Reinforcement Learning

Deep Q-Learning (DQN) Or how to combine RL and DL Akka Zemmari

Introduction

• Combination of Reinforcement Learning and Deep Learning.

- Combination of Reinforcement Learning and Deep Learning.
- Extension of Q-Learning:

- Combination of Reinforcement Learning and Deep Learning.
- Extension of Q-Learning:
 - Traditional Q-learning uses a tabular representation.

- Combination of Reinforcement Learning and Deep Learning.
- Extension of Q-Learning:
 - Traditional Q-learning uses a tabular representation.
 - Deep Q-Learning approximates the Q-function using a Neural Network.

- Combination of Reinforcement Learning and Deep Learning.
- Extension of Q-Learning:
 - Traditional Q-learning uses a tabular representation.
 - Deep Q-Learning approximates the Q-function using a Neural Network.
- Key goal: Solve high-dimensional state-action spaces.

- Combination of Reinforcement Learning and Deep Learning.
- Extension of Q-Learning:
 - Traditional Q-learning uses a tabular representation.
 - Deep Q-Learning approximates the Q-function using a Neural Network.
- Key goal: Solve high-dimensional state-action spaces. To get an idea of the size of the state space:
 - Backgammon: 1020 states
 - Go: 10170 states
 - Robotics: continuous state space, real-life

Mathematical Formulation

• Q-function: Q(s, a) estimates the expected cumulative reward for taking action *a* in state *s*.

- Q-function: Q(s, a) estimates the expected cumulative reward for taking action *a* in state *s*.
- Update rule:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right)$$

- Q-function: Q(s, a) estimates the expected cumulative reward for taking action *a* in state *s*.
- Update rule:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right)$$

- Challenges:
 - High-dimensional state spaces.
 - Q-table size grows exponentially.

Deep Q-Learning

• Replace Q-table with a Neural Network:

$$Q(s,a;\theta) \approx Q(s,a)$$

where θ represents the network parameters.

• Replace Q-table with a Neural Network:

where $\boldsymbol{\theta}$ represents the network parameters.

• Loss function:

$$L(\theta) = \mathbb{E}_{(s,a,r,s')} \left[(y - Q(s,a;\theta))^2 \right]$$

with target *y*:

$$y = r + \gamma \max_{a} Q(s', a; \theta^{-})$$

• θ^- : Parameters of a target network.

Algorithm

Deep Q-Learning Algorithm

- 1. Initialize:
 - Replay memory ${\cal D}$
 - Action-value network $Q(s, a; \theta)$
 - Target network $Q(s, a; \theta^{-})$

Deep Q-Learning Algorithm

- 1. Initialize:
 - Replay memory ${\cal D}$
 - Action-value network $Q(s, a; \theta)$
 - Target network $Q(s, a; \theta^{-})$
- 2. For each episode:
 - Observe state s.
 - Select action a using ϵ -greedy policy.
 - Execute *a*, observe *r* and *s'*.
 - Store (s, a, r, s') in \mathcal{D} .
 - Sample minibatch from \mathcal{D} .
 - Update θ to minimize $L(\theta)$.
 - Periodically update θ^- .

Practical Considerations

- Instability in training:
 - Use of experience replay.
 - Target networks for stable updates.
- Exploration vs Exploitation:
 - ϵ -greedy strategy.
 - Decaying ϵ over time.

Applications

Applications of Deep Q-Learning

• Game playing (e.g., Atari, Go)¹:

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders, Seaquest, Beam Rider

- Robotics: Control and navigation.
- Autonomous vehicles: Decision-making in dynamic environments.

¹Playing Atari with Deep Reinforcement Learning, Mnih et al. (2013)

Conclusion

- Deep Q-Learning extends Q-Learning to complex problems.
- Key techniques:
 - Neural Networks.
 - Experience Replay.
 - Target Networks.
- Opens doors to applications in AI and Robotics.

DQN for Cart Pole problem.

(https://gymnasium.farama.org/environments/classic_control/