the illustration, we do not realy use the UCB formula, but

the idea is the same.

5



Step 2: Expansion

• Expand the tree by adding a new child node to the selected node.

• Allows the algorithm to explore previously unvisited states.

6



Step 2: Expansion

• Expand the tree by adding a new child node to the selected node.

• Allows the algorithm to explore previously unvisited states.

6



Step 3: Simulation

• Perform a random simulation (rollout) from the newly added node.

• Continue until reaching a terminal state.

• Evaluate the outcome of the simulation (e.g., win, loss, draw).

7



Step 3: Simulation

• Perform a random simulation (rollout) from the newly added node.

• Continue until reaching a terminal state.

• Evaluate the outcome of the simulation (e.g., win, loss, draw).

7



Step 4: Backpropagation

• Update the statistics of nodes along the path from the simulated

node to the root.

• Adjust win/loss ratios and visit counts.

8



Step 4: Backpropagation

• Update the statistics of nodes along the path from the simulated

node to the root.

• Adjust win/loss ratios and visit counts.

8



All the steps together

Whiteboard time!

9



All the steps together

Whiteboard time!

9



Exploration vs Exploitation

• MCTS balances:

• Exploration: Sampling less visited nodes.

• Exploitation: Focusing on nodes with high win rates.

• UCT guides this balance effectively.

10



Advantages and Limitations of MCTS

• Advantages:

• Effective for large search spaces.

• Requires no prior knowledge.

• Adaptable to various domains.

• Limitations:

• Computationally expensive.

• Results depend on the number of simulations.

11



Applications of MCTS

• Board games: Go, Chess, ...

• Planning and robotics.

• Real-time strategy games.

• General decision-making problems.

12



Conclusion

• MCTS is a versatile and powerful search algorithm.

• Balances random sampling with tree-based exploration.

• Widely applicable across domains with complex decision trees.

13


