An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin, LaBRI, Université de Bordeaux

November 16th, 2023

An interacting particle system : the golf model on $\mathbb{Z} / n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of H¹ Asymptotic behavior

On 🛛

Definition Distribution of H^{f}

Conclusion

References

Initial configuration

 $N_{\rm h}$ holes :

$$\mathbf{H}^{init} = \left\{igodot
ight\}$$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of Hⁱ on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On 🛛

Definition Distribution of H^{t}

Conclusion

References

 $N_{\rm h}$ holes :

$$\mathbf{H}^{init} = \left\{igodot
ight\}$$

 $N_{\rm b}$ balls :

one activation clock per ball :

 $\boldsymbol{A}_{v} \sim \mathcal{U}\left([0,1]\right)$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of Hⁱ on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On 🛛

Definition Distribution of H^{t}

Conclusion

References

N_h holes :

$$\mathbf{H}^{init} = \left\{igodot
ight\}$$

 $N_{\rm h}$ balls : $\boldsymbol{B}^{init} = \{ egin{array}{c} , \end{array}, \end{array}, \end{array}, \end{array}, \end{array}, \end{array}, \end{array} \}$ one activation clock per ball : $\boldsymbol{A}_{v} \sim \mathcal{U}([0,1])$ Main golf model : $(\boldsymbol{B}^{init}, \boldsymbol{H}^{init}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z}\\ N_{h_1}, N_{h_2}, N_{h_3} \end{pmatrix}\right)$ $N_{\rm h}$ and $N_{\rm h}$ fixed, $N_{\rm h} > N_{\rm h}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On 🛛

Definition Distribution of H^{t}

Conclusion

References

N_h holes :

$$\mathbf{H}^{init} = \left\{igodot
ight\}$$

N_b balls :

one activation clock per ball :

 $\boldsymbol{A}_{v} \sim \mathcal{U}\left([0,1]\right)$

Main golf model :

$$(\boldsymbol{\textit{B}}^{\textit{init}},\boldsymbol{\textit{H}}^{\textit{init}}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z} \\ N_{b},N_{h},N_{n} \end{pmatrix} \right)$$

 \textit{N}_{h} and \textit{N}_{b} fixed, $\textit{N}_{h} \geq \textit{N}_{b}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On Z

Definition Distribution of H^{t}

Conclusion

References

N_h holes :

$$\mathbf{H}^{init} = \left\{igodot
ight\}$$

N_b balls :

one activation clock per ball :

 $\boldsymbol{A}_{v} \sim \mathcal{U}\left([0,1]\right)$

Main golf model : 🖤

$$(\boldsymbol{\textit{B}}^{\textit{init}},\boldsymbol{\textit{H}}^{\textit{init}}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z} \\ N_{b},N_{h},N_{n} \end{pmatrix} \right)$$

 $\textit{N}_{\rm h}$ and $\textit{N}_{\rm b}$ fixed, $\textit{N}_{\rm h} \geq \textit{N}_{\rm b}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On 🛛

Definition Distribution of H^{t}

Conclusion

References

N_h holes :

$$H^{init} = \left\{ igodot
ight\}$$

 N_{b} balls : $\boldsymbol{B}^{init} = \{ igodot, igodot, igodot, igodot, \ldots \}$ one activation clock per ball : $\boldsymbol{A}_{v} \sim \mathcal{U}([0, 1])$ Main golf model :

$$(\boldsymbol{B}^{init}, \boldsymbol{H}^{init}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z} \\ N_{b}, N_{h}, N_{n} \end{pmatrix} \right)$$

 $\textit{N}_{\rm h}$ and $\textit{N}_{\rm b}$ fixed, $\textit{N}_{\rm h} \geq \textit{N}_{\rm b}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On 🛛

Definition Distribution of H^{t}

Conclusion

References

N_h holes :

$$H^{init} = \left\{ igodot
ight\}$$

N_b balls :

one activation clock per ball :

 $\boldsymbol{A}_{\nu} \sim \mathcal{U}\left([0,1]\right)$

Main golf model : 🖤

$$(\boldsymbol{\textit{B}}^{\textit{init}},\boldsymbol{\textit{H}}^{\textit{init}}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z} \\ N_{b},N_{h},N_{n} \end{pmatrix} \right)$$

 \textit{N}_{h} and \textit{N}_{b} fixed, $\textit{N}_{h} \geq \textit{N}_{b}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Sti	ıdy	of	Н
on			

Distribution of H¹ Asymptotic behavior

On 🛛

Definition Distribution of H^{f}

Conclusion

References

- Initial configuration
- Dynamics
- Final configuration

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H on $\mathbb{Z}/n\mathbb{Z}$

Distribution of H¹ Asymptotic behavior

On 2

Definition Distribution of H^{f}

Conclusion

References

- Initial configuration
- Dynamics
- Final configuration

Remaining holes :

$$oldsymbol{H}^{oldsymbol{f}}=\left\{ extsf{positions of }oldsymbol{O} extsf{ when } t=1
ight\}$$

Occupied holes :

$$\boldsymbol{H}^{\boldsymbol{o}} = \left\{ \begin{array}{c} \text{positions of } \boldsymbol{\bigcirc}, \boldsymbol{\bigcirc}, \dots \\ \text{when } t=1 \end{array} \right\}$$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^{i} on $\mathbb{Z}/n\mathbb{Z}$

Distribution of H¹ Asymptotic behavior

On 2

Definition Distribution of H'

Conclusion

References

- Initial configuration
- Dynamics
- Final configuration

Remaining holes :

$$oldsymbol{H}^{oldsymbol{f}}=\left\{ extsf{positions of }oldsymbol{O} extsf{ when } t=1
ight\}$$

Occupied holes :

$$\boldsymbol{H}^{\boldsymbol{o}} = \left\{ \begin{array}{c} \text{positions of } \boldsymbol{\bigcirc}, \boldsymbol{\bigcirc}, \dots \\ \text{when } t=1 \end{array} \right\}$$

Proposition (on finite graphs)

The random variable H^f is well-defined.

Plan of the presentation

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On 🛛

Definition Distribution of H^{t}

Conclusion

References

- End of the introduction
- distribution of H^f?
- asymptotic behavior of the block sizes
- \blacksquare golf process on $\mathbb Z$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

+

- parking spots : V
- every car : tries to park in $\boldsymbol{u} \sim \mathcal{U}(V)$; moves clockwise until the first non-occupied parking spot.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H Asymptotic behavior

On Z

Definition Distribution of H^{t}

Conclusion

References

- parking spots : V
- every car : tries to park in $\boldsymbol{u} \sim \mathcal{U}(V)$; moves clockwise until the first non-occupied parking spot.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On Z

Definition Distribution of H^{t}

Conclusion

References

- parking spots : V
- every car : tries to park in $\boldsymbol{u} \sim \mathcal{U}(V)$; moves clockwise until the first non-occupied parking spot.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{t}

Conclusion

References

- parking spots : V
- every car : tries to park in $\boldsymbol{u} \sim \mathcal{U}(V)$; moves clockwise until the first non-occupied parking spot.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H Asymptotic behavior

On Z

Definition Distribution of H^{t}

Conclusion

References

- parking spots : V
- every car : tries to park in $\boldsymbol{u} \sim \mathcal{U}(V)$; moves clockwise until the first non-occupied parking spot.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Distribution of H Asymptotic

Definition Distribution of H

- parking spots : V
- every car : tries to park in $\boldsymbol{u} \sim \mathcal{U}(V)$; moves clockwise until the first non-occupied parking spot.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H Asymptotic behavior

On Z

Definition Distribution of H^{t}

Conclusion

References

- parking spots : V
- every car : tries to park in $\boldsymbol{u} \sim \mathcal{U}(V)$; moves clockwise until the first non-occupied parking spot.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H Asymptotic behavior

On Z

Definition Distribution of H^{I}

Conclusion

References

Standard random parking process (on a cycle)

- parking spots : V
- every car : tries to park in
 u ~ U(V); moves clockwise until
 the first non-occupied parking spot.

Standard random parking as a golf process :

- parking spots \rightarrow holes
- cars → balls

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{I}

Distribution of /

Conclusion

References

Standard random parking process (on a cycle)

parking spots : V

every car : tries to park in $\boldsymbol{u} \sim \mathcal{U}(V)$; moves clockwise until the first non-occupied parking spot.

Standard random parking as a golf process :

- parking spots \rightarrow holes
- $\blacksquare \mathsf{ cars} \to \mathsf{balls}$

Generalisation : definition of the *p*-parking process

Instead of doing a clockwise walk, cars/balls do a random walk of parameter *p*.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{t}

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of H Asymptotic behavior

On Z

Definition Distribution of H^{I}

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of *H* Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{I}

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of *H* Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of *H* Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of *H* Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of *H* Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of *H* Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of *H* Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of *H* Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of *H* Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of H Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on $\mathbb{Z}/n\mathbb{Z}$

Distribution of H Asymptotic behavior

On Z

Distribution of H'

Conclusion

References

Proposition (Diaconis-Fulton [DF91])

On finite graphs, if we fix O_1 and O_2 two activation orders for the balls, then $H^f(O_1) \stackrel{\mathcal{L}}{=} H^f(O_2)$

Key tool for the proof : changing point of view - heaps of arrows

on every vertex : a heap of arrows

• commutation : same arrows used and same holes filled $\implies H^f(O_1) = H^f(O_2)$ p.s.

Some related models

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H Asymptotic behavior

On 🛛

Definition

Distribution of H'

Conclusion

References

Diaconis and Fulton [DF91]

- internal diffusion-limited aggregation (IDLA) (Lawler, Bramson, Griffeath [LBG92]); Activated Random Walk; Diffusion-Limited Annihilating Systems (Cabezas, Rolla, Sidoravicius) ...
- parking processes (Knuth, Chassaing, Louchard, ...) linked with the standard additive coalescent
- probabilistic interpretation of the Remixed Eulerian Numbers (Nadeau, Tewari [NT22]), Bilateral Parking procedures (Nadeau)

Distribution of H^{f}

An interacting particle system : the golf model on $\mathbb{Z} / n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H on ℤ/nℤ

Distribution of H^{\prime}

Asymptotic behavior

On Z

Definition

Distribution of H'

Conclusion

References

Distribution of H^{f}

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of Hⁱ on ℤ/nℤ

Distribution of H^t Asymptotic

On Z

Definition Distribution of H^{f}

Conclusion

References

 $X = \{x_0 \dots, x_{N_f-1}\}, N_f = N_h - N_b.$ $0 < x_1 < \dots < x_{N_f-1} < x_0 \le n$ $\forall i, \ \ell_i \coloneqq (x_{i+1} - x_i - 1) \mod n$ $\mathbb{P}(H^f = X) = ?$

Theorem [V. 2023+] - Distribution of the remaining holes

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\right)=\frac{1}{|C^{n,N_{\mathbf{b}},N_{\mathbf{h}}}|}\sum\prod_{i=0}^{N_{f}-1}\frac{1}{b_{i}+1}\binom{\ell_{i}}{b_{i},b_{i},\ell_{i}-2b_{i}}$$

where the sum is taken on the $(b_i)_{0 \le i < N_f}$ such that $\sum_i b_i = N_b$ and $\forall i, 2b_i \le \ell_i$.

Distribution of H^{f} : one-hole case

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H^{f}

Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{f}

Construction

References

one-hole case : $N_{\rm h} = N_{\rm b} + 1$ key : rotational invariance

$$\forall x \in \mathbb{Z}/n\mathbb{Z}, \ \mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{b}}+1,\rho}\left(\boldsymbol{H}^{\boldsymbol{f}}=\{x\}\right) = \frac{1}{n}$$

Distribution of H^{f} : one-hole case

Zoé Varin

Introduction

Study of Hⁱ on ℤ/nℤ

Distribution of H^{f}

Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{t}

Conclusion

References

one-hole case :
$$N_{\rm h} = N_{\rm b} + 1$$

key : rotational invariance

$$\forall x \in \mathbb{Z}/n\mathbb{Z}, \ \mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{b}}+1,p}\left(\boldsymbol{H}^{\boldsymbol{f}}=\{x\}\right) = \frac{1}{n}$$

Lemma [V. 2023+] - Distribution of H^{f} in the **one-hole case**

If $N_{\rm h} = N_{\rm b} + 1$, then $\forall x \in \mathbb{Z}/n\mathbb{Z}$,

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{b}}+1,p}\left(\boldsymbol{H}^{\boldsymbol{f}}=\{\boldsymbol{x}\}\big|\boldsymbol{x}\in\boldsymbol{H}^{init}\right)=\frac{1}{N_{\mathbf{b}}}=\frac{1}{N_{\mathbf{b}}+1}$$

Distribution of $\boldsymbol{H^f}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H^f

Asymptotic behavior

On 🛛

Definition Distribution of H^{f}

~ 1 1

References

Proof

We assume that $n = N_h + N_b$ (no-neutral-site case). We let $b_i := \ell_i/2$.

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\right)=$$

9/18

Distribution of $\pmb{H^f}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H^{f}

Asymptotic behavior

On Z

Definition

Distribution of H^{\prime}

Conclusion

References

Proof

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{b}},p}\left(\boldsymbol{H}^{\boldsymbol{f}}=\boldsymbol{X}\right)=$$

Distribution of H^{f}

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of Hⁱ on ℤ/nℤ

Distribution of H^{t}

Asymptotic behavior

On Z

Definition

Distribution of H^{\prime}

Conclusion

References

Proof

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\right)=\mathbb{P}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\middle|\begin{array}{c} \mathbf{X}\subseteq\boldsymbol{H}^{\textit{init}}\\ \text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i} \end{array}\right)\mathbb{P}\left(\begin{array}{c} \mathbf{X}\subseteq\boldsymbol{H}^{\textit{init}}\\ \text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i} \end{array}\right)$$

Distribution of H^{f}

An interacting particle system : the golf model on Z/nZ and on Z

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H

Asymptotic behavior

On 🛛

Definition

Distribution of H'

Conclusion

References

Proof

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\right)=\mathbb{P}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\middle|\begin{array}{c} \mathbf{X}\subseteq\boldsymbol{H}^{\textit{init}}\\ \text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i} \end{array}\right)\mathbb{P}\left(\begin{array}{c} \mathbf{X}\subseteq\boldsymbol{H}^{\textit{init}}\\ \text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i} \end{array}\right)$$

Distribution of $\pmb{H^f}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of Hⁱ on ℤ/nℤ

Distribution of H^{f}

Asymptotic behavior

On 🛛

Definition Distribution of H^{t}

Conclusion

References

Proof

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\right)=\mathbb{P}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\middle|\begin{array}{c} \mathbf{X}\subseteq\boldsymbol{H}^{\textit{init}}\\ \text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i} \end{array}\right)\mathbb{P}\left(\begin{array}{c} \mathbf{X}\subseteq\boldsymbol{H}^{\textit{init}}\\ \text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i} \end{array}\right)$$

Distribution of H^f

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on Z/nZ

Distribution of H

Asymptotic behavior

On Z

Definition Distribution of H^{t}

Conclusion

References

Proof

$$\begin{split} \mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{\boldsymbol{f}}=\boldsymbol{X}\right) &= \mathbb{P}\left(\left.\boldsymbol{H}^{\boldsymbol{f}}=\boldsymbol{X}\right|\underset{\text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i}}{\overset{\boldsymbol{X}\subseteq\boldsymbol{H}^{\textit{init}}}{\underset{\text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i}}}\right)\mathbb{P}\left(\underset{\text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i}}{\overset{\boldsymbol{X}\subseteq\boldsymbol{H}^{\textit{init}}}{\underset{\text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i}}}\right) \\ &= \left(\prod_{i=0}^{N_{f}-1}\frac{1}{b_{i}+1}\right) \end{split}$$

Distribution of H^f

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on Z/nZ

Distribution of H^{\prime}

Asymptotic behavior

On 🛛

Definition Distribution of H^{t}

Conclusion

References

Proof

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\right) = \mathbb{P}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\middle| \begin{array}{c} \underset{\mathsf{And}}{\overset{\mathsf{X}\subseteq\boldsymbol{H}^{init}}{\mathsf{and}} \forall i,|\boldsymbol{B}_{i}|=b_{i}} \end{array}\right) \mathbb{P}\left(\begin{array}{c} \underset{\mathsf{And}}{\overset{\mathsf{X}\subseteq\boldsymbol{H}^{init}}{\mathsf{and}} \forall i,|\boldsymbol{B}_{i}|=b_{i}} \end{array}\right)$$
$$=\left(\prod_{i=0}^{N_{f}-1}\frac{1}{b_{i}+1}\right) \begin{array}{c} \underset{i=0}{\overset{\mathsf{N}_{f}-1}{\underset{b_{i}}{\mathsf{b}_{i}}}} \\ \left(\begin{array}{c} \underset{\mathsf{N}_{\mathbf{h}}}{\overset{\mathsf{N}_{f}-1}{\mathsf{b}_{i}}} \end{array}\right)$$

Distribution of H^f

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H on Z/nZ

Distribution of H

Asymptotic behavior

On 🛛

Definition Distribution of H^{t}

Conclusion

References

Proof

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\right) = \mathbb{P}\left(\boldsymbol{H}^{f}=\boldsymbol{X}\middle| \begin{array}{c} \underset{\mathsf{and}}{\overset{\mathsf{X}\subseteq\boldsymbol{H}^{\mathsf{init}}}{\overset{\mathsf{and}}{\forall i,|\boldsymbol{B}_{i}|=b_{i}}} \end{array} \right) \mathbb{P}\left(\begin{array}{c} \underset{\mathsf{and}}{\overset{\mathsf{X}\subseteq\boldsymbol{H}^{\mathsf{init}}}{\overset{\mathsf{and}}{\forall i,|\boldsymbol{B}_{i}|=b_{i}}} \right) \\ = \left(\prod_{i=0}^{N_{f}-1}\frac{1}{b_{i}+1}\right) \begin{array}{c} \underset{i=0}{\overset{\mathsf{N}_{f}-1}{\overset{\mathsf{(2b_{i})}}} \\ \underset{\mathsf{N}_{\mathbf{h}}}{\overset{\mathsf{N}_{f}-1}{\overset{\mathsf{(2b_{i})}}} \end{array} = \frac{1}{\binom{n}{N_{\mathbf{h}}}} \prod_{i=0}^{N_{f}-1}C_{b_{i}} \overset{\mathscr{M}}{\overset{\mathscr{M}_{f}-1}{\overset{\mathsf{N$$

Distribution of H^{f}

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H^f

Asymptotic behavior

On Z

Definition Distribution of H^{t}

Conclusion

References

Proof

We assume that $n = N_{\rm h} + N_{\rm b}$ (no-neutral-site case). We let $b_i := \ell_i/2$.

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{\boldsymbol{f}}=\boldsymbol{X}\right) = \mathbb{P}\left(\boldsymbol{H}^{\boldsymbol{f}}=\boldsymbol{X}\Big|_{\text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i}}^{\boldsymbol{X}\subseteq\boldsymbol{H}^{init}}\right) \mathbb{P}\left(\begin{array}{c} \boldsymbol{X}\subseteq\boldsymbol{H}^{init}\\ \text{and }\forall i,|\boldsymbol{B}_{i}|=b_{i}\end{array}\right) \\ = \left(\prod_{i=0}^{N_{f}-1}\frac{1}{b_{i}+1}\right) \frac{\prod_{i=0}^{N_{f}-1}\binom{2b_{i}}{b_{i}}}{\binom{n}{N_{\mathbf{h}}}} = \frac{1}{\binom{n}{N_{\mathbf{h}}}} \prod_{i=0}^{N_{f}-1}C_{b_{i}} \overset{\boldsymbol{\mathscr{N}}}{\overset{\boldsymbol{\mathscr{N}}}}$$

Theorem [V. 2023+] - Distribution of H^{f}

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{\boldsymbol{f}}=\boldsymbol{X}\right) = \frac{1}{|C^{n,N_{\mathbf{b}},N_{\mathbf{h}}}|} \sum \prod_{i=0}^{N_{f}-1} \frac{1}{b_{i}+1} \binom{\ell_{i}}{b_{i},b_{i},\ell_{i}-2b_{i}}$$

where the sum is taken on the $(b_i)_{0 \le i < N_f}$ such that $\sum_i b_i = N_b$ and $\forall i, 2b_i \le \ell_i$.

And what about the parking process?

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H on ℤ/nℤ

Distribution of H^{f}

Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{l}

.

References

Theorem [V. 2023+] - Distribution of H^{f} for the *p*-parking process

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\boldsymbol{H}^{f}=X\right)=\frac{1}{n^{N_{\mathbf{b}}}}\binom{n-N_{f}}{\ell_{1},\ldots,\ell_{N_{f}}}\prod_{i=1}^{N_{f}}\left(\ell_{i}+1\right)^{\ell_{i}-1}$$

Same distribution as in the case p = 1 (studied by Chassaing and Louchard [CL02]).

And what about the parking process?

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H^f

Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{I}

Distribution of H

Conclusion

References

Theorem [V. 2023+] - Distribution of H^{f} for the *p*-parking process

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{b}},p}\left(\boldsymbol{H}^{f}=X\right)=\frac{1}{n^{N_{\mathbf{b}}}}\binom{n-N_{f}}{\ell_{1},\ldots,\ell_{N_{f}}}\prod_{i=1}^{N_{f}}\left(\ell_{i}+1\right)^{\ell_{i}-1}$$

Same distribution as in the case p = 1 (studied by Chassaing and Louchard [CL02]).

We inherit for free new asymptotic results in the case of *p*-parking process !

Asymptotic behavior **for the** *p***-parking process** inheritance

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introductio

Study of H^{\dagger} on $\mathbb{Z}/n\mathbb{Z}$ Distribution of H^{\dagger}

Asymptotic behavior

On Z Definition

Distribution of H

Conclusion

References

Let $n, N_b \to \infty$. Here : $N_f = N_h - N_b = n - N_b$. Let LargestBlock⁽ⁱ⁾ = the size of the *i*th largest block of $V \setminus H^f$.

Theorem [Pittel 87 (Standard parking), V. 23+ (p-parking)]

If $N_f = N_f(n) \sim an$ for a > 0, in probability

$$\mathsf{LargestBlock}^{(1)} = \frac{\log n - 3/2 \log \log n}{\mathsf{a} - 1 - \log \mathsf{a}} + \mathsf{O}(1).$$

Asymptotic behavior **for the** *p***-parking process** inheritance

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H'on $\mathbb{Z}/n\mathbb{Z}$ Distribution of H'

Asymptotic behavior

On Z Definition

Distribution of H^{I}

Conclusion

References

Let $n, N_b \to \infty$. Here : $N_f = N_h - N_b = n - N_b$. Let LargestBlock⁽ⁱ⁾ = the size of the *i*th largest block of $V \setminus H^f$.

Theorem [Pittel 87 (Standard parking), V. 23+ (p-parking)]

If $N_f = N_f(n) \sim an$ for a > 0, in probability

$$\mathsf{LargestBlock}^{(1)} = \frac{\log n - 3/2 \log \log n}{\mathsf{a} - 1 - \log \mathsf{a}} + \mathsf{O}(1)$$

Theorem [Chassaing-Louchard 02 (Standard parking), V. 23+ (*p*-parking)]

■ If
$$\sqrt{n} \ll N_f$$
, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 0$.
■ If $\sqrt{n} \gg N_f$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 1$.
■ Description of the **phase transition** :
If $N_f/\sqrt{n} \to \lambda \ge 0$, $\left(\frac{\text{LargestBlock}^{(i)}}{n}, i \ge 1\right) \xrightarrow{(d)} \text{SortedExc}(e(\lambda))$.

Asymptotic behavior, back to the main golf model

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H'

Asymptotic behavior

On Z

Definition

Distribution of H'

Conclusion

References

Assume that $n = N_h + N_b$, N_h , $N_b \rightarrow \infty$. Reminder : $N_f = N_h - N_b$.

Theorem [V. 2023+] - linear case

If $N_f = N_f(n) \sim an$ for a > 0, then $\exists lpha, eta > 0$ such that

$$\mathbb{P}\left(\alpha \leq \frac{\mathsf{LargestBlock}^{(1)}}{\log n} \leq \beta\right) \underset{n \to \infty}{\to} 1$$

Asymptotic behavior, back to the main golf model

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

on $\mathbb{Z}/n\mathbb{Z}$ Distribution of H'

Asymptotic behavior

On Z

Definition Distribution of H^{I}

Distribution of 7

Conclusion

References

Assume that $n = N_{h} + N_{b}$, N_{h} , $N_{b} \rightarrow \infty$. Reminder : $N_{f} = N_{h} - N_{b}$.

Theorem [V. 2023+] - linear case

If $N_f = N_f(n) \sim an$ for a > 0, then $\exists lpha, eta > 0$ such that

$$\mathbb{P}\left(\alpha \leq \frac{\mathsf{LargestBlock}^{(1)}}{\log n} \leq \beta\right) \underset{n \to \infty}{\to} 1$$

Theorem [V. 2023+] - phase transition

• If
$$\sqrt{n} \ll N_f$$
, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 0$.

If
$$\sqrt{n} \gg N_f$$
, then $\frac{\text{LargestBlock}^{(1)}}{n} \stackrel{\mathbb{P}}{\to} 1$.

Description of the **phase transition** : If $N_f/\sqrt{n} \to \lambda \ge 0$, $\left(\frac{\text{LargestBlock}^{(i)}}{n}, i \ge 1\right) \xrightarrow{(d)} \text{SortedExc}(B^{(\lambda)})$.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H[™] on ℤ/nℤ

Distribution of H'

Asymptotic behavior

On 🛛

Definition

Distribution of H'

Conclusion

References

Rewriting Theorem for H^{f}

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{b}},P}\left(\forall i,\Delta_{i}\boldsymbol{H}^{f}=2b_{i}\right)=\frac{1}{\binom{n}{N_{\mathbf{b}}}}(2b_{0}+1)C_{b_{0}}\prod_{i\neq0}C_{b_{i}}$$

For any family (b_i) : there are $2b_0 + 1$ sets X such that $\forall i, \Delta_i X = 2b_i$.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H'* on ℤ/nℤ

Distribution of H

Asymptotic behavior

On Z

Definition

Distribution of H'

Conclusion

References

We denote by $(\Delta_k \boldsymbol{H}^{\boldsymbol{f}})_k$ the *block-sizes process*. $\sum_{i=0}^{N_f-1} b_i = N_b$

Rewriting Theorem for H^{f}

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\forall i,\Delta_{i}\boldsymbol{H}^{f}=2b_{i}\right)=\frac{1}{\binom{n}{N_{\mathbf{b}}}}(2b_{0}+1)C_{b_{0}}\prod_{i\neq0}C_{b_{i}}$$

Catalan numbers count Binary trees and Dyck paths/Random walks

C_n counts...

- the number of binary trees with n internal nodes
- the number of +1/-1 walks such that $au_{-1}=2n+1$
- $C_a \times C_b$ counts...
 - pairs of binary trees (t_a, t_b) such that t_i has b_i internal nodes
 - +1/-1 walks such that $au_{-1}=2a+1$ and $au_{-2}- au_{-1}=2b+1$
- and in terms of probability...

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^r on Z/nZ

Distribution of H

Asymptotic behavior

On Z

Definition

Distribution of H'

Conclusion

References

We denote by $(\Delta_k \boldsymbol{H}^{\boldsymbol{f}})_k$ the *block-sizes process*. $\sum_{i=0}^{N_f-1} b_i = N_b$

Rewriting Theorem for H^{f}

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{h}},p}\left(\forall i,\Delta_{i}\boldsymbol{H}^{f}=2b_{i}\right)=\frac{1}{\binom{n}{N_{\mathbf{b}}}}(2b_{0}+1)C_{b_{0}}\prod_{i\neq0}C_{b_{i}}$$

Catalan numbers count Binary trees and Dyck paths/Random walks

C_n counts...

- the number of binary trees with n internal nodes
- the number of +1/-1 walks such that $au_{-1}=2n+1$
- $C_a \times C_b$ counts...
 - pairs of binary trees (t_a, t_b) such that t_i has b_i internal nodes
 - +1/-1 walks such that $au_{-1}=2a+1$ and $au_{-2}- au_{-1}=2b+1$
- and in terms of probability...
- $(2b_0 + 1) \prod_{i=0}^{k-1} C_{b_i}$ counts the number of **marked** forests $((t_0, v), \dots, t_{k-1})$ such that t_i has b_i internal nodes and v is a vertex of t_0

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on Z/nZ

Distribution of H^{\prime}

Asymptotic behavior

On Z

Distribution of H^{f}

Conclusion

References

ummary

block-sizes process \iff tree-sizes of f^{\bullet} Sorted (block-sizes process) \iff Sorted (tree-sizes of f^{\bullet})

 $\boldsymbol{f^{\bullet}} \sim \mathcal{U}(\mathsf{Forests}^{\bullet}(\mathit{N_{b}},\mathit{N_{f}}))$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^{\dagger} on $\mathbb{Z}/n\mathbb{Z}$ Distribution of H^{\dagger}

Asymptotic behavior

On ℤ

Definition Distribution of H^{I}

Conclusion

References

ummary

block-sizes process \iff tree-sizes of f^{\bullet} Sorted (block-sizes process) \iff Sorted (tree-sizes of f^{\bullet}) \iff Sorted (tree-sizes of f)

•
$$\sim \mathcal{U}(\mathsf{Forests}^{\bullet}(N_{\mathsf{b}}, N_{f})), \ \boldsymbol{f} \sim \mathcal{U}(\mathsf{Forests}(N_{\mathsf{b}}, N_{f})).$$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^{\dagger} on $\mathbb{Z}/n\mathbb{Z}$ Distribution of H^{\dagger}

Asymptotic behavior

On Z

Distribution of H'

Conclusion

References

ummary

block-sizes process \iff tree-sizes of f^{\bullet} Sorted (block-sizes process) \iff Sorted (tree-sizes of f^{\bullet}) \iff Sorted (tree-sizes of f) \iff Sorted (excursion lengths in p)

$$f^{\bullet} \sim \mathcal{U}(\text{Forests}^{\bullet}(N_{b}, N_{f})), f \sim \mathcal{U}(\text{Forests}(N_{b}, N_{f})), p \sim \mathcal{U}(\text{Paths}(n, N_{f})) \text{ (paths such that } \tau_{-N_{f}} = n)$$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H' on ℤ/nℤ Distribution of H'

Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{\prime}

Conclusion

References

ummary

block-sizes process \iff tree-sizes of f^{\bullet} Sorted (block-sizes process) \iff Sorted (tree-sizes of f^{\bullet}) \iff Sorted (tree-sizes of f) \iff Sorted (excursion lengths in p)

 $\boldsymbol{p} \sim \mathcal{U}(\operatorname{Paths}(n, N_f))$ (paths such that $\tau_{-N_f} = n$)

Conclusion for case $N_f(n) \sim \lambda \sqrt{n}$:

 $\left(\frac{p(nt)}{\sqrt{n}}\right)_{t\in[0,1]} \to B^{(\lambda)}$, where $B^{(\lambda)}$ is a Brownian motion B conditioned by $\tau_{-\lambda}(B) = 1$.

The excursion lengths converge to the excursion lengths of $B^{(\lambda)}$.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of *H* Asymptotic behavior

On Z

Definition Distribution of H'

Conclusion

References

Initial configuration

for every vertex u, independently from the other vertices :

- initial state : ball with proba d_b XOR hole with proba d_h , $0 \le d_b \le d_h$
- activation clock : $\boldsymbol{A}_{u} \sim \mathcal{U}\left([0,1]\right)$

and same random evolution with walks of parameter p

First question

Does every ball find a hole? Is our model well-defined?

An interacting particle system : the golf model on Z/nZ and on Z

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H Asymptotic behavior

On ℤ

Definition Distribution of H'

Conclusion

References

Initial configuration

for every vertex u, independently from the other vertices :

- initial state : ball with proba d_b XOR hole with proba d_h , $0 \le d_b \le d_h$
- activation clock : $\boldsymbol{A}_{u} \sim \mathcal{U}\left([0,1]\right)$

and same random evolution with walks of parameter p

First question

Does every ball find a hole? Is our model well-defined?

Why is it not obvious?

- an infinite number of balls
- for every u, there is an infinite number of vertices v such that $A_v < A_u$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{I}

Conclusion

References

Initial configuration

for every vertex u, independently from the other vertices :

- initial state : ball with proba d_b XOR hole with proba d_h , $0 \le d_b \le d_h$
- activation clock : $\boldsymbol{A}_{u} \sim \mathcal{U}\left([0,1]\right)$

and same random evolution with walks of parameter p

First question

Does every ball find a hole? Is our model well-defined?

Theorem [V. 2023+] (case $d_b < d_h$)

The golf process on $\ensuremath{\mathbb{Z}}$ is well-defined.

Distribution of $\pmb{H^f}$ on $\mathbb Z$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On Z

Definition

Distribution of H'

Conclusion

References

We denote by $(\Delta_i H^f)_{i \in \mathbb{Z}}$ the *block-sizes process*. (here $d_b + d_h = 1$ and $d_b < d_h$)

Theorem [V. 2023+]

There exist \mathcal{G}, \mathcal{H} and λ (explicit) such that, for every R > 0, $\mathbb{P}\left(\Delta_i \boldsymbol{H}^{\boldsymbol{f}} = 2b_i, -R \leq i \leq R\right) = \frac{(2b_0 + 1)\lambda^{2b_0} C_{b_0}}{\mathcal{H}(\lambda)} \prod_{i=-R, i \neq 0}^{R} \frac{\lambda^{2b_i} C_{b_i}}{\mathcal{G}(\lambda)}$

Distribution of $\pmb{H^f}$ on $\mathbb Z$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of *H* on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On Z

Definition

Distribution of H

Conclusion

References

Theorem [V. 2023+]

Key : coupling with $\mathbb{Z}/n\mathbb{Z}$

There exist \mathcal{G}, \mathcal{H} and λ (explicit) such that, for every R > 0, $\mathbb{P}\left(\Delta_{i}\boldsymbol{H}^{f} = 2b_{i}, -R \leq i \leq R\right) = \frac{(2b_{0}+1)\lambda^{2b_{0}}C_{b_{0}}}{\mathcal{H}(\lambda)}\prod_{i=-R, i\neq 0}^{R}\frac{\lambda^{2b_{i}}C_{b_{i}}}{\mathcal{G}(\lambda)}$ $= \lim_{n \to \infty} \mathbb{P}^{n}\left(\Delta_{i}\boldsymbol{H}^{f(n)} = 2b_{i}, -R \leq i \leq R\right)$

$$rac{N_{\mathbf{b}}(n)}{n}
ightarrow d_{\mathbf{b}}, rac{N_{\mathbf{h}}(n)}{n}
ightarrow d_{\mathbf{h}}$$

local environnement : similar + suffices

Thank you !

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On ℤ

Definition Distribution of H^{t}

Conclusion

References

Variants :

- \blacksquare other moving rules for the balls \checkmark
- several balls per vertices
- several holes per vertices?

References

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^t on ℤ/nℤ

Distribution of H Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{I}

Conclusion

References

Philippe Chassaing and Guy Louchard, *Phase transition for parking blocks, brownian excursion and coalescence*, Random Structures & Algorithms **21** (2002), no. 1, 76–119.

Persi Diaconis and William Fulton, A growth model, a game, an algebra, Lagrange inversion, and characteristic classes, Rend. Sem. Mat. Univ. Pol. Torino 49 (1991), no. 1, 95–119.

Gregory F Lawler, Maury Bramson, and David Griffeath, *Internal diffusion limited aggregation*, The Annals of Probability (1992), 2117–2140.

Philippe Nadeau and Vasu Tewari, *Remixed eulerian numbers*, 2022.

Michał Przykucki, Alexander Roberts, and Alex Scott, *Parking* on the integers, arXiv preprint arXiv :1907.09437 (2019).

Side remark : what about *H*^o?

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H[†] on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On Z

Definition Distribution of H^{f}

Conclusion

References

Theorem [V. 2023+] (case $d_b < d_h$)

The golf process on \mathbb{Z} is well-defined.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H¹ Asymptotic behavior

On Z

Definition Distribution of H^{t}

Conclusion

References

Theorem [V. 2023+] (case $d_b < d_h$)

The golf process on \mathbb{Z} is well-defined.

Key : encoding of the initial configuration

Definition of the golf process on $\ensuremath{\mathbb{Z}}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H Asymptotic behavior

On Z

Definition Distribution of H

Conclusion

References

Theorem [V. 2023+] (case $d_{\rm b} < d_{\rm h}$)

The golf process on \mathbb{Z} is well-defined.

Key : encoding of the initial configuration S_{u+1} sees no other edge \Rightarrow *u* is never filled by a ball

Definition of the golf process on $\ensuremath{\mathbb{Z}}$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H Asymptotic behavior

On Z

Definition

Conclusion

References

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H Asymptotic behavior

On $\mathbb Z$

Definition Distribution of H^{t}

Conclusion

References

With high probability, and for n large enough :

• Local environment suffices : the $(\Delta_i H^f)_{-R \le i \le R}, (\Delta_i H^{f^{(n)}})_{-R \le i \le R}$ only depend on the initial configuration restricted to $[-M_R, M_R]$.

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H Asymptotic behavior

On Z

Definition Distribution of H^{t}

conclusion

References

With high probability, and for n large enough :

- Local environment suffices : the $(\Delta_i H^f)_{-R \le i \le R}$, $(\Delta_i H^{f^{(n)}})_{-R \le i \le R}$ only depend on the initial configuration restricted to $[-M_R, M_R]$.
- coupling of the initial configurations on \mathbb{Z} and on $\mathbb{Z}/n\mathbb{Z}$ restricted to $[-M_R, M_R]$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H Asymptotic behavior

On Z

Definition Distribution of H^{t}

.

References

With high probability, and for n large enough :

- Local environment suffices : the $(\Delta_i H^f)_{-R \le i \le R'} (\Delta_i H^{f^{(n)}})_{-R \le i \le R}$ only depend on the initial configuration restricted to $[-M_R, M_R]$.
- coupling of the initial configurations on \mathbb{Z} and on $\mathbb{Z}/n\mathbb{Z}$ restricted to $[-M_R, M_R]$
- coupling of the arrows restricted to $[-M_R, M_R]$

 $\implies \Delta_i \mathbf{H}^f = \Delta_i \mathbf{H}^{f^{(n)}}, \ -R \le i \le R$

An interacting particle system : the golf model on $\mathbb{Z}/n\mathbb{Z}$ and on \mathbb{Z}

Zoé Varin

Introduction

Study of H^f on ℤ/nℤ

Distribution of H Asymptotic behavior

On Z

Definition

Distribution of H

Conclusion

References

With high probability, and for n large enough :

- Local environment suffices : the $(\Delta_i H^f)_{-R \le i \le R}, (\Delta_i H^{f^{(n)}})_{-R \le i \le R}$ only depend on the initial configuration restricted to $[-M_R, M_R]$.
- coupling of the initial configurations on \mathbb{Z} and on $\mathbb{Z}/n\mathbb{Z}$ restricted to $[-M_R, M_R]$
- **coupling of the arrows** restricted to $[-M_R, M_R]$

$$\implies \Delta_i \mathbf{H}^f = \Delta_i \mathbf{H}^{f^{(n)}}, \ -R \le i \le R$$

conclusion : compute

$$\mathbb{P}\left(\Delta_{i}\boldsymbol{H}^{f^{(n)}}=2b_{i},-R\leq i\leq R\right)\underset{n\to\infty}{\longrightarrow}\prod_{i=-R}^{R}\mathbb{P}(\boldsymbol{L}_{i}^{(\lambda)}=2b_{i})$$
18/18