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Distributed Systems and Networks

Definitions [Tel]

I A distributed system is an interconnected collection of
autonomous computers, processes, or processors. The
computers, processes, or processors are referred to as the
nodes of the distributed system.

I To be qualified as autonomous, the nodes must at least be
equipped with their own private control,

I To be qualified as interconnected, the nodes must be able to
exchange information.
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Distributed Systems and Networks

Goals of a distributed system

The computers coordinate their activities and to share hardware
and software and data, so that users perceive it as a single,
integrated computing service with a well-defined goal.

Lamport:

”A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.”
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Distributed Systems and Networks

Why distributed system

I Geographic distribution of processes

I Resource sharing (example: P2P networks, grids)

I Computation speed up (as in a grid or cloud)

I Fault tolerance



Distributed Systems and Networks

Some common problems

I Spanning tree

I Colouring problem

I Maximal Independent Set (MIS) problem

I Election problem

I Fault Tolerance

I Distributed snapshot



Network → graph

Simple (Un)oriented Graph

Processor
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v1
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v3

Notation

I The graph is denoted G = (V ,E), where V is the set of vertices (in
graph theory, nodes are named vertices) and E ⊂ V ×V the set of edges.
In our example: V = {v1, v2, v3} and E = {{v1, v2}, {v1, v3}, {v2, v3}}.

I The number of nodes in the network (the size of the network) is denoted
n and the number of edges m.
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Communication Models

I Message passing communication: nodes exchange information
by sending and receiving messages to and from their
neighbours.
→ communications use instructions send()/receive().

I Shared memory communication: nodes can exchange
information by reading and writing data to the shared region.
→ communications use instructions read()/write().

I Radio communication: when sent by a node, a message is
received by all its neighbors.

I ...

In this talk, we consider message passing communication
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Communication Models

Size of the messages

I LOCAL model: messages are of unbounded size (theoretical
model).

I CONGEST model: messages are of size O(log n) bits.

I O(1) messages model.

I Beeping model: nodes can only beep (and hence can hear
beeps).

I ...

In this talk, we consider ALL this models
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Communication Models

I Transmissions can be simplex, half-duplex or full-duplex
→ graphs are directed or undirected.

I Communication links are FIFO (First In First Out)
→ if a node sends two messages m1 and m2 in this order,
message m1 will be received before message m2.

In this talk, we assume the transmissions are full-duplex and FIFO.
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Synchronous/Asynchronous

Types of synchrony

I Synchronous clocks: Physical clocks are synchronized (Send
and receive can be blocking or non-blocking).

I Synchronous processes: Lock-step synchrony.

I Synchronous channels: Bounded delay.

I Synchronous communication: Communication via
handshaking.

Examples

I Postal communication is asynchronous.

I Telephone communication is synchronous.



Distributed Algorithms

Definitions [Tel]

A distributed algorithm for a collection P = {p1, p2, · · · , pn} of
processes is a collection of local algorithms, one for each process in
P.



Analysis of Distributed Algorithms

Time Complexity [Peleg00]

I Round for each processor:

1. Send messages to (some) the neighbors,
2. Receive messages from (some) the neighbors,
3. Perform some local computations.

I Time complexity: maximum possible number of rounds
needed until every node has completed its computation.

I Message complexity: the total number of exchanged messages.
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Termination of Distributed Algorithms

Different types of Termination

I Implicit termination: the algorithm has a finite execution and
reaches a last configuration where each node of the system
has the correct output. However, the nodes do not know that
they reached the last states of the execution of this algorithm.



Termination of Distributed Algorithms

Different types of Termination

I Weak local termination: each node knows when it gets it final
value (or its final state) but needs to continue sending
messages to its neighbors.

I Local termination: each node knows its final value and can
stop executing the algorithm.



Termination of Distributed Algorithms

Different types of Termination

I Global termination: at least a node knows that all the nodes
finished computation.

I Strong global termination: a node knows the algorithm is
terminated in all the system.



Randomized Algorithms

Randomized Algorithm [Motwani & Raghavan]

OUTPUTINPUT
ALGORITHM
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numbers and makes random choices during execution,
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Randomized Algorithms

Randomized Algorithm [Motwani & Raghavan]

ALGORITHMINPUT OUTPUT

RANDOM NUMBERS

I Design algorithm + analysis to show that this behavior is
likely to be good, on every input.
(The likelihood is over the random numbers only.)



Randomized Algorithms

Why randomized algorithms are useful?

(F. Magniez)
Compare a deterministic algorithm with runtime 1h

1. to an algorithm with running time 1min that

1.1 aborts with probability 1/3, 1/2, 0.9
1.2 fails with probability 1/3, 1/2, 0.9

2. to an algorithm that is always correct but whose running time
is random and 1min in average
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Randomized Algorithms

Why randomized algorithms are useful? (In distributed
computing ...)

I Assuming some hypotheses, many fundamental distributed
tasks can not be solved deterministically (election,
coloring, etc).

I In many cases, randomized algorithms can be more efficient
than deterministic algorithms.



Randomized Algorithms

Why randomized algorithms are useful? (In distributed
computing ...)

I Assuming some hypotheses, many fundamental distributed
tasks can not be solved deterministically (election,
coloring, etc).

I In many cases, randomized algorithms can be more efficient
than deterministic algorithms.



Randomized Algorithms

Why randomized algorithms are useful? (In distributed
computing ...)

I Assuming some hypotheses, many fundamental distributed
tasks can not be solved deterministically (election,
coloring, etc).

I In many cases, randomized algorithms can be more efficient
than deterministic algorithms.



Randomized Algorithms

Definitions

I Las Vegas Algorithm: randomized algorithm which terminates
with a positive probability and which produces a correct result.

I Monte Carlo Algorithm: randomized algorithm whose running
time is deterministic, but whose output may be incorrect with
a certain (typically small) probability.



Randomized Algorithms

Example: Coloring an (anonymous) complete graph of size
n = 2

I Las Vegas:

I Monte Carlo:



Randomized Algorithms

Example: Coloring an (anonymous) complete graph of size
n = 2

Monte Carlo

color ← rand{0, 1}; color ← rand{0, 1};



Randomized Algorithms

Example: Coloring an (anonymous) complete graph of size
n = 2

Las Vegas

color ← ∅
repeart

b ← rand{0, 1};

send(b);

receive(b′);

if(b 6= b′) then

color = b;

until color 6= ∅;

color ← ∅
repeart

b ← rand{0, 1};

send(b);

receive(b′);

if(b 6= b′) then

color = b;

until color 6= ∅;



Randomized Algorithms

Example: Coloring an (anonymous) complete graph of size
n = 2

Complexity? Correctness? of the two algorithms ...



Randomized Algorithms

Remark
Monte Carlo algorithm + Termination detection ⇒ Las Vegas
algorithm.
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