
Computing in Distributed Systems
Chapter 3: The Colouring Problem

Akka Zemmari

LaBRI - Université de Bordeaux

Content

The Colouring Problem

A Simple Distributed Colouring Algorithm

A 1-Bit Messages Colouring Algorithm

References

The Colouring Problem

Definition.
Let G = (V ,E) be a simple connected undirected graph. A proper vertex
colouring for G is an assignment of a colour c(v) to each vertex v , such
that any two adjacent vertices have a different colour, i.e., c(v) 6= c(u)
for every {u, v} ∈ E .

. . .

Remark
Distributed system → Nodes of the system have to colour themselves.

Why Color a Network

Medium access: reuse frequencies in wireless networks at certain
spatial distance such that there is no interference.

Why Color a Network

4-Color Theorem
Can color each map using 4 colours only: no two adjacent countries have
same color. ?

Why Color a Network

4-Color Theorem
Can color each map using 4 colours only: no two adjacent countries have
same color.
⇒ First conjecture 1852, first proof with 5 colours 1890. First computer
proof 1976 (Appel+Haken). Another proof using Coq assistant 2005.

A Simple (Sequential) Colouring Algorithm

Algorithme 1.

1. While ∃ a non-coloured vertex v do

2. color v using the smallest available colours (the smallest
colour which is not used by any of the neighbours)

3. End While

Lemma.
The algorithm is correct, terminates in at most n rounds and uses
at most ∆ + 1 colours (∆ is the maximum degree of the
corresponding graph).

Solving the colouring problem in a distributed system ?

I Which assumptions we make ? → can we do it
deterministically ? shall we use some randomisation ? ...

I Design a (randomised) distributed algorithm (an algorithm
that nodes of the system will execute)

I Analyse the designed algorithm:
I Time complexity: number of rounds ?
I Message complexity ?
I Size of the messages ?
I Number of colours ?
I ...

A First Distributed Algorithm (Wattenhofer)

We consider the following procedure:

FirstFree
Require: Nodes have different IDs
Colour v using the smallest available colour.

A First Distributed Algorithm (Wattenhofer)

Now we consider the following algorithm:

Reduce
Require: Nodes have different IDs
1. v sends its ID to its neighbours;
2. v receives the IDs of its neighbours
3. While v has an uncoloured neighbour with higher ID
3.1. v sends ”undecided” to its neighbours;
4. v executes FirstFree;
5. v sends its decision to its neighbours.

A First Distributed Algorithm (Wattenhofer)

Analysis of the algorithm:

Theorem
The algorithm is correct and terminates in n steps. It uses ∆ + 1
colours.

Observations
- The network is not anonymous (we use the node’s IDs)
- Uses messages of size O(log n) (assuming nodes have IDs ranging
from 1 to a polynomial on n)
- Its time complexity is O(n).
+ Distributed algorithm.
+ Uses ∆ + 1 colours.

Colouring Anonymous Networks

I Assumption: The network is anonymous and nodes can send
messages of size O(log n) bits

I Theorem. [Pel00]There is no deterministic distributed
algorithm for anonymous graphs for solving the colouring
problem assuming all vertices wake up simultaneously.
⇒ use randomisation.

Johansson’s Algorithm

{1,2}

{1,2,3}

{1,2,3}

{1,2}

{1,2}

{2,3} 21

1

1

3

2

1
{2,3}1

{1,2}

1

3

2

1
{1,2}

{1,2}

{1,2}

1

3

{2,3}

{1,2,3}

{1,2,3}{1,2,3}

{1,2,3}

{1,2}

{1,2}

{1,2} {1,2,3}

{1,2,3}

Johansson’s Algorithm

{0,1,2,3}

{0,1,2,3}

{0,1,2}{0,1,2,3}

{2,3} 21

1

1

3

2

1
{2,3}1

{1,2}

1

3

2

1
{1,2}

{1,2}

{1,2}

1

3

{2,3}

{1,2,3}

{1,2,3}{1,2,3}

{1,2,3}

{1,2}

{1,2}

{1,2}{0,1,2}

{0,1,2}
{0,1,2,3}

Johansson’s Algorithm

{0,1,2}

{2,3}1

{1,2}

1

3

2

1
{2,3}{1,2}

{1,2}

{1,2}

1

3

{2,3}

{0,1,2}{0,1,2,3}

21

1

1

3

2

1

{0,1,2,3} {0,1,2}

{0,1,2,3} {0,1,2,3}

{0,1,2}

{0,1,2,3} {0,1,2}

{0,1,2,3} {0,1,2}

{0,1,2,3}{0,1,2,3}

Johansson’s Algorithm

{0,1,2}

{2,3}1

{1,2}

1

3

2

1
{0,2,3} 21

1

1

3

2

1

{0,1,2,3} {0,1,2}

{0,1,2,3}

{0,1,2}

{0,1,2,3}
{0,1,2}

{0,1,2,3} {0,1,2,3} {0,1,2}

{0,1,2,3}{0,1,2,3}
{0,1,2}

{0,1,2,3} {0,1,2}

1

3

{0,2,3}

{0,1,2}
{0,1,2}

Johansson’s Algorithm

1

{0,1,2,3} {0,1,2}

{0,1,2,3}

{0,1,2}

{0,1,2,3}
{0,1,2}

{0,1,2,3} {0,1,2,3} {0,1,2}

{0,1,2,3}{0,1,2,3}
{0,1,2}

{0,1,2,3} {0,1,2}

1

3

{0,2,3}

{0,1,2}
{0,1,2} {0,2,3}

{0,1,2}

{0,2,3}1

{0,1,2}

1

3

2

Johansson’s Algorithm

1

12

3

1
1 2

{0,1,2,3} {0,1,2}

{0,1,2,3}

{0,1,2}

{0,1,2,3}
{0,1,2}

{0,1,2,3} {0,1,2,3} {0,1,2}

{0,1,2,3}{0,1,2,3}
{0,1,2}

{0,1,2,3} {0,1,2}

1

3

{0,2,3}

{0,1,2}
{0,1,2} {0,2,3}

{0,1,2}

{0,2,3}1

{0,1,2}

1

3

2

1

Johansson’s Algorithm

1
{0,2,3}1

{0,1,2}

1

3

2

{0,1,2,3} {0,1,2}

{0,1,2,3}

{0,1,2}

{0,1,2,3}
{0,1,2}

{0,1,2,3} {0,1,2,3} {0,1,2}

{0,1,2,3}{0,1,2,3}
{0,1,2}

{0,1,2,3} {0,1,2}

1

3

{0,2,3}

{0,1,2}
{0,1,2} {0,2,3}

{0,1,2}

Johansson’s Algorithm

Theorem.
Johansson’s Algorithm runs in O(log n) rounds on average and
w.h.p.

Remark.
Messages are of size O (log n).

Johansson’s Algorithm

Theorem.
Johansson’s Algorithm runs in O(log n) rounds on average and
w.h.p.

Remark.
Messages are of size O (log n).

Question: Can we do the same using messages of size 1-bit ?

YES !

Question: Can we do the same using messages of size 1-bit ?

YES !

Algorithm Fast Colour

var:
colourv : word Init empty -word ;
activesv : ⊆ N(v) Init N(v);
bv : ∈ {0, 1}};

While activesv 6= ∅ do
bv ← flip(0, 1) ;
colourv ← bv ⊕ colourv ;
For all u ∈ actifsv do

send bv to u;
receive bu from u;
If bv 6= buthen

activev ← activev \ {u};
End If

End For
End While

Algorithm Fast Colour

0011011

011

010

110

1011 000

00

1

00

1
0

1 1

1

1

0 0

0

111

11

10

10

00 00 00
110

01011

Algorithm Fast Colour

0011

011

010

110

1011 000

00

1

00

1
0

1 1

1

1

0 0

0

111

11

10

10

00 00 00
110

01011
011

Algorithm Fast Colour

110

1011

0011

000

00

1

00

1
0

1 1

1

1

0 0

0

111

11

10

10

00 00 00
110

01011
011

011

010

Algorithm Fast Colour

1011

0011

000

00

1

00

1
0

1 1

1

1

0 0

0

111

11

01

01

00 00 00
110

01011
011

011

010

110

Algorithm Fast Colour

110

110 00

00

1

00

1
0

1 1

1

1

0 0

0

11

11

01

01

00 00
011

01011

Algorithm Fast Colour

1100

0

00

1

00

1
0

1 1

1

1

0 0

0

11

01

01

00

11

011010

1

110

1

00
011

010
110

1

00
011

010

Algorithm Fast Colour

110 00

00

1

00

1
0

1 1

1

1

0 0

0

11

11

01

01

00 00
011

01011
110

Analysis of the Algorithm

Lemma.
In any phase of the algorithm, the expected number of edges
removed from the residual graph G is half the number of its edges.

Corollary.

There are constants k1 and K1 such that for any graph G of n
vertices, the number of phases to remove all edges from G is:

I less than k1 log n on average,

I less than K1 log n w.h.p.

Analysis of the Algorithm

Lemma.
In any phase of the algorithm, the expected number of edges
removed from the residual graph G is half the number of its edges.

Corollary.

There are constants k1 and K1 such that for any graph G of n
vertices, the number of phases to remove all edges from G is:

I less than k1 log n on average,

I less than K1 log n w.h.p.

Analysis of the Algorithm

Theorem.
Algorithm Fast Colour computes a colouring for any arbitrary
graph of size n in time O(log n) w.h.p., each message containing 1
bit.

I What about the number of colours ?

I Can we do better ?

I YES !

Analysis of the Algorithm

Theorem.
Algorithm Fast Colour computes a colouring for any arbitrary
graph of size n in time O(log n) w.h.p., each message containing 1
bit.

I What about the number of colours ?

I Can we do better ?

I YES !

Analysis of the Algorithm

Theorem.
Algorithm Fast Colour computes a colouring for any arbitrary
graph of size n in time O(log n) w.h.p., each message containing 1
bit.

I What about the number of colours ?

I Can we do better ?

I YES !

Analysis of the Algorithm

Theorem.
Algorithm Fast Colour computes a colouring for any arbitrary
graph of size n in time O(log n) w.h.p., each message containing 1
bit.

I What about the number of colours ?

I Can we do better ?

I YES !

Reducing the Number of Colours - Algorithm R
var:

FCu : integer Init coulourv ; (* final colour of v *)
INv : ⊂ N(v) Init ∅;
OUTv : ⊂ N(u) Init ∅;
Coloursv : set of possible colours Init {0, 1, · · · , d(v)};

For each v ∈ N(v)
If (x(u) < x(v)) then OUTv = OUTv ∪ {v};
Else INv = INv ∪ {v};
End If;

End For
While INv 6= ∅ do

receive < c ,w > from a neighbour w ;
INv = INv \ {w};
Coloursv = Coloursv \ {c};

End While
FCv = min{Coloursv};
For Each u ∈ OUTv

send < FCv , u > to v ;

End For;

Reducing the Number of Colours - Algorithm R

2

1100

0

1

05

11

0 2

0

1

01

1

2

0

1

05

11

0 2

0

1

05

11

0

0

0

0

1

00

010

2

1

05

11

3

011

1101

Reducing the Number of Colours - Algorithm R

2

0

1

01

1

2

0

1

05

11

0 2

0

1

05

11

0 2 0

0

0.1

0

1

05

11

0
010

011

1101

1100

00.011

0.1101

0.1100 0.010

0

1

00

Reducing the Number of Colours - Algorithm R

2

0

1

05

11

0 2

0

1

05

11

0 2 0

0

00

1

00

010

110
0

0

1

01

1

0.1100
0

01011

0011

0.110

0.1101

0.10.1100 0.010

0.110

0.1

0.1011

Reducing the Number of Colours - Algorithm R

2

0

1

05

11

0 2

0

1

0

0

0

1

00

010

011

1101

1100

0

0.1

0

0.1101

0

0

1

01

1

0.1100

0

0.1100 0.010

0.011 0.011

0.1101

0.1

1

0.1100

0

0

0.1101

Reducing the Number of Colours - Algorithm R

0.1100

0

1

01

0

0.1101

0

0

0

0

1

01

0

0.1101

0

1

00

010

011

1101

1100

0

0.1

0

0.1101

0.1100 0.010

0.011 0.011

0.1101

0.1
0.1100

0

Reducing the Number of Colours - Algorithm R

01

0

0.1101

0

1

0

0

0

0

1

01

0

0.1101

1

00

010

011

1101

1100

0.1

0

0.1101

0.1100 0.010

0.011 0.011

0.1101

0.1
0.1100

0

0.1100

0

0

1

01

0

0

0

0

1

Analysis of the Algorithm

Theorem
For any graph G = (V ,E) having a maximum degree ∆,
Algorithm R achieves a (∆ + 1)−colouring of G in at most
e∆ + 3 log n rounds w.h.p.

Bibliography I

H. Attiya and J. Welch.

Distributed Computing.
Wiley, 2004.

D. Peleg.

Distributed computing - A Locality-sensitive approach.
SIAM Monographs on discrete mathematics and applications, 2000.

G. Tel.

Introduction to distributed algorithms.
Cambridge University Press, 2000.

R. Motwani and P. Raghavan.

Randomized Algorithms.
Cambridge University Press, 1995.

K. Kothapalli, M. Onus, C. Scheideler, and C. Schindelhauer.

Distributed coloring in O(
√

log n) bit rounds.
In 20th International Parallel and Distributed Processing Symposium (IPDPS 2006), Proceedings, 25-29
April 2006, Rhodes Island, Greece. IEEE, 2006.

Y. Métivier, J.M. Robson, N. Saheb-Djahromi and A. Zemmari.

About randomised distributed graph coloring and graph partition algorithms.
Information and Computation. 208 :1296-1304, 2010.

	The Colouring Problem
	A Simple Distributed Colouring Algorithm
	A 1-Bit Messages Colouring Algorithm
	References

