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The Colouring Problem

Definition.
Let G = (V ,E ) be a simple connected undirected graph. A proper vertex
colouring for G is an assignment of a colour c(v) to each vertex v , such
that any two adjacent vertices have a different colour, i.e., c(v) 6= c(u)
for every {u, v} ∈ E .

.  .  .

Remark
Distributed system → Nodes of the system have to colour themselves.



Why Color a Network

Medium access: reuse frequencies in wireless networks at certain
spatial distance such that there is no interference.



Why Color a Network

4-Color Theorem
Can color each map using 4 colours only: no two adjacent countries have
same color. ?



Why Color a Network

4-Color Theorem
Can color each map using 4 colours only: no two adjacent countries have
same color.
⇒ First conjecture 1852, first proof with 5 colours 1890. First computer
proof 1976 (Appel+Haken). Another proof using Coq assistant 2005.



A Simple (Sequential) Colouring Algorithm

Algorithme 1.

1. While ∃ a non-coloured vertex v do

2. color v using the smallest available colours (the smallest
colour which is not used by any of the neighbours)

3. End While

Lemma.
The algorithm is correct, terminates in at most n rounds and uses
at most ∆ + 1 colours (∆ is the maximum degree of the
corresponding graph).



Solving the colouring problem in a distributed system ?

I Which assumptions we make ? → can we do it
deterministically ? shall we use some randomisation ? ...

I Design a (randomised) distributed algorithm (an algorithm
that nodes of the system will execute)

I Analyse the designed algorithm:
I Time complexity: number of rounds ?
I Message complexity ?
I Size of the messages ?
I Number of colours ?
I ...



A First Distributed Algorithm (Wattenhofer)

We consider the following procedure:

FirstFree
Require: Nodes have different IDs
Colour v using the smallest available colour.



A First Distributed Algorithm (Wattenhofer)

Now we consider the following algorithm:

Reduce
Require: Nodes have different IDs
1. v sends its ID to its neighbours;
2. v receives the IDs of its neighbours
3. While v has an uncoloured neighbour with higher ID
3.1. v sends ”undecided” to its neighbours;
4. v executes FirstFree;
5. v sends its decision to its neighbours.



A First Distributed Algorithm (Wattenhofer)

Analysis of the algorithm:

Theorem
The algorithm is correct and terminates in n steps. It uses ∆ + 1
colours.

Observations
- The network is not anonymous (we use the node’s IDs)
- Uses messages of size O(log n) (assuming nodes have IDs ranging
from 1 to a polynomial on n)
- Its time complexity is O(n).
+ Distributed algorithm.
+ Uses ∆ + 1 colours.



Colouring Anonymous Networks

I Assumption: The network is anonymous and nodes can send
messages of size O(log n) bits

I Theorem. [Pel00]There is no deterministic distributed
algorithm for anonymous graphs for solving the colouring
problem assuming all vertices wake up simultaneously.
⇒ use randomisation.



Johansson’s Algorithm
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Johansson’s Algorithm
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Johansson’s Algorithm
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Johansson’s Algorithm
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Johansson’s Algorithm

Theorem.
Johansson’s Algorithm runs in O(log n) rounds on average and
w.h.p.

Remark.
Messages are of size O (log n).



Johansson’s Algorithm

Theorem.
Johansson’s Algorithm runs in O(log n) rounds on average and
w.h.p.

Remark.
Messages are of size O (log n).



Question: Can we do the same using messages of size 1-bit ?

YES !



Question: Can we do the same using messages of size 1-bit ?

YES !



Algorithm Fast Colour

var:
colourv : word Init empty -word ;
activesv : ⊆ N(v) Init N(v);
bv : ∈ {0, 1}};

While activesv 6= ∅ do
bv ← flip(0, 1) ;
colourv ← bv ⊕ colourv ;
For all u ∈ actifsv do

send bv to u;
receive bu from u;
If bv 6= buthen

activev ← activev \ {u};
End If

End For
End While



Algorithm Fast Colour
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Algorithm Fast Colour
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Algorithm Fast Colour
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Analysis of the Algorithm

Lemma.
In any phase of the algorithm, the expected number of edges
removed from the residual graph G is half the number of its edges.

Corollary.

There are constants k1 and K1 such that for any graph G of n
vertices, the number of phases to remove all edges from G is:

I less than k1 log n on average,

I less than K1 log n w.h.p.
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Analysis of the Algorithm

Theorem.
Algorithm Fast Colour computes a colouring for any arbitrary
graph of size n in time O(log n) w.h.p., each message containing 1
bit.

I What about the number of colours ?

I Can we do better ?

I YES !
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Analysis of the Algorithm

Theorem.
Algorithm Fast Colour computes a colouring for any arbitrary
graph of size n in time O(log n) w.h.p., each message containing 1
bit.

I What about the number of colours ?

I Can we do better ?

I YES !



Reducing the Number of Colours - Algorithm R
var:

FCu : integer Init coulourv ; (* final colour of v *)
INv : ⊂ N(v) Init ∅;
OUTv : ⊂ N(u) Init ∅;
Coloursv : set of possible colours Init {0, 1, · · · , d(v)};

For each v ∈ N(v)
If (x(u) < x(v)) then OUTv = OUTv ∪ {v};
Else INv = INv ∪ {v};
End If;

End For
While INv 6= ∅ do

receive < c ,w > from a neighbour w ;
INv = INv \ {w};
Coloursv = Coloursv \ {c};

End While
FCv = min{Coloursv};
For Each u ∈ OUTv

send < FCv , u > to v ;

End For;



Reducing the Number of Colours - Algorithm R
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Reducing the Number of Colours - Algorithm R
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Reducing the Number of Colours - Algorithm R
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Reducing the Number of Colours - Algorithm R
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Reducing the Number of Colours - Algorithm R
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Reducing the Number of Colours - Algorithm R
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Analysis of the Algorithm

Theorem
For any graph G = (V ,E ) having a maximum degree ∆,
Algorithm R achieves a (∆ + 1)−colouring of G in at most
e∆ + 3 log n rounds w.h.p.
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