Reinforcement Learning

Monte-Carlo Tree Search (MCTS)
Or how to combine learning and planning

Akka Zemmari



Introduction to Monte-Carlo Tree Search (MCTS)

e Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm.



Introduction to Monte-Carlo Tree Search (MCTS)

e Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm.

e Combines random sampling with systematic tree expansion.



Introduction to Monte-Carlo Tree Search (MCTS)

e Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm.
e Combines random sampling with systematic tree expansion.

e Widely used in board games (e.g., Go, Chess) and sequential
decision-making problems.



Introduction to Monte-Carlo Tree Search (MCTS)

e Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm.

Combines random sampling with systematic tree expansion.

Widely used in board games (e.g., Go, Chess) and sequential
decision-making problems.

Effective for large and complex state spaces.



Core ldea of MC

e Incrementally builds a search tree based on simulations.

Monte Carlo Tree Search! in a Nutshell

Repeat while time remains

Selection —— Expansion —— Simulation —— Backup

&

C\

r A >R

|
Tree Rollout
Policy Policy
|

X

ISutton et al.



Core ldea of MCTS

e Operates in four key steps:

1. Selection: Traverse the tree to select a promising node.



Core ldea of MCTS

e Operates in four key steps:

1. Selection: Traverse the tree to select a promising node.
2. Expansion: Add a new child node to the tree.



Core ldea of MCTS

e Operates in four key steps:
1. Selection: Traverse the tree to select a promising node.
2. Expansion: Add a new child node to the tree.
3. Simulation: Perform random simulations from the new node.



Core ldea of MCTS

e Operates in four key steps:
1. Selection: Traverse the tree to select a promising node.
2. Expansion: Add a new child node to the tree.
3. Simulation: Perform random simulations from the new node.
4. Backpropagation: Update node values based on simulation results.



Step 1: Selection

e Traverse the tree using a selection policy (e.g., UCT)
e Upper Confidence (Bounds) for trees (UCT):
In N

nj

uct=2 1 ¢

n;

where:
e w;: Number of wins for node i,

e n;: Number of visits for node i,
e N: Total visits to the parent node,

e C: Exploration hyperparameter.



Step 1: Selection

e Traverse the tree using a selection policy (e.g., UCT).

e Upper Confidence (Bounds) for trees (UCT):

w; In N
UCT=—+C
n; n;
(3% 1)
where: /\\,, /L /\
CRPREPRETY

e w;: Number of wins for node i,
e n;: Number of visits for node i,
e N: Total visits to the parent node,

e C: Exploration hyperparameter.



Step 1: Selection

e Traverse the tree using a selection policy (e.g., UCT).

e Upper Confidence (Bounds) for trees (UCT):

w; In N
UCT=—+C
n; n;
P
QRQF [re2)
where: / \L \
e w;: Number of wins for node i/, <@ffq> (qu) (;%0
e n;: Number of visits for node i,
e

e N: Total visits to the parent node,
Y
e C: Exploration hyperparameter. _ S A \ .
o it Y



Step 1: Selection

e Traverse the tree using a selection policy (e.g., UCT).

e Upper Confidence (Bounds) for trees (UCT):

In N
n;

uct=2 1 ¢

n;

where: / - L\
e w;: Number of wins for node i/, > 7 /

e n;: Number of visits for node i,

e N: Total visits to the parent node, @
/ g
e C: Exploration hyperparameter. - e ! \ N
LN EPRETY

Remark: In the illustration, we do not realy use the UCB formula, but

the idea is the same.



Step 2: Expansion

e Expand the tree by adding a new child node to the selected node.

e Allows the algorithm to explore previously unvisited states.



Step 2: Expansion

e Expand the tree by adding a new child node to the selected node.

e Allows the algorithm to explore previously unvisited states.



Step 3: Simulation

e Perform a random simulation (rollout) from the newly added node.
e Continue until reaching a terminal state.

e Evaluate the outcome of the simulation (e.g., win, loss, draw).



Step 3: Simulation

e Perform a random simulation (rollout) from the newly added node.
e Continue until reaching a terminal state.

e Evaluate the outcome of the simulation (e.g., win, loss, draw).

©



Step 4: Backpropagation

e Update the statistics of nodes along the path from the simulated
node to the root.
e Adjust win/loss ratios and visit counts.



Step 4: Backpropagation

e Update the statistics of nodes along the path from the simulated
node to the root.
e Adjust win/loss ratios and visit counts.

4
-
o

y.

) 38/38

jpr/r Al

L

© VQ\\A _>--L—‘
lose —=—-A
dFO\\U\)O



S
0
<
L
9]
o0
o
e
2]
=1
Q
e
("]
9]
<
Lo
<

N
\

@



All the steps together

Whiteboard time!



Exploration vs Exploitation

e MCTS balances:

e Exploration: Sampling less visited nodes.
e Exploitation: Focusing on nodes with high win rates.

e UCT guides this balance effectively.

10



Advantages and Limitations of MCTS

e Advantages:

e Effective for large search spaces.
e Requires no prior knowledge.
e Adaptable to various domains.

e Limitations:

e Computationally expensive.
e Results depend on the number of simulations.

11



Applications of MCTS

Board games: Go, Chess, ...

Planning and robotics.

e Real-time strategy games.

General decision-making problems.

12



Conclusion

e MCTS is a versatile and powerful search algorithm.
e Balances random sampling with tree-based exploration.

e Widely applicable across domains with complex decision trees.

13



