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Abstract

We study a slight variation of the model defined in [KMS20], in which ants look for
shortest paths between their nest and a source of food. On a graph G with three marked
nodes N1, N2 and F (two nests and the food), we study the following model : at step n,
the n-th ant does a random walk which starts at a random nest Ni, and is stopped when
first hitting F . The random walk at step n has transition probabilities that depend on the
previous realisations before step n: for each n, the n-th ant, on its way back, reinforces a
subset of the edges it has crossed on its way forward to the food; then at each step of the
n-th random walk, the probability to choose an edge is proportional to its weight at the end
of step n− 1.

We focus on the loop-erased reinforcement model, where ants reinforce edges they cross
while going back from the food to their nest, avoiding useless loops. We prove that on
the generalised triangle (where each edge of a triangle has been replaced by a path) the
normalised edge-weights converge almost surely, and we give the limiting values according
to the lengths of each path.

1 Introduction

In biology, it has long been known that ants use pheromones to communicate, laying trail
pheromones on the ground, that the next ants can read, and it helps them find food efficiently.
They are known to be able to find shortest paths from their nest to a source of food. It is possible
to model this as a set of ants doing simultaneously a series of random walks on a graph with
two marked nodes, a nest and a source of food, each random walk starting at the nest and being
stopped when first reaching the food; then the ants go back, and do it again. Then the deposition
of pheromones by ants can be seen as the real equivalent of the reinforcement of some weights of
some useful edges after each random walk. One can for example read [DS04, Chapter 1] to have
a more detailed overview of the path that started by the observation of different species of ants
and led to the creation of ant colony optimization (ACO) algorithms.

In their papers, Kious, Mailler and Schapira ([KMS20], [KMS21]) introduced a probabilistic
reinforcement-learning model inspired by the real-life ants, but slightly different from ACO. For
a graph G with two marked nodes, a nest N , a source of food F , and edges having weight 1
at the beginning, they consider the following process. At each time-step n ≥ 1, an ant starts a
random walk from N , and stops when it first reaches F . The n-th ant’s random walk depends
on the reinforcement of the edge-weights after the previous excursions: at each time step, after
their excursion, the ant reinforces a subset of the edges it has crossed (i.e. deposits pheromones
on it), increasing by 1 the weights of the corresponding edges. Then, at each step of the n-th
ant’s random walk, the probability to cross an edge is proportional to its weight at time n− 1.

Kious, Mailler and Schapira ([KMS20], [KMS21]) showed that the behaviour of the process
deeply depends on the choice of the subset to reinforce at each step . In the trace-reinforced model
(T), they reinforce all the edges that have been crossed at least once. For the two other models
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Figure 1: From left to right, the lozenge, the cone, and the (p, q)-path, studied in [KMS21]. In the
model (T), all the edges except edge 4 on the cone have a normalised weight that do not converge to 0.

they propose, following the ants analogy, we reinforce edges corresponding to the path taken by
the ant on its way back to the nest. In the loop-erased model (LE), the ants walk backwards, but
avoiding useless loops, whereas in the geodesic model (G), they take one of the shortest paths
they know, i.e. one of the shortest paths within the trace of their forward excursion from N to
F .

A natural question is now: do the ants, following one of these models, asymptotically find a
shortest path from N to F? More precisely, does the proportion of ants that go from N to F
using a shortest path almost surely tend to 1 when time goes to infinity?

The (LE) and (G) models are promissing, and it has been conjectured in [KMS20] that in
those two models the ants find a shortest path. They proved that as soon as the graph G is a
series-parallel graph, the ants indeed find a shortest path in the (LE) model [KMS20], whereas
it is also true in the (G) model for a special lozenge graph. The (T) model is a bit less efficient
(intuitively, the ants learn less, and in fact this is what happend), and even if the ants find
shortest path if G belongs to a restricted class of graphs (if G is such that N and F are at
distance 1 and is a tree-like graphs, i.e. G\F is a tree), there are several simple graphs on which
the ants keep reinforcing edges that do not belong to a geodesic (see the examples of the cone,
the (p, q)-path and the lozenge in [KMS21], illustrated on Figure 1).

In this paper, we consider this model, but instead of having one marked node N , the nest at
each step N(n) is chosen randomly between two nests. We focus on the more promising models,
the (LE) and (G) ones.

Mathematical description of the 2-nest model. Our model is almost the same as the
model defined in [KMS20], with only a slight difference (which however changes considerably the
behaviour of the model): the starting nest is random.

We consider a graph G = (V,E) with three marked nodes, two nests N1 and N2, and a source
of food, F . We also let α1 and α2 be two real numbers such that α1 > 0, α2 > 0, and α1+α2 = 1.
Each αi corresponds to the size of the nest Ni. We then consider the following process. At time
0, we have weights We(0) = 1 on every edge e ∈ E, and We(0) = 0, ∀e /∈ E. Then at each step
n, an ant does a random walk from a random nest N(n) to the source of food F . More precisely,
N(n) = N1 with probability α1, and N(n) = N2 with probability α2Moreover, the random walk
is weighted by W (n− 1) (where we use the notation W (n) = (We(n))e∈E), and is stopped when
first hitting F . We thus define the random walk X(n) in the following way,

• X
(n)
0 = N(n),

• ∀i ≥ 0,P
(
X

(n)
i+1 = F

∣∣∣X(n)
i = F,W (n− 1)

)
= 1,

• ∀i ≥ 0,∀u 6= F,∀v, P
(
X

(n)
i+1 = u

∣∣∣X(n)
i = v,W (n− 1)

)
= Wuv(n−1)∑

w∼vWvw(n−1) .

We then reinforce a subset of the edges which have been used by the nth ant. Here we have
several ways to do that (which are illustrated on Figure 2):
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Figure 2: Illustration of the reinforcement process. Subfigure 2a shows the trajectory of an ant starting
at N1. Subfigure 2b illustrates the edges taken by this ant avoiding loops on its way back to N1, as in the
loop-erased(LE) model. Finally, Subfigure 2c illustrates the path taken by the ant in the geodesic (G)
model, which corresponds to the shortest path on the subgraph explored by the ant on its way forward.
One can notice that the geodesic reinforcement can give, as in this example, a backward path that is
strictly shorter.

Figure 3: The (`1, `2, `3)-triangle.

• In the loop-erased model (LE), we reinforce edges that would be taken by the nth ant
going back to the nest and avoiding useless loops it had done on its way forward. Formally,
we define i0 := min{k : X

(n)
k = F}, and while j is such that X(n)

ij
6= N(n), we define

ij+1 := min{k − 1 : X
(n)
k = X

(n)
ij
}. We then define the subset of edges to be reinforced:

γ(n) := {X(n)
ij+1

X
(n)
ij
, 0 ≤ j < J}, where J is the largest j for which ij has been defined.

• In the geodesic model (G), we let γ(n) denote the edges of one of the shortest paths from
N(n) to F in the subgraph explored by the nth ant, G(n) = (V,∪0≤i<i0{X

(n)
i X

(n)
i+1}), chosen

uniformly at random (where i is again defined as i0 := min{k : X
(n)
k = F}).

In both cases, we reinforce the edges that belong to γ(n):

∀e ∈ E,We(n+ 1) =We(n) + 1e∈γ(n) .

Main result. We now state our main results, which gives the convergence of the normalised
weights in the case when the graph G is a subdivided triangle as on Figure 3.

For all three integers `1, `2 and `3, we define the (`1, `2, `3)-triangle as in Figure 3: it is a
graph composed of only one cycle, with `1 (respectively `2) edges between N1 (respectively N2)
and F , and `3 edges between N1 and N2, named as on Figure 3. We define the following weights:
W1(n) := Wa1(n), W2(n) := Wb1(n) and W3(n) := Wc1(n). Our first result states that all the
weights between two marked nodes (N1, N2 and F ) are almost surely equal, and that for every
edge, the sequence of its normalised weights has a limit, which can be computed:
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Theorem 1. If G is a (`1, `2, `3)-triangle then, both in the (LE) reinforcement model and in the
(G) one, the sequence of weights is such that, almost surely, for all n: ∀i ≤ `1,Wai(n) =Wa1(n),
∀i ≤ `2,Wbi(n) =Wb1(n), and ∀i ≤ `3,Wci(n) =Wc1(n).

Moreover, the sequence of the normalised weights converges almost surely. The limiting value
depends on (`1, `2, `3); without loss of generality, we assume that `1 ≤ `2 (the other cases can
then be solved by symmetry).

• if `2 ≥ `1 + `3, then almost surely: W1(n)
n →

n→∞
1, W2(n)

n →
n→∞

0 and W3(n)
n →

n→∞
α2

• if `2 < `1 + `3 and `3 < `1 + `2, then almost surely: W1(n)
n →

n→∞
β1,

W2(n)
n →

n→∞
1− β1 and

W3(n)
n →

n→∞
β3, where

β1 =
α1`1 (`3 + `2 − `1)

`1`3 + (`2 − `1) ((1− α1)(`3 − `2) + α1`1)

and
β3 =

α1`3(1− α1)(`1 + `2 − `3)
(`2 − `1)(`1 + `2 − `3)α1 + `2(`1 − `2 + `3)

.

• otherwise, `3 ≥ `1 + `2, and then almost surely: W1(n)
n →

n→∞
α1,

W2(n)
n →

n→∞
α2 and

W3(n)
n →

n→∞
0

Remark 1. The first part of the theorem, stating that all the weights between N1 and F (respec-
tively between N2 and F , and between N1 and N2) are equal, is quite obvious since in the (LE)
and (G) models, we reinforce only a path from one of the sources to F , and there are only two
paths from N1 (or N2) to F , and ai (resp. bi, ci) belongs to it if and only if a1 (resp. b1, c1)
does.

Discussion. On the (`1, `2, `3)-triangle, the 2-nest model is already enlightening. When `3 ≥
`1 + `2 or `2 > `1 + `3 the result is simple: the normalised weight of an edge tends to the
proportion of ants that have a shortest path from their nest to the food, containing this edge.

When `2 = `3 + `1, the theorem highlights an interesting behavior of the ants: the ants
starting from N2 have two shortest paths to F , only one of them sharing edges with the shortest
path from N1 to F (those paths are ca := c`3 . . . c1a1 . . . a`1 and b := b1 . . . b`2). If no ant were
starting from N1, then all the normalised weights would converge, but the limit would not be
deterministic (and every edge would almost surely have a non-zero limit). Here the ants starting
from N1 influence those starting from N2, and thus only the normalised weights of the edges
belonging to ca have a non-zero limit.

When `2 < `1 + `3 and `3 < `1 + `2, the result is more intricate. The nests are relatively
close to each other, so the ants influence each other, even though it implies a seeming loss of
efficiency: for example, on the simple example when `1 = `2 = `3, then β1 = α1 and β3 = α1α2.
It means that the edges between N1 and N2 keep being reinforced a proportion α1α2 of the time,
even if those edges do not belong to any shortest path from a nest to F . It is not that surprising
though. As we said the ants influence each other, and thus tend to create a kind of transport
network.

The convergence of this process raises a similar question to the one in the model with one
nest: does it converge regardless of the underlying graph ?

In [KMS20], the authors conjectured that, for the (LE) model with only one nest, the nor-
malised edge-weights converge, and the limiting value corresponding to an edge is non-zero if
and only if it belongs to at least one shortest path from the nest to the source of food. They
proved this result for the class of series-parallel graphs, and conjectured that it is true for every
graph.

Here in the 2-nest model, there can be an edge that do not belong to a geodesic from some
Ni to F , but have a non-zero limit (recall the case of edges cis on the (`1, `2, `3)-triangle, when
`2 < `1+ `3 and `3 < `1+ `2). But it seems that such an edge belongs to a geodesic between the
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Figure 4: The gluing of three series-parallel graphs G1, G2 and G3 in a triangle fashion.

two nests. It would be interesting to know whether in the 2-nest model, the weight of an edge
converge if and only if it belongs to a geodesic between two of the three vertices N1, N2 and F .

A first step in this direction, would be to prove it for the family of graphs illustrated on
Figure 4 (gluing of three series-parallel graphs in a triangle fashion). Preliminary work suggests
that it indeed holds.

2 Strategy and preliminary results

Before diving into the technical details, we give an idea of the general strategy to prove Theorem
1.

Our proof relies on the fact that the renormalised edge-weight process is a stochastic ap-
proximation. We give the definition later in this section, we only focus on the main idea for the
moment: there is a function F and some “nice” random vector ξ(n) such that

W (n+ 1)

n+ 3
=
W (n)

n+ 2
+

1

n+ 2

(
F

(
W (n)

n+ 2

)
+ ξ(n+ 1)

)
.

We will see that in fact here the normalised process
(
W (n)
n

)
n

follows the flow of the ODE
ẏ = F (y). We will prove that any solution to this ODE, regardless of its starting point, con-
verges to some stable zero of F . To get rid of unstable zeros, we will do some couplings with
one-dimensional processes called G-urns, which are a generalisation of Pólya’s urn processes.

We now define some useful notation, and give an overview of general results that are useful
to prove Theorem 1. Those are adapted from [KMS21], in which they were introduced to deal
with the case when there is only one nest.

First of all, we define the normalised weights: ∀e ∈ E, Ŵe(n) := We(n)
n+2 and Ŵ (n) :=

(Ŵe(n))e∈E .
In general, we could take any constant c and normalise Ŵe(n) :=

We(n)
n+c , it would not change

the asymptotic behaviour of Ŵ . We choose c to be the number of edges that have F as an
endpoint (which is always 2 in what follows), because in this way the weights (Ŵe(n))e∈E
lie on a simplex: ∀n,

∑
e:F∈eWe(n) = n + |{e : F ∈ e}|, so c := |{e : F ∈ e}| implies that

∀n,
∑

e:F∈e Ŵe(n) = 1.
For the (`1, `2, `3)-triangle, we always have Ŵ2(n) = 1− Ŵ1(n), and thus we often work only

on (Ŵ1(n), Ŵ3(n)).

We also define, for every edge e ∈ E, and for every w ∈ [0, 1]E :

pe(w) := P
(
We(n+ 1) =We(n) + 1

∣∣∣ Ŵ (n) = w
)
,

and
Fe(w) := pe(w)− we.
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Finally, we let
F : [0, 1]2 → [0, 1]2

(w1, w3) 7−→ (F1(w1, w3), F3(w1, w3)) .

To prove convergence of our process (Ŵ (n))n≥0, we will use two main tools : G-urn processes,
and the ODE method on stochastic approximations. We give definitions and useful results about
those tools in the following two subsections.

2.1 Generalised Pólya urn process

Our goal is to show that our process dominates (or is dominated by) some generalised Pólya urn
process, and then to use well-known results on these processes. More precisely, we consider pro-
cesses called G-urn processes: or some function G : [0, 1]→ [0, 1], (Xn)n is a G-urn process if al-
most surely, X0 = 1 and for every n, Xn+1 ∈ {Xn, Xn+1} and P (Xn+1 = Xn + 1|X0, . . . , Xn) =
G(X̂n).

The following results are stated and proven in this form in [KMS21], and were originally from
[Pem07].

Proposition 2 ([Pem07] and Proposition 2.1 in [KMS21]). Let (Xn)n≥0 be a G-urn process,
with G a C1-function. Then almost surely (Xn)n≥0 converges towards a stable fixed point of G,
that is a (possibly random) point p ∈ [0, 1], such that G(p) = p and G′(p) ≤ 1.

In particular if there exists c > 0, such that G(x) > x, for all x ∈ (0, c) (resp. G(x) < x for
all x ∈ (1− c, 1)), then almost surely lim infn→∞Xn ≥ c (resp. lim supn→∞Xn ≥ 1− c).

Corollary 3 (Corollary 2.2 in [KMS21]). Let (Xn)n≥0 be an integer valued process adapted to
some filtration (Fn)n≥0, such that almost surely for all n ≥ 0, Xn+1 ∈ {Xn, Xn + 1}, X0 = 1,
and for some function G : [0, 1]→ [0, 1],

P (Xn+1 = Xn + 1|Fn) ≥ G(X̂n)

(where ∀n, X̂n = Xn
n+2). If there exist c > 0, ε > 0, such that G(x) > (1 + ε)x, for all x ∈ (0, c),

then almost surely lim infn→∞ X̂n ≥ c.
Similarly, if G is such that P (Xn+1 = Xn + 1|Fn) ≤ G(X̂n) and there exist c > 0, ε > 0 such

that G(x) < (1− ε)x, for all x ∈ (1− c, 1), then almost surely lim supn→∞ X̂n ≤ 1− c.

2.2 The ODE method on stochastic approximations

The second major tool we are going to use to prove convergence results is the comparison of
our processes to deterministic processes ruled by a “nice” ODE. One can define the notion of
stochastic approximation, as it was done in [KMS21]:

A stochastic approximation is a process (Xn)n≥0, adapted to some filtration (Fn)n≥0, with
values in a convex compact subset E ⊆ Rd, for some d ≥ 1, that satisfies an equation of the type

Xn+1 = Xn +
F (Xn) + ξn+1 + rn

n+ 1
, for all n ≥ 0,

where the vector field F : E 7→ R is some Lipschitz function, the noise ξn+1 is Fn+1-measurable
and satisfies En [ξn+1] = 0, for all n ≥ 0, and the remainder term rn is Fn-measurable and
satisfies almost surely ‖rn‖ ≤ C/n, for some deterministic constant C > 0.

We first adapt what was done in [KMS21] to prove that there exists a set E such that
(Ŵ (n))n≥0 is a stochastic approximation on E .

If we define Si(G) as the number of self-avoiding paths from Ni to F , which we arbitrarily
name ci1, . . . , ciSi(G), then we can define, for every i ∈ {1, 2} and j such that 1 ≤ j ≤ ciSi(G):

E ij :=

w ∈ [0, 1]E :
∑

e∈E:Ni∈e
we ≥ 1 and ∀e ∈ cij , we ≥

1

Si(G)


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and
E := Conv

(
∪ji=1 ∪

Si(G)
j=1 E ij

)
.

We then have the following property, which is the “multi-nest” version of Proposition 2.7 in
[KMS21], and can be proven following exactly the same proof:

Proposition 4. The function F is Lipschitz on the space E. Furthermore the process
(
Ŵ (n)

)
n≥0

is a stochastic approximation on E. More precisely,

Ŵ (n+ 1) = Ŵ (n) +
1

n+ 2

(
F (Ŵ (n)) + ξ(n+ 1)

)
where for any e ∈ E, ξe(n+ 1) := 1We(n+1)=We(n)+1 − pe(Ŵ (n)).

Actually, this proposition is still true if N(n) can have more than 2 values. (Recall that N(n)
is the starting nest of the nth ant.)

We can also define the limiting set, L(X) = ∩n≥0∪k≥n{Xk}, and we then have the following
proposition, which again is adapted from [KMS21, Corollary 2.6] and originates from [Pem07]:

Proposition 5. Let Xn be a stochastic approximation, and assume that there exists a determin-
istic constant C > 0 such that supn≥1 ‖ξn‖ ≤ C almost surely. We assume moreover that there
exist U and a finite familly p1, . . . , pk such that almost surely L(X) ⊆ U , and for every w ∈ U ,
there exists i such that the solution of the ODE ẏ = F (y), starting at w, converges to pi.

Then, almost surely, there exists i ∈ {1, . . . , k} such that L(X) = {pi}.

The proof of Corollary 2.6 in [KMS21] can easily be adapted to prove this proposition.

3 Proof of Theorem 1

In the whole section, we consider that the graph G is a (`1, `2, `3)-triangle, and we prove Theo-
rem 1. We suppose, without loss of generality, that `1 ≤ `2.

Summary of the proof. We have seen in Section 2 that our process is a stochastic approxi-
mation (see Proposition 4), and thus its asymptotic behaviour is strongly linked with the fixed
points of p, i.e. the zeros of F . We use Bendixson–Dulac theorem to prove that a solution of the
ODE ẏ = F (y) converges (see Lemma 7) and we deduce that the normalised process (Ŵ (n))n
indeed converges towards some zero of F (see Corollary 8).

Figure 5 illustrates the general behaviour of the ODE ẏ = F (y). It highly depends on the
parameters (`1, `2, `3 and α1), but the analysis is the same in all cases, so we illustrate the other
cases in Annex A.

Then it remains to determine towards which solution the process converges. We state and
prove a series of lemmas (Lemmas 9, 10 and 11) that enable to eliminate the unstable zeros one
by one. Figure 5 again helps to have an intuition of the reasoning. For example, we can focus
on F1 and (Ŵ1(n)). On the figure, the red lines are the zeros of F1. In the area between the
first and the second red lines, F1(w) > 0, and thus, if y = y(t) is such that ẏ = F (y), then if
y(t) is in this area for some t, its first coordinate will increase. In fact the same happens for
Ŵ (n), and in particular as soon as Ŵ1(n) < α1, F1(Ŵ (n)) > 0, and thus Ŵ1(n) tend to in-
crease, regardless of the value of Ŵ3(n). Getting rid of the influence of Ŵ3(n) enables to study a
simpler one-dimensional process, and that is in fact exactly the idea behind the proof of Lemma
9, which states that lim infn→∞ Ŵ1(n) ≥ α1. Lemmas 10 and 11 rely on the same reasonning,
even though the technical details are more intricate.

We first prove a very basic lemma that states useful equalities and inequalities on (W (n))n≥0.
Recall that we have set W1(n) :=Wa1(n), W2(n) :=Wb1(n) and W3(n) :=Wc1(n).
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Figure 5: Here `1 = 2, `2 = 4, `3 = 3 and α1 = 0.3.
Blue arrows represent the vector field associated to F . Orange curves represent the solutions to F3(w) = 0,
while red ones are solutions to F1(w) = 0. The black dots are thus the solutions to F (w) = 0, i.e. the
points towards which our process might converge. Recall that those points have coordinates (α1, 0),
(0, α1), (1, α2) and (β1, β3), with (β1, β3) ∈ [0, 1]2 if and only if `2 ≤ `1 + `3 and `3 ≤ `1 + `2.
The two green lines represent the solutions to w3 + w1 = α1 and w3 − w1 = −α1, which are relevant
since we know (see Remark 1) that asymptotically we can focus on the area where w3 + w1 ≥ α1 and
w3 − w1 ≥ −α1.
This figure illustrates what happens when `2 < `1 + `3 and `3 < `1 + `2 (this case is of particular interest
since (β1, β3) ∈ (0, 1)2). Figure 7 in Annex A illustrates the other cases.

Lemma 6. Almost surely, for every n: ∀i ≤ `1,Wai(n) =W1(n), ∀i ≤ `2,Wbi(n) =W2(n), and
∀i ≤ `3,W3(n) =Wc1(n). Moreover, almost surely

W1(n) +W2(n) = n+ 2,

lim inf
n→∞

W1(n) +W3(n)

n+ 2
≥ α1 (1)

and
lim inf
n→∞

W2(n) +W3(n)

n+ 2
≥ α2 (2)

Proof. The equalities on the weights are easy to prove with Remark 1. Moreover, the equality
W1(n) +W2(n) = n+ 2 comes from the fact that the nth ant stops after having used either a`1
or b`2 , thus at every step exactly one of these edges is reinforced. We can now focus on the two
last inequalities.

Recall that N(n) is the random nest from which the n-th ant starts its walk at step n. Let
i ∈ {1, 2}. For every n, if N(n) = Ni, then either Wi(n) or W3(n) is increased by 1. Thus we
have the following:

Wi(n) +W3(n) ≥ 2 +
n∑
k=1

1N(n)=Ni
.

Then we can conclude by using the strong law of large numbers, since 1N(n)=Ni

iid∼ B(αi):

lim inf
n→∞

Wi(n) +W3(n)

n+ 2
≥ lim

n→∞

2 +
∑n

k=1 1N(n)=Ni

n+ 2
= αi a.s.
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First computations We start by computing p1(w) and p3(w), using for example a method
called the conductance method, which is introduced in [LP16, Chapter 2], and using the asumption
w2 = 1− w1 (which comes from the fact that we have almost surely ∀n, Ŵ1(n) + Ŵ2(n) = 1).

p1(w) =
∑
i=1,2

αiP (We(n+ 1) =We(n) + 1 | W (n) = w and N(n) = Ni)

= α1

w1
`1

w1
`1

+ w2w3
`2w3+`3w2

+ α2

w1w3
`1w3+`3w1
w1w3

`1w3+`3w1
+ w2

`2

=
w1 (α1`3(1− w1) + `2w3)

w3(`1 + w1(`2 − `1)) + `3w1(1− w1)

p3(w) = α1

w2w3
`2w3+`3w2

w1
`1

+ w2w3
`2w3+`3w2

+ α2

w1w3
`1w3+`3w1
w1w3

`1w3+`3w1
+ w2

`2

=
w3 (α1`1(1− w1) + `2(1− α1)w1)

w3(`1 + w1(`2 − `1)) + `3w1(1− w1)

We can always write p1 and p3 this way, because the denominator is non-zero as soon as w1, w3 /∈
{(0, 0), (1, 0)}, and Lemma 9 enables to see that those points are not even close to the limiting
set L(Ŵ ). Moreover, we don’t need to compute p2(w), since p2(w) = 1− p1(w).

Computation of the zeros of F . We can compute F1, F3, their zeros, and define γ and g,
which will be useful later:

F1(w) =
w1(1− w1) (`3(α1 − w1) + (`2 − `1)w3)

w3(`1 + w1(`2 − `1)) + `3w1(1− w1)
= 0

⇐⇒ w1 = 0 or w1 = 1 or w3 =
`3(w1 − α1)

`2 − `1
=: γ(w1)

Similarly,

F3(w) =
w3 (`2(1− α1)w1 + `1α1(1− w1)− `3w1(1− w1)− w3(`1 + w1(`2 − `1)))

w3(`1 + w1(`2 − `1)) + `3w1(1− w1)
= 0

⇐⇒ w3 = 0 or w3 =
`2(1− α1)w1 + `1α1(1− w1)− `3w1(1− w1)

`1 + w1(`2 − `1)
=: g(w1)

One can check that the only point such that w3 = γ(w1) and w3 = g(w1) is (β1, β3) as defined
in Theorem 1. Therefore,

F (w) = 0 ⇐⇒ (w1, w3) ∈ {(0, α1), (1, α2), (α1, 0), (β1, β3)} . (3)

One can then remark that (β1, β3) ∈ [0, 1]2 if and only if `2 < `1 + `3 and `3 < `1 + `2. In
fact, straightforward computation gives:

β1 < 1 ⇐⇒ `2 < `1 + `3 and β3 > 0 ⇐⇒ `3 < `1 + `2 (4)

(and also β1 = 1 ⇐⇒ `2 = `1 + `3 and β3 = 0 ⇐⇒ `3 = `1 + `2). Moreover, since β3 = γ(β1),
β3 ≥ 0 implies directly that β1 ≥ α1 > 0. Then, by convexity of g (which can be shown by
computing its second derivative), β3 ≤ max(g(0), g(1)) = max(α1, 1− α1) ≤ 1.

We now prove Lemma 7, which states that solutions to ẏ = F (y) starting in the square
[0, 1]2 converge. This lemma implies (see Corollary 8) that our process (Ŵ (n))n almost surely
converges.

Lemma 7. We consider the ODE
ẏ = F (y). (5)

Then, for any w ∈ [0, 1]2, the solution of the ODE (5) starting at w converges.

9



Proof. The main idea is to use Bendixson–Dulac method (see for example [HSS98, section 4.1])
to show that such a solution has no orbit, i.e. no nonconstant periodic solution. Then Poincaré-
Bendixson theorem [HSS98, theorem 4.1.1] enable to conclude that every solution converges.

First, one can show that if a solution is a periodic orbit, then is stays in (0, 1)×(0, 1]. In fact,
if φ : t 7→ (x(t), y(t)) is a periodic solution to (5), such that ∃t : x(t) = 0, then one can easily
show that this implies x(t) = 0, ∀t, hence there is a contradiction. Similar reasonning allows to
see that for every t, x(t) 6= 1 and y(t) 6= 0, i.e. ∀t, φ(t) ∈ (0, 1)× (0, 1].

Now we can focus on proving that there is no periodic orbit on (0, 1)× (0, 1].
Let d := w 7→ w3(`1 + w1(`2 − `1)) + `3w1(1 − w1), n1 := w 7→ F1(w)d(w), n3 := w 7→

F3(w)d(w), h : w 7→ 1
w1(1−w1)w3

, and g := w 7→ d(w)h(w). One can then compute ∇w (Fg), by
hand or using Maple:

∇w (Fg) =
∂n1h

∂w1
(w) +

∂n3h

∂w3
(w)

=
∂h

∂w1
(w)n1(w) + h(w)

∂n1
∂w1

(w) +
∂h

∂w3
(w)n3(w) + h(w)

∂n3
∂w3

(w)

= h(w)

(
2w1 − 1

w1(1− w1)
n1(w) +

∂n1
∂w1

(w) +
−1
w3

n3(w) +
∂n3
∂w3

(w)

)
=
(
`3w

2
1 + ((`1 − `2)w3 − `3)w1 − w3`1

)
h(w)

= g(w)

Then, for all w1, w3, we have d(w) = `1w3(1−w1)+`2w3w1+`3w1(1−w1) > 0 on (0, 1)×(0, 1].
We have found g a C1 function such that ∇w (Fg) > 0 on (0, 1)×(0, 1], therefore we can apply

Bendixson-Dulac theorem [HSS98, Section 4.1]: every solution to (5) starting in (0, 1)×(0, 1] has
no orbit. And therefore it converges, thanks to Poincaré-Bendixson theorem [HSS98, theorem
4.1.1] (if it was not converging, then Poincaré-Bendixson theorem would imply the existence of
a periodic orbit, and thus raise a contradiction).

We thus have the following corollary, which states that the normalised process (Ŵ (n))n
almost surely converges.

Corollary 8. Almost surely, limn→∞ Ŵ (n) exists, and

lim
n→∞

Ŵ (n) ∈ {(1, α2), (α1, 0), (β1, β3)}.

Proof. Recall that {w : F (w) = 0} = {(1, α2), (0, α1), (α1, 0), (β1, β3)}. Then as a direct corollary
of Lemma 7 and Proposition 5 (which can be applied to

(
Ŵ (n)

)
n
since Proposition 4 states

that it is a stochastic approximation), we have that almost surely

lim
n→∞

Ŵ (n) ∈ {(1, α2), (0, α1), (α1, 0), (β1, β3)}.

Combining this with Lemma 9, we get that almost surely,

Ŵ (n) −→
n→∞

(β1, β3), Ŵ (n) −→
n→∞

(1, α2) or Ŵ (n) −→
n→∞

(α1, 0). (6)

We now eliminate the unstables zeros one by one, starting by (0, α1) with the following
lemma.

Lemma 9. Recall that `1 ≤ `2. Then, almost surely:

lim inf
n→∞

W1(n)

n
≥ α1.
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Proof. We prove this lemma by building a function g such that a g-urn process converges (we
show this using Proposition 2), and such that our process (W (n))n dominates a g-urn process.

We consider f : w3 7→ p1(w). Then, one can compute

f ′(w3) =
`3w1(1− w1) (`2(1− α1)w1 − `1α1(1− w1)))

(w3(`1 + w1(`2 − `1)) + `3w1(1− w1))
2 .

f ′ has constant sign, thus f is monotonous.
Moreover, f ′ > 0 if and only if w1 ≥ `1α1

`2(1−α1)+`1α1
=: c1.

We can then consider g : w1 7→ inf
w3

p1(w). g is such that:

g(w1) =

{
p1(w1, 0) = α1 if w1 ≥ c1,
p1(w1, 1) =

w1(α1`3(1−w1)+`2)
`1(1−w1)+`2w1+`3w1(1−w1)

otherwise,

and g is continuous, since p1(c1, 1) = α1. Moreover, `2 ≥ `1 implies that α1 ≥ c1, and then a
little computation enables to prove that g(w1) = w1 if and only if w1 = 0 or w1 = α1. Finally,
g(w1) ∼

w1→0
w1

α1`3+`2
`1

> 0, so it follows from Proposition 5 that any g-urn process converges to

the only stable fixed-point of g, i.e. α1.
To conclude,

(
W1(n)
n

)
n
stochastically dominates a g-urn process, so in particular

lim inf
n→∞

W1(n)

n
≥ α1.

The following lemma enables to show that, when `3 < `1+ `2, Ŵ (n) does not tend to (α1, 0).

Lemma 10. If `3 < `1 + `2, then there exists c > 0 such that a.s.

lim inf
n→∞

W3(n)

n
≥ c

Proof. We prove that there exists a constant c > 0 such that for every ε1 > 0,

P
(
lim inf
n→∞

W3(n)

n
≥ c
)
≥ 1− ε1.

Our purpose now is to define an event Aε1 such that P (Aε1) ≥ 1 − ε1 and conditionally on
Aε1 , we can do as in the previous lemma, i.e. show that our process (W (n))n dominates some
g-urn process which almost surely has a positive liminf. More precisely, we will prove that there
exist ε > 0 and c > 0 such that, conditionally on Aε1 , for n large enough, Ŵ3(n) ≤ c implies
p3(W1(n),W3(n)) ≥ (1+ ε)W3(n), and then we will be able to conclude with [KMS21, Corollary
2.2]. The event Aε1 will be built in order to make use of Equations (1) and (2) in Lemma 6. We
need to use this lemma, because in some cases (depending on α1, `1, `2 and `3), for every c there
exist some (w1, w3) such that w3 < c and p3(w1, w3) ≤ w3. Figure 2 illustrates the fact that,
even in those cases, Lemma 6 enables to focus on the pairs (w1, w3) verifying w3 +w1 ≥ α1− ε2
and w3 + α1 ≥ w1 − ε2, and on this set of pairs we don’t have this issue.

Denoting that w3(`1 + w1(`2 − `1)) + `3w1(1 − w1) > 0, we do the following computation,
and define gε:

p3(w) =
w3 (α1`1(1− w1) + `2(1− α1)w1)

w3(`1 + w1(`2 − `1)) + `3w1(1− w1)
≥ (1 + ε)w3

⇐⇒ α1`1(1− w1) + `2(1− α1)w1 ≥ (1 + ε) (w3(`1 + w1(`2 − `1)) + `3w1(1− w1))

⇐⇒ (1 + ε) (`1 + w1(`2 − `1))w3 ≤ α1`1(1− w1) + `2(1− α1)w1 − (1 + ε) `3w1(1− w1)

⇐⇒ w3 ≤
α1`1(1− w1) + `2(1− α1)w1 − (1 + ε) `3w1(1− w1)

(1 + ε) (`1 + w1(`2 − `1))
=: gε(w1).

11



Figure 6: Here `1 = 8, `2 = 12, `3 = 18 and α1 = 0.1. The black dot corresponds to the point (β1, β3).
We use the same colour coding as in Figure 5.
(β1, β3) is the only point belonging to both the orange curve (representing g(w1)) and the red curve,
and β3 > 0, thus the orange curve can’t cross the green one on a point with a zero ordinate. Thus
infw1:g(w1)+w1≥α1,g(w1)+α1≥w1

g(w1) > 0.

Now we want to prove that there exists ε > 0 such that infw1:(w1,gε(w1))∈E ′ gε(w1) > 0.
Intuitively, gε is close to g for ε small enough, so we can rely on the fact that this is true for g.
Figure 6 illustrates the intuition of why it is always true for g, even if g might be negative on a
subset of [0, 1]. We now prove it for gε.

Straightforward computation (exactly the same as the one for (β1, β3)) shows that there is a
unique solution to gε(w1) = γ(w1); let β

(ε)
1 be this solution, and let β(ε)3 := γ(w1). β

(ε)
1 is such

that:

β
(ε)
1 =

α1`1 ((1 + ε)`3 + `2 − `1)
(1 + ε)`1`3 + (`2 − `1) ((1− α1)((1 + ε)`3 − `2) + α1`1)

.

It is quite obvious that β(ε)1 →
ε→0

β1 and β
(ε)
3 →

ε→0
β3. So there exists ε such that β(ε)3 > 0

(since we have seen that β3 > 0 ⇐⇒ `3 < `1 + `2). Here one can notice that we don’t need to
have (β1, β3) ∈ [0, 1]2, the proof still works if β1 > 1.

We prove by contradiction that infw1:(w1,gε(w1))∈E ′ gε(w1) > 0. If infw1:(w1,gε(w1))∈E ′ gε(w1) =
0, then there would exist a sequence (w1(n))n such that for every n, (w1(n), gε(w1(n))) ∈ E ′,
and gε(w1(n)) →

n→∞
0. Since (w1(n), gε(w1(n))) ∈ E ′, α1 + gε(w1(n)) ≥ w1(n) ≥ α1 − gε(w1(n)),

and therefore we can deduce that w1(n) →
n→∞

α1.
But then, by continuity of gε, we would have gε(w1(n)) →

n→∞
gε(α1) = 0. Since γ(α1) = 0,

and since β(ε)1 is the unique solution to the equation gε(w1) = γ(w1), it implies that β(ε)1 = α1

and β(ε)3 = 0, which is a contradiction, by definition of ε.
So we have proven that

inf
w1:(w1,gε(w1))∈E ′

gε(w1) > 0.

We can prove the same result on the set

E ′ε2 = {w ∈ E : w1 + w2 = 1, w3 + w1 ≥ α1 − ε2, and w3 + α1 ≥ w1 − ε2}

as soon as ε2 is small enough. In fact, gε is continuous and {w1 : (w1, gε(w1)) ∈ E ′ε2} is an
interval that tends to {w1 : (w1, gε(w1)) ∈ E ′}, therefore

inf
w1:(w1,gε(w1))∈E ′ε2

gε(w1) −→
ε2→0

inf
w1:(w1,gε(w1))∈E ′

gε(w1) > 0,

Thus there exists ε2 such that c := infw1:(w1,gε(w1))∈E ′ε2
gε(w1) > 0.
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The idea now is that, even though it is possible to have infw1∈[α1,1] gε(w1) ≤ 0, we can use
Lemma 6 to say that almost surely we can ignore what happens outside E ′ε2 after a certain time
(i.e. a certain number of steps), and thus after that time we can apply Corollary 3.

Let ε1 > 0. As direct corollary of Lemma 6, there exists nε1 such that

P
(
∀n ≥ nε1 ,

W1(n) +W3(n)

n+ 2
≥ α1 − ε2 and

W3(n)−W1(n)

n+ 2
≥ −α1 − ε2

)
≥ 1− ε1

i.e., if we define the event Aε1 :=
{
∀n ≥ nε1 ,

(
W1(n)
n+2 ,

W3(n)
n+2

)
∈ E ′ε2

}
, then P (Aε1) ≥ 1− ε1.

Thus, if we define G : w3 7→ infw1:(w1,w3)∈E ′ε2
p3(w1, w3), then G is such that, conditionally

on Aε1 , for every n ≥ nε1 ,

P (W3(n+ 1) =W3(n) + 1|W (n)) ≥ G(Ŵ3(n)).

Moreover, thanks to the computation we did on gε, we know that G(x) ≥ (1 + ε)x, for every
x < c. Finally, Corollary 3 conditionally on the event Aε1 enables to conclude:

P
(
lim inf
n→∞

W3(n)

n
≥ c
)
≥ 1− ε1.

Since this is true for every ε1, we can conclude that almost surely

lim inf
n→∞

W3(n)

n
≥ c.

This last lemma enables to show that, when `2 < `1 + `3, Ŵ (n) does not converge to (1, α2).

Lemma 11. If `2 < `1 + `3, there exists c < 1 such that

lim sup
n→∞

Ŵ1(n) ≤ c.

Proof. Here again, the proof relies on the coupling of Ŵ1(n) with a one-dimentionalG-urn process
for some G on which we can apply Corollary 3.

We can deduce from Corollary 8 that almost surely: lim supn→∞ Ŵ3(n) ≤ max (β3, α2).
If we let c0 := max (β3, α2), and ε0 > 0 be such that c0 + ε0 < γ(1) (this is possible since

γ(1) = `3α2
`2−`1 and `3 > `2 − `1, so α2 < γ(1), and β1 < 1 so β3 = γ(β1) < γ(1)), then for

every ε there exists nε such that P
(
∀n ≥ nε, Ŵ3(n) ≤ c0 + ε0

)
≥ 1 − ε. We define the event

Aε :=
{
∀n ≥ nε, Ŵ3(n) ≤ c0 + ε0

}
.

We have seen, in the proof of Lemma 9, that w3 7→ p1(w) is monotonous, thus we have the
following:

sup
w3∈[0,c0+ε0]

p1(w) = max (p1(w1, 0), p1(w1, c0 + ε0)) .

We want to prove that there exist ε1 > 0 and c < 1 such that for every w1 ∈ (c, 1),

sup
w3∈[0,c0+ε0]

p1(w) ≤ (1− ε)w1. (7)

For every ε1 ∈ (0, α2), p1(w1, 0) = α1 < (1− ε1) and γ (w1) −→
w1→1

γ(1) > c0 + ε0, thus there

exists cε1 such that

∀w1 > cε1 , p1(w1, 0) = α1 < (1− ε1)w1 and γ(w1) > c0 + ε0.

In addition to that, we can assume that cε1 > α1 and ε1 7→ cε1 is decreasing. Then, one can
check that γ(w1) > c0 + ε0 is equivalent to

α1`3(1− w1) + `2(c0 + ε0) < (c0 + ε0)(`1 + w1(`2 − `1)) + `3w1(1− w1)
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And this finally proves that there exists ε1 verifying

α1`3(1− w1) + `2(α2 + ε0) ≤ (1− ε1) ((α2 + ε0)(`1 + w1(`2 − `1)) + `3w1(1− w1)) . (8)

One can then verify that the inequality (8) is equivalent to p1(w1, α2 + ε0) ≤ (1− ε1)w1, for
any w1 ∈ (0, 1). We can deduce that (7) is true.

(7) implies the existence of G : [0, 1]→ [0, 1] such that for every x ∈ (cε1 , 1), G(x) < (1−ε1)x
and, conditionally on the event Aε,

∀n ≥ nε, P (W1(n+ 1) =W1(n) + 1 | W (n)) ≤ G(W1(n)).

It then follows from Corollary 3 that, conditionally on Aε, lim supn→∞ Ŵ1(n) ≤ cε1 , i.e.
P
(
lim supn→∞ Ŵ1(n) ≤ cε1

)
≥ 1− ε. This is true for every ε > 0, so almost surely

lim sup
n→∞

Ŵ1(n) ≤ cε1 .

Now we have proven enough intermediate results to conclude the proof of Theorem 1.

Proof of Theorem 1. We have seen that we have three distinct cases:

• If `3 ≥ `1 + `2: In this case, (β1, β3) /∈ [0, 1]2 (except if `3 = `1 + `2, but then (β1, β3) =
(α1, 0)).

Lemma 11 implies that P
(
Ŵ (n) −→

n→∞
(1, α2)

)
= 0, and together with Corollary 8, we

finally get that almost surely,
Ŵ (n) −→

n→∞
(α1, 0).

• If `2 ≥ `1 + `3: Here again, (β1, β3) /∈ [0, 1]2 (except if `2 = `1 + `3, but then (β1, β3) =
(1, α2)).

Then Lemma 10 gives P
(
Ŵ (n) −→

n→∞
(0, α1)

)
= 0, and combining this with Corollary 8

gives that almost surely,
Ŵ (n) −→

n→∞
(1, α2).

• Finally, if `2 < `1 + `3 and `3 < `1 + `2, the same reasonning combining Lemma 10,
Lemma 11 and Corollary 8 enables to prove that almost surely,

Ŵ (n) −→
n→∞

(β1, β3).
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A Figures illustrating the other cases

(a) Here `1 = 2, `2 = 4, `3 = 9 and α1 = 0.3.
This figure illustrates what happens when
`3 > `1 + `2.

(b) Here `1 = 2, `2 = 6, `3 = 3 and α1 = 0.3.
This figure illustrates what happens when
`2 > `1 + `3.

(c) Here `1 = 2, `2 = 5, `3 = 3 and α1 = 0.3.
This figure illustrates what happens when
`2 = `1 + `3 (i.e. (β1, β3) = (1, α2)).

(d) Here `1 = 2, `2 = 3, `3 = 5 and α1 = 0.3.
This figure illustrates what happens when
`3 = `1 + `2 (i.e. (β1, β3) = (α1, 0)).

Figure 7: This figure represents the same objects as Figure 5 (see its caption for a detailled explanation),
but in different cases that highlight really distinct behaviors according to the parameters `1, `2 and `3.
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