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KLEIN’S TEN PLANAR DESSINS OF DEGREE 11, AND BEYOND

GARETH A. JONES AND ALEXANDER K. ZVONKIN

Abstract. We reinterpret ideas in Klein’s paper on transformations of degree 11 from the modern

point of view of dessins d’enfants, and extend his results by considering dessins of type (3, 2, p) and

degree p or p + 1, where p is prime. In many cases we determine the passports and monodromy

groups of these dessins, and in a few small cases we give drawings which are topologically (or, in

certain examples, even geometrically) correct. We use the Bateman–Horn Conjecture and extensive

computer searches to support a conjecture that there are infinitely many primes of the form p =

(qn − 1)/(q − 1) for some prime power q, in which case infinitely many groups PSLn(q) arise as

permutation groups and monodromy groups of degree p (an open problem in group theory).

1. Introduction

In 1878–9 Klein published two papers [49, 50] with almost identical titles. The first concerned

equations of degree 7, while the second concerned those of degree 11, with the properties and

actions of the groups PSL2(p), for p = 7 and 11 respectively, playing a major role in them. The

paper [49] is deservedly famous, not least for introducing the Hauptfigur, the iconic diagram of a

tessellation of a hyperbolic 14-gon which, after identification of sides, yields the quartic curve of

genus 3 now named after Klein: see [54], a book entirely devoted to this curve. In contrast with

the largely geometric approach taken in [49], Klein’s emphasis in [50] was more algebraic. How-

ever, that paper contained a diagram1. showing ten plane trees, which anticipated Grothendieck’s

concept of dessins d’enfants [34] by over a century. Our aim here is to reinterpret this diagram and

the mathematics underlying it from a modern point of view, and to explore some generalisations

which Klein might have been able to achieve if he had had access to such tools such as character

theory, computer algebra and the classification of finite simple groups.

In particular, we study dessins of type (3, 2, p) and of degree p or p + 1 for arbitrary primes p,

extending Klein’s work in [50] on the case p = 11. These dessins are best studied through their

monodromy groups, which are permutation groups of these degrees, and in principle such groups

are all known, as a consequence of the classification of finite simple groups. However, because

of certain open problems in number theory it is unknown whether two families of these groups,

2010 Mathematics Subject Classification. Primary 14H57, secondary 05C10, 11G32, 11N13, 11N32, 20B20,

20B25.
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1Regrettably this diagram, like that of the Hauptfigur in [49], is omitted from the on-line version of the paper, both

having been provided on separate inserted sheets in the original journal. However, both diagrams can be found in

Klein’s collected works [52, vol. 3, pp. 126, 143], integrated into updated versions of the two papers; see also [54,

pp. 115, 320] for the Hauptfigur
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consisting of projective and affine groups of degrees p and p + 1, are finite or infinite. Using the

Bateman–Horn Conjecture and extensive computer searches, we present what we believe is strong

evidence that the first of these two families is infinite. (The second family is based on the Mersenne

primes, and we have nothing new to add about its cardinality.)

In Section 2 we describe Klein’s ten plane trees, firstly as he presented them in [50], as pic-

torial representions of the possible 11-sheeted coverings of the Riemann sphere Σ = P1(C) with

branching patterns 3312, 2413 and 111 over 0, 1 and∞. We then use more modern terminology and

graphic conventions to describe them as dessins d’enfants, specifically as bipartite maps (Figure 2)

and as maps with free edges (Figure 3). Klein asserted without proof that his list was complete, so

we outline a method he might have used to see this.

An important invariant of any dessin is its monodromy group (equivalently the monodromy

group of the covering of the sphere which it represents), discussed in Section 3. This is a transitive

permutation group on the sheets of the covering (more precisely, on the fibre over a base-point),

generated by the monodromy permutations describing the branching over the critical values. Klein

showed that just one chiral pair of his trees, corresponding to our mapsM1 andM1, have mon-

odromy groups isomorphic to PSL1(11), acting with degree 11; we show that the other eight have

the alternating group A11 as their monodromy group.

A powerful technique for enumerating dessins with a given monodromy group, but unavailable

to Klein when he wrote his papers, is the character-theoretic triple-counting formula introduced

by Frobenius [24] in 1896. We use this in Section 4, with the aid of character tables provided by

GAP [27] and by the ATLAS [16], to confirm Klein’s enumeration of the trees and our descrip-

tion of their monodromy groups; this includes the elimination of the Mathieu group M11, another

possible candidate.

Any dessin D with monodromy group G has a unique minimal regular cover, a regular dessin

R with AutR � G. Much of Klein’s paper [50] is devoted to the common regular cover R1 ofM1

andM1, a map on the modular curve X(11) of genus 26. We show in Section 5 that the other eight

trees, with G � A11, have mutually non-isomorphic regular covers of genus 756 001.

Each of Klein’s ten trees corresponds to an 11-sheeted covering Σ → Σ realised by a Shabat

polynomial P of degree 11. In Section 6 we determine these polynomials forM1 andM1: they

are defined over Q(
√
−11), and are transposed by the Galois group of that field, while those for the

other eight trees form a single Galois orbit. Whereas the illustrations of dessins given so far are

only topologically correct, we compute and show in Figure 8 a geometrically correct drawing of

M1 as the inverse image under P of the unit interval.

In Section 7 we extend Klein’s classification by determining all the dessins of degree 11 and type

(3, 2, r) for r , 11: there are sixteen of them (see Figure 9), all of genus 0 and with the symmetric

group S11 as their monodromy group.

In Sections 8, 9 and 10 we generalise Klein’s work further by considering dessinsD of degree p

and type (3, 2, p) for arbitrary primes p. The investigation is quite difficult, because we encounter

some important open problems in group theory and number theory. The monodromy group G of

D must be a transitive permutation group of degree p, and if p > 3 (as we shall assume) then

as a quotient of the triangle group ∆(3, 2, p) with mutually coprime periods, G must be perfect.
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In Section 8 we use the classification of finite simple groups, and hence of permutation groups

of prime degree, to restrict the possibilities for G to the alternating groups Ap, PSL2(11) and the

Mathieu groups M11 and M23 for p = 11, 11 and 23, and PSLn(q) in cases where its natural degree

(qn−1)/(q−1) is a prime p. We show that Ap arises for p = 5 and each p ≥ 11, with exponentially

many dessins (far too many to classify) as p → ∞. The group PSL2(11), acting with degree 11,

was dealt with by Klein, as we have already seen, while the Frobenius triple-counting formula

eliminates the Mathieu groups as quotients of ∆(3, 2, p).

This leaves the groups PSLn(q), acting naturally with degree (qn − 1)/(q − 1) for some prime

power q. In Section 9 we consider the open problem of whether this degree is prime for finitely

or infinitely many pairs (n, q); such projective primes, as we call them, include the Fermat and

Mersenne primes, for n = 2 and q = 2 respectively. For each n ≥ 3 (necessarily prime) the

Bateman–Horn Conjecture (a powerful but apparently little-known open problem in number the-

ory) provides a heuristic estimate for the number of primes q ≤ x such that (qn−1)/(q−1) is prime;

since these estimates agree closely with results obtained from computer searches revealing large

numbers of examples, we conjecture that for each prime n ≥ 3 there are infinitely many projective

primes p. This case is explored in more detail in [45].

In Section 10 we return to the dessins of type (3, 2, p) and degree p for projective primes p =

(qn − 1)/(q − 1). Using character theory we show that in the cases n = 2 and 3 there are such

dessins with monodromy group PSLn(q) for each projective prime p; in Theorems 10.1 and 10.3

we enumerate them and give their genus. Theorem 10.11 is a similar but weaker result for q = 2,

proving the existence of such dessins for each Mersenne prime p = 2n − 1, and we conjecture that

it extends to all projective primes.

In Sections 11 and 12 we consider dessins of type (3, 2, p) and degree p+1 for arbitrary primes p.

The parameters 3 and 2 in the types of the dessins we have considered imply that all the mon-

odromy groups and automorphism groups associated with them are quotients of the modular group

PSL2(Z) � C3 ∗C2. In most cases the corresponding kernels are non-congruence subgroups, but in

Section 11 we consider the modular dessinsD0(p) arising from reduction of coefficients mod (p),

corresponding to the action of PSL2(p) on the projective line P1(Fp). We do this firstly in the

planar cases p ≤ 7 and p = 13, and then in the more difficult case p = 11, where we outline a

calculation by John Voight which determines both the underlying elliptic curve E and the Belyı̆

function E → Σ. For p = 11 and 13 we compute and display geometrically correct drawings of

these dessins.

We extend this further in Section 12 by considering arbitrary dessins of type (3, 2, p) and degree

p + 1 for primes p > 3. We use the classification by Müller [64] of primitive permutation groups

containing a cycle with one fixed point to restrict the possible monodromy groups to Ap+1, PSL2(p),

AGLn(2) for p = 2n−1, M11 and M12 for p = 11, and M24 for p = 23. We show that Ap+1 arises for

all p > 7, again with too many dessins to classify for all except small p, whereas PSL2(p) arises

only for D0(p). The Mathieu groups M12 and M24 each yield two chiral pairs of dessins, whereas

as before M11 yields none. Finally we show that the affine group AGLn(2) yields at least one dessin

for each Mersenne prime p = 2n − 1 > 7; however, this fails for p = 7 since AGL3(2) is not a

Hurwitz group.



4 GARETH A. JONES AND ALEXANDER K. ZVONKIN

In Section 13 we briefly outline another realisation of PSL2(11), this time as the isometry group

of the hendecachoron, a tessellation of a non-orientable 3-orbifold by 11 hemi-icosahedra, discov-

ered independently by Grünbaum [35] and Coxeter [17].

The Appendix contains monodromy permutations and diagrams for some of the dessins which

appear in this paper.

2. Klein’s ten plane trees

In [50] Klein drew a diagram showing ten plane trees, each with eleven edges and twelve ver-

tices. In each tree there is a bipartite partition of the vertices, with five vertices (coloured white)

of valencies dividing 3, and seven vertices (indicated by short cross-bars, perpendicular to their

incident edges) of valencies dividing 2; in each case the unique face is an 11-gon. Among these

plane trees there are four chiral (mirror-image) pairs, numbered I to IV, and two others, numbered

V and VI, which exhibit bilateral symmetry. The chiral pair I, which play a major role in Klein’s

paper, are shown (slightly distorted for simplicity, but combinatorially correct) in Figure 1.

Figure 1. The chiral pair I of Klein’s plane trees.

2.1. Klein’s trees as dessins d’enfants. If we regard the underlying surface as the complex

plane C, and compactify it to give the Riemann sphere or complex projective line Σ = P1(C) =

C ∪ {∞}, we can recognise these plane trees as dessins d’enfants in Grothendieck’s sense [34],

namely bipartite graphs embedded in compact Riemann surfaces X; as such they represent finite

covers X → Σ of the sphere, unbranched outside {0, 1,∞}, or equivalently, by Belyı̆’s Theorem [5],

projective algebraic curves X defined over algebraic number fields. (See [29, 43, 53] for back-

ground on dessins d’enfants.) All ten of these dessins have genus 0, so that X = Σ. They have

degree 11, meaning that they represent 11-sheeted coverings of Σ; they have type (3, 2, 11), mean-

ing that there are branch-points of orders dividing 3, 2 and 11 over 0, 1 and ∞, represented in

Klein’s diagrams by the white vertices, cross-bars and the point at infinity. A modern convention is

to use black and white vertices for points over 0 and 1, with the edges corresponding to the points

over the unit interval [0, 1] ⊂ Σ, and to regard those over ∞ as the face-centres. We will denote

the dessins corresponding to Klein’s chiral pairs I to IV byMi andMi for i = 1, . . . , 4, withMi

on the left in Klein’s diagrams and ours; similarlyMi (i = 5, 6) is the dessin corresponding to the

tree V or VI in [50]2. The dessinsM1 andM1 corresponding to Klein’s plane trees I are shown in

Figure 2.

2The temptation to follow Klein by using Roman numerals as subscripts here was almost (but not totally) irresistible.
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Figure 2. The dessinsM1 andM1 corresponding to Klein’s plane trees I.

When the order of branching over 1 divides 2, as in these dessins, so that white vertices all have

valencies 1 or 2, it is sometimes convenient to omit these vertices, leaving a map with only black

vertices and possibly some free edges where white vertices of valency 1 have been removed. Of

course, this operation is reversible, so no information is lost. With this convention, the dessins

corresponding to all ten of Klein’s plane trees are shown in Figure 3, with the same layout as in his

original diagram.

In fact these ten dessins form a complete list (up to isomorphism) of the dessins of type (3, 2, 11)

and degree 11, which is the least possible degree for dessins of this type. Klein presented his

diagram as representing a classification of the 11-sheeted coverings of the sphere Σ with branching

patterns 3312 and 2413 over 0 and 1. He explained this in terms of the modular function J : H→ Σ,

which parametrises isomorphism classes of elliptic curves, an approach which leads naturally to

the modular group Γ = PSL2(Z), the subgroup leaving J invariant in the automorphism group

PSL2(R) of the Riemann surface H. This part of Klein’s work will not be discussed in our paper.

2.2. The classification problem. Klein presented his ten planar trees in [50, §1] in answer to a

question he had posed in [48, §5]: in modern terminology, he had asked for the number of dessins

D of degree 11 and passport (3312; 2413;−), that is, with three black vertices of valency 3 and two

of valency 1, together with four white vertices of valency 2 and three of valency 1, and with no

restrictions on the faces.

In his diagram Klein drew ten planar trees, equivalent to these dessins, but did not explain why

this list was complete, writing simply ‘Dass es auch nicht mehr giebt, ist ebenso evident’3. The

argument, which we will now give in the language of dessins, is indeed straightforward. Since

each dessin D has eleven edges and twelve vertices the embedded graph, being connected, must

be a tree, so the underlying surface is the sphere and there is a single face, of valency 11. Since the

white vertices have valency 1 or 2 we can omit them and for simplicity represent D as a mapM,

which must have three vertices of valency 3 and two of valency 1, and seven edges, three of them

free. By connectedness, one of the three vertices of valency 3 must be adjacent to the other two,

soM must be formed from the basic mapM0 in Figure 4 by choosing two of its five free edges

and adding a vertex to each. This gives us
(

5

2

)

= 10 non-isomorphic mapsM; they are shown in

Figure 3, with the same layout as the corresponding plane trees in Klein’s paper [50].

3‘It is also clear that there are no others.’
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M1 M1

M2 M2

M3 M3

M4 M4

M5

M6

Figure 3. The mapsMi andMi corresponding to Klein’s plane trees I – VI.

Figure 4. The planar mapM0.

An alternative approach to this and similar problems, based on the character theory and the

Frobenius formula, will be developed in Section 4.
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3. Monodromy groups

Any dessin D of degree n can be represented as an ordered pair x, y of permutations of its n

edges, obtained by using the chosen orientation of the underlying surface to follow the rotation

of edges around their incident black and white vertices. The monodromy group G = 〈x, y〉 of D,

through its action permuting the n edges, can be identified with a subgroup of the symmetric group

Sn. By the connectedness of the embedded graph it is transitive. It is convenient to introduce a

third permutation z := (xy)−1, so that xyz = 1. It is easy to verify that, while the cycles of x and y

correspond respectively to black and white vertices, the cycles of z correspond to faces.

Convention 3.1 (Where to put labels). We put a label of an edge on its left side while moving from

its black end to its white one. In this way the labels corresponding to a cycle of z or, equivalently,

to a face, will be situated inside this face and will be rotated by z around the center of the face

in the direction corresponding to the orientation of the surface. This convention is illustrated in

Figure 5.

(When a dessin is drawn on the plane, its outer face gives an impression that its labels are rotated

in the direction opposite to the orientation of the plane. But this is an illusion. In fact, the dessin

should be considered not on the plane but on a sphere, and the center of the outer face is situated

on the “opposite side” of this sphere. Looking from this center, the rotation of the labels of the

outer face does correspond to the orientation of the sphere.)

When y2 = 1 and the white vertices are omitted, so that D is a map, one can regard G as

permuting its half-edges, or else directed edges. Thus, an edge of a map bears two labels while a

free edge bears only one. A free edge may be considered as an outgoing directed edge.

αz αz

αy αy

αx αx

orientation

α α

Figure 5. Monodromy permutations: here αx, αy and αz are the images of α under

the permutations x, y and z = (xy)−1.

Example 3.2. The permutations corresponding to the map in Figure 6 are as follows:

x = (1, 15, 16)(2, 3, 4)(5, 9)(6, 7, 8, 10, 11, 12),

y = (1, 6)(2, 9)(3, 13, 8, 14)(4, 7)(5, 10)(11, 12),

z = (1, 12, 10, 9, 4, 6, 16, 15)(2, 5, 8, 13)(3, 14, 7).
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The monodromy group of this map is the alternating group A16. See also Figures 17 and 27 for

other examples of maps with labelled edges.

1
3

2

5

6

9

11

12

10

8

416

13

15

14

7

Figure 6. A map with labelled edges.

The ten dessinsD considered here have degree 11, so their monodromy groups G are transitive

subgroups of S11. In each case x3 = y2 = 1, so G is a quotient of the modular group

Γ = PSL2(Z) = 〈X, Y, Z | X3 = Y2 = XYZ = 1〉 � C3 ∗ C2,

where the generators

X = ±
(

0 1

−1 −1

)

, Y = ±
(

0 1

−1 0

)

, Z = ±
(

1 0

1 1

)

correspond to the Möbius transformations

t 7→ −1

t − 1
, t 7→ −1

t
and t 7→ t + 1.

(Here we have associated Möbius transformations t 7→ at + b

ct + d
with pairs of matrices ±

(

a c

b d

)

,

the transposes of those normally used in this context. This is because we will later need to regard

Möbius transformations, especially those over finite fields, as permutations; it is algebraically and

computationally convenient to compose these from left to right, instead of using the analytic right

to left convention, so in order to have a homomorphism from matrices to Möbius transformations

we will ignore the deceptively suggestive notation for the latter and use transposes.)

Klein was interested in which of these monodromy groups G are congruence quotients, that is,

which are quotients by congruence subgroups of Γ. The only possible level for such a congruence

subgroup is 11 (since this is the order of z := (xy)−1), and indeed the resulting quotient group

L := PSL2(11), a simple group of order 660, does act as a transitive group of degree 11, namely on

the cosets of a subgroup H � A5, as we will now show. This is one of the three cases, all known to

Galois (see [26], pp. 411–412), in which a simple group PSL2(p), where p is prime, has a proper

subgroup of index less than p + 1; the others are A4 < PSL2(5) and S4 < PSL2(7).
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As generators of L one can take the images

x = ±
(

0 1

−1 −1

)

, y = ±
(

0 1

−1 0

)

, z = ±
(

1 0

1 1

)

of X, Y and Z, satisfying the relations

(1) x3 = y2 = z11 = xyz = 1,

The elements

u = ±
(

4 −1

2 −3

)

, v = y = ±
(

0 1

−1 0

)

, w = ±
(

2 −4

−3 1

)

of L (note that det(u) = det(w) = −10 ≡ 1 mod (11)) satisfy

u3 = v2 = w5 = uvw = 1,

so they generate a quotient H ≤ L of the triangle group ∆(3, 2, 5) � A5. By the simplicity of A5 we

have H � A5, so |L : H| = 11. Conjugation by the element

±
(

−1 0

0 1

)

∈ PGL2(11) � Aut L

induces an outer automorphism of L, transposing u, v and w with elements

u = ±
(

4 1

−2 −3

)

, v = v = y = ±
(

0 −1

1 0

)

, w = ±
(

2 4

3 1

)

which satisfy the same relations and therefore generate a subgroup H � A5. This subgroup is not

conjugate in L to H: if it were, some non-identity element of PGL2(11) would commute with u, v

and w, whereas it is straightforward to check that only the identity element does this. It follows that

L has two inequivalent transitive representations of degree 11, on the cosets of the subgroups H

and H, or equivalently (since these subgroups are equal to their normalisers in L), by conjugation

on the two conjugacy classes of subgroups they represent.

Nowadays, by using a program such as GAP [27] one can easily determine the monodromy

groups of the ten dessins, showing that those with monodromy group L = PSL2(11) are the chiral

pairM1 andM1. However, one can also distinguish this pair by hand: for i = 1, . . . , 6 the com-

mutator [x, y] = x−1y−1xy has cycle structure 5211, 713111, 812111, 514121, 7122 and 4231 inMi (and

hence also inMi), so only when i = 1 does it have one of the possible orders 1, 2, 3, 5, 6 or 11 of

an element of L. Conversely, it is easy to see that when L is represented on the cosets of H or H

the generators x and y have cycle structures 3312 and 2413, so L is the monodromy group of at least

one of the ten dessins, and this must be the pairM1 andM1, with the two dessins corresponding

to the two inequivalent representations of degree 11.

Klein [50, §2] used a similar argument, based on a word equivalent to our yz3, to show that the

plane trees labelled II–VI in his diagram do not have monodromy group L; he gave details only

for tree V, corresponding to the dessin M5. His paper is otherwise entirely devoted to the two

trees labelled I (our Figure 1) with monodromy group L, together with their minimal regular cover,
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which correspond to congruence subgroups of the modular group; the other eight trees, labelled II

– VI and corresponding to noncongruence subgroups, are ignored, as are their monodromy groups.

In fact, the cycle structures of [x, y] given above show that for i = 2, 4, 5 and 6 the monodromy

group G is A11. Being transitive of prime degree, G must be primitive; now a theorem of Jordan

(see [71, Theorem 13.9], for example) shows that any finite primitive permutation group containing

a cycle of prime length with at least three fixed points must contain the alternating group; in each

of these four cases a suitable power of [x, y] has this property, so G ≥ A11. Since the generators x

and y are even permutations, it follows that G = A11. However, a separate argument is required for

i = 3, for instance using the fact that in this case xz3xz5 has cycle structure 513113. (The theorem

of Jordan used here follows immediately from results in his papers [46, 47] published in 1871

and 1873, so Klein could have known and used this argument; for further historical comments on

Jordan’s Theorem, and for a modern extension of it, see [40].)

The fact that these eight dessins have monodromy groups G � A11 shows that, as claimed above,

they correspond to noncongruence subgroups of Γ: the only nonabelian composition factors of any

congruence quotient of Γ are isomorphic to PSL2(p) for primes p ≥ 5 dividing the level [63], and

by comparing orders it is easily seen that the simple group A11 does not have this form.

4. Counting triples

We have already given a very simple argument showing why there are exactly ten dessins with

the given characteristics. However, this simple example allows us an opportunity to illustrate

another important enumeration technique based on character theory. Quite often, in more compli-

cated cases where the degree or the genus is greater, this method is the only one available. It is

based on Frobenius’s formula [24]

(2)
|X| · |Y| · |Z|
|G|

∑

χ

χ(x)χ(y)χ(z)

χ(1)

for the number of triples (x, y, z) ∈ X × Y × Z with xyz = 1, where X, Y and Z are conjugacy

classes in a finite group G, and the sum is over the irreducible complex characters χ of G. (In

specific applications, one often finds that many characters take the value 0 on X, Y or Z, so they

can be omitted from the summation.) Since [24] was published 17 years after [50], this powerful

technique was not available to Klein. Here we will show how it works in this fairly simple situation,

ignoring results explained earlier; as a bonus we obtain the monodromy groups of all ten dessins.

Before doing this, we will give an alternative form of (2) which is sometimes more conve-

nient, for instance when using the ATLAS [16] where orders of centralisers, rather than conjugacy

classes, are given. We have |X| = |G|/|C(x)| where C(x) = CG(x) denotes the centraliser of x in G,

with similar equations for |Y| and |Z|, so we can rewrite (2) as

(3)
|G|2

|C(x)| · |C(y)| · |C(z)|
∑

χ

χ(x)χ(y)χ(z)

χ(1)
.

If a dessin D has type (3, 2, 11) and degree 11, then its monodromy permutations x, y, z ∈ S11

satisfy the relations (1); having odd order, x and z are even, and hence so is y, so the monodromy
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group G = 〈x, y, z〉 is a subgroup of A := A11. Our aim is to count the triples x, y, z in A satisfy-

ing (1), and to determine the corresponding dessins D and their monodromy groups G. In more

general applications of (2) one has to exclude triples generating intransitive subgroups G, since

these cannot be monodromy groups of connected covers. However, here the fact that z must be an

11-cycle guarantees transitivity, so this problem does not arise. Since the orders 3, 2 and 11 of x, y

and z are mutually coprime, G must be perfect (have trivial abelianisation), and therefore cannot

be solvable. If G , A then G must be contained in a nonsolvable maximal subgroup M of A, of

order divisible by 11. According to the list of maximal subgroups of A11 in [16], the only such

maximal subgroups M are isomorphic to the Mathieu group M11, forming two conjugacy classes

of subgroups, of index 2520, transposed by Out A. Similarly the list of maximal subgroups of M11

in [16] tells us that if G , M then G is isomorphic to L = PSL2(11), each subgroup M � M11

containing one conjugacy class of such subgroups, of index 12 in M. Thus G is equal to A, or is

isomorphic to M11 or PSL2(11); we will count the triples generating these three groups in turn,

starting with the smallest.

Example 4.1. We will show that the group L = PSL2(11) has, up to automorphisms (equivalently,

up to conjugacy in PGL2(11) � Aut L), a single generating triple x, y, z satisfying (1). The character

table of L, produced by GAP [27] and given here, has columns corresponding to the conjugacy

classes, with the headings na, nb, etc. (nA, nB, etc in ATLAS notation [16]) indicating successive

classes of elements of order n; the rows, labelled X.j, correspond to irreducible characters χ j for

j = 1, 2, . . .. The table includes entries A, ∗A := (−1 ∓
√

5)/2 and B, /B := (−1 ± i
√

11)/2, while

a full stop denotes an entry 0.

1a 3a 2a 5a 5b 6a 11a 11b

X.1 1 1 1 1 1 1 1 1

X.2 5 -1 1 . . 1 B /B

X.3 5 -1 1 . . 1 /B B

X.4 10 1 -2 . . 1 -1 -1

X.5 10 1 2 . . -1 -1 -1

X.6 11 -1 -1 1 1 -1 . .

X.7 12 . . A *A . 1 1

X.8 12 . . *A A . 1 1

A = E(5)ˆ2+E(5)ˆ3

= (-1-Sqrt(5))/2 = -1-b5

B = E(11)+E(11)ˆ3+E(11)ˆ4+E(11)ˆ5+E(11)ˆ9

= (-1+Sqrt(-11))/2 = b11

In this example we take X and Y to be the classes 3a and 2a, and Z to be either of the classes

11a or 11b. For each choice ofZ the character sum in formula (3) has the value

ΣL = 1 +
(−1) · 1 · B

5
+

(−1) · 1 · /B
5

+
1 · (−2) · (−1)

10
+

1 · 2 · (−1)

10
= 1 − B + /B

5
=

6

5
.
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Now the centralisers CL(x), CL(y) and CL(z) of typical elements x, y and z of X, Y and Z have

orders 6, 12 and 11, so that

|L|2
|C(x)| · |C(y)| · |C(z)| =

24 · 32 · 52 · 112

6 · 12 · 11
= 2 · 52 · 11.

Multiplying this by ΣL gives 22 · 3 · 5 · 11 triples (x, y, z) ∈ X × Y × Z with xyz = 1 for each

choice of Z, and hence 23 · 3 · 5 · 11 in total. Each triple must generate L since this group has no

proper subgroups of order divisible by 66 (in fact, none of index less that 11). Since Aut L acts

semi-regularly on generating triples, dividing by its order | PGL2(11)| = 23 · 3 · 5 · 11 shows that

Aut L has a single orbit on such triples, as claimed.

Since the normal subgroups of any group∆with quotient isomorphic to a group G are in bijective

correspondence with the orbits of Aut G, acting by composition, on epimorphisms ∆ → G, it

follows that the triangle group

∆ := ∆(3, 2, 11) = 〈X, Y, Z | X3 = Y2 = Z11 = XYZ = 1〉
has a single normal subgroup with quotient isomorphic to L. Now L has two conjugacy classes of

subgroups of index 11, all isomorphic to A5, and these classes are transposed by its automorphism

group PGL2(11) (see [16] or [21, §259]); they lift to two conjugacy classes of subgroups of index

11 in ∆, transposed by conjugation in the extended triangle group

∆[3, 2, 11] = 〈R0,R1,R2 | R2
i = (R1R2)3 = (R2R0)2 = (R0R1)11 = 1〉,

which contains ∆ with index 2, and they correspond to a chiral pair of dessinsD of type (3, 2, 11)

degree 11 with monodromy group isomorphic to L. This calculation shows that they are the only

such dessins, so they are the dessinsM1 andM1 discussed earlier.

Example 4.2. Next we count triples satisfying (1) in the simple group M = M11 of order 7920 =

24 · 32 · 5 · 11. The character table of M, given by GAP, is shown here:

1a 11a 11b 2a 4a 8a 8b 3a 6a 5a

X.1 1 1 1 1 1 1 1 1 1 1

X.2 10 -1 -1 2 2 . . 1 -1 .

X.3 10 -1 -1 -2 . B -B 1 1 .

X.4 10 -1 -1 -2 . -B B 1 1 .

X.5 11 . . 3 -1 -1 -1 2 . 1

X.6 16 A /A . . . . -2 . 1

X.7 16 /A A . . . . -2 . 1

X.8 44 . . 4 . . . -1 1 -1

X.9 45 1 1 -3 1 -1 -1 . . .

X.10 55 . . -1 -1 1 1 1 -1 .

A = E(11)ˆ2+E(11)ˆ6+E(11)ˆ7+E(11)ˆ8+E(11)ˆ10

= (-1-Sqrt(-11))/2 = -1-b11
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B = -E(8)-E(8)ˆ3

= -Sqrt(-2) = -i2

We must take X and Y to be the unique conjugacy classes 3A and 2A of elements of order 3

and 2, and Z to be either of the classes 11A or 11B of elements of order 11. We see that the

character sum for M is

ΣM = 1 +
1 · 2 · (−1)

10
+

1 · (−2) · (−1)

10
+

1 · (−2) · (−1)

10
=

6

5
.

By [16] the centralisers in M of x, y and z have orders 18, 48 and 11, so

|M|2
|C(x)| · |C(y)| · |C(z)| =

28 · 34 · 52 · 112

18 · 48 · 11
= 23 · 3 · 52 · 11.

Multiplying this by 2ΣM gives 25 ·32 ·5 ·11 triples in M. Now M has a single conjugacy class of 12

subgroups L � PSL2(11), and we saw in Example 1 that each of these is generated by 23 · 3 · 5 · 11

triples, so 25 · 32 · 5 · 11 triples in M generate proper subgroups. Thus none of these triples can

generate M. (See [14, 72] for confirmation that M11 is not a quotient of ∆.)

The groups M11 and M12 were introduced by Mathieu [61] in 1861, so they would have been

known to Klein; unlike M12 (see [43, §2.1.6], for example), M11 is not the monodromy group

of any orientable cubic map, since an extension of the argument used here shows that it is not a

quotient of Γ.)

Example 4.3. Now we count triples satisfying (1) in A = A11. In this case there are three conjugacy

classes of elements of order 3, and two classes of elements of order 2. A simple argument shows

that if elements x, y ∈ A of orders 3 and 2 generate a transitive group than they must have cycle

structures 3312 and 2413, so they belong to the conjugacy classes X = 3C and Y = 2B of A, while

z must be in one of the two classes 11A and 11B of 11-cycles in A.

The character table of A is much too large to give here. However, the only irreducible characters

χ with χ(x)χ(y)χ(z) , 0 are the principal character χ1 and the characters χ2, χ6 and χ11 of degrees

10, 120 and 210, so we can give here the relevant portion of the character table, concerning these

classes and characters:

1a 2b 3c 11a 11b

X.1 1 1 1 1 1

X.2 10 2 1 -1 -1

X.6 120 -8 3 -1 -1

X.11 210 2 3 1 1

The character sum

ΣA :=
∑

χ

χ(x)χ(y)χ(z)

χ(1)
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has the value

1 +
1 · 2 · (−1)

10
+

3 · (−8) · (−1)

120
+

3 · 2 · 1
210

= 1 − 1

5
+

1

5
+

1

35
=

36

35
=

22 · 32

5 · 7 .

Now |A| = 11!/2 = 27 · 34 · 52 · 7 · 11, and by [16] the centralisers of x, y and z in A have orders

162 = 2 · 34, 1152 = 27 · 32 and 11, so

|A|2
|C(x)| · |C(y)| · |C(z)| = 26 · 32 · 54 · 72 · 11.

Multiplying this by 2ΣA shows that the number of triples in A satisfying (1) is

t := 29 · 34 · 53 · 7 · 11 = 10 × 11!.

From this total we must subtract the number of triples generating proper subgroups of A. As

we have seen, the only such subgroups are those isomorphic to PSL2(11). Each subgroup L �

PSL2(11) in A is contained in a unique subgroup M � M11; there are two conjugacy classes of

2520 such subgroups M in A, each containing one conjugacy class of 12 subgroups L, so the

number of such subgroups L in A is 2 · 2520 · 12 = 60480 = 26 · 33 · 5 · 7. As shown in Example 1,

each subgroup L is generated by 23 · 3 · 5 · 11 triples satisfying (1), so the number of triples in A

generating subgroups L � PSL2(11) is 29 · 34 · 52 · 7 · 11 = t/5 = 2 × 11!.

Since there are 10×11! triples in A, of which 2×11! generate proper subgroups, there are 8×11!

triples generating A, forming eight orbits under Aut A = S11; these correspond to eight normal

subgroups of ∆ with quotient A, and hence to eight regular dessins with (orientation-preserving)

automorphism group A. Now A has a single conjugacy class of subgroups of index 11, namely

the natural point-stabilisers isomorphic to A10, so these lift to eight more conjugacy classes of

subgroups of index 11 in ∆, in addition to the two resulting from Example 1. These give eight

more dessins D of type (3, 2, 11) and degree 11, all with monodromy group G � A11. Thus we

have a total of ten dessins of the required degree and type. This confirms the earlier enumeration,

and also confirms that forM1 andM1 the monodromy group is PSL2(11), whereas for the other

eight dessins it is A11. Generating triples for these dessins are given in the Appendix.

In each of the examples considered here, it was a fairly easy matter to evaluate the Frobenius

formulae (2) or (3) by hand, but in other cases, if there are many non-zero summands, or if irrational

character values arise, it may be necessary to appeal to GAP for this. For instance, the following

GAP commands repeat the calculation in Example 4.1.

> G:=PSL(2,11);;

> T:=CharacterTable(G);;

> OrdersClassRepresentatives(T);

[ 1, 3, 2, 5, 5, 6, 11, 11 ]

> ClassStructureCharTable(T,[2,3,7]);

660

> ClassStructureCharTable(T,[2,3,8]);

660
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Here 2, 3, 7 and 2, 3, 8 indicate the positions of the chosen classes X, Y and Z in the preceding

list. The double semicolons after a command ask GAP to execute the command but not to output

the result. As in Example 4.1 we obtain 1320 triples.

5. The dessins and their regular covers

Our enumeration of triples in L shows that there is a single regular dessin R1 of type (3, 2, 11)

with automorphism group L � PSL2(11); this is the minimal regular cover of each of the two

dessins M1 and M1 with monodromy group L, and these are quotients of R1 by non-conjugate

subgroups of L isomorphic to A5. By the Riemann–Hurwitz formula a regular dessin of this type

with automorphism group G has genus 1 + 5
132
|G|, in this case equal to 26. By its uniqueness,

or by an observation of Singerman [69] concerning triples in PSL2(q), R1 is regular as a map,

corresponding to a subgroup of ∆ which is normal in the extended triangle group ∆[3, 2, 11]. It

is, in fact, the dual of the unique orientable regular map of genus 26 and type {3, 11}, denoted

by R26.2 in Conder’s catalogue of maps [15]; its full automorphism group as a map, containing

also the automorphisms reversing the orientation, is isomorphic to PGL2(11). For a drawing of

R26.2 (combinatorially though not geometrically correct), with 60 11-valent vertices, 330 edges

and 220 triangular faces, see [39, Fig. 6 and Table 1], where it is shown as a 198-gon with side

identifications; in this paper, Ivrissimtzis, Singerman and Strudwick reinterpret the regular maps

associated with Klein’s papers [49] and [50] in terms of Farey fractions.

The eight dessinsDwith monodromy group A11 consist of the three chiral pairsMi andMi with

i = 2, 3, 4, together withM5 andM6. The minimal regular covers of these dessins are eight regular

dessinsR of genus 756 001, and each dessinD is the quotient ofR by a subgroup isomorphic to A10

in its automorphism group A11. These eight dessins R are mutually non-isomorphic, since A11 has

a unique conjugacy class of such subgroups (the point-stabilisers in the natural representation), so

that any isomorphism between the dessinsRwould induce an isomorphism between their quotients

D, which is visibly impossible (see Figure 3).

The bilateral symmetry of the dessinsM5 andM6 is easily explained: in each case there is a per-

mutation in S 11 simultaneously inverting the generating permutations x and y for the monodromy

group A11, and this induces an isomorphism of the dessin with its mirror image. (Of course, since

y2 = 1, inverting y means the same as commuting with it.) Equivalently, each of the correspond-

ing map subgroups M in ∆(3, 2, 11) is contained with index 2 in a subgroup of ∆[3, 2, 11] which

induces this isomorphism. The same applies to the regular covers ofM5 andM6, each correspond-

ing to the core (intersection of conjugates) of M in ∆(3, 2, 11); the other six regular covers form

three chiral pairs, like their quotients.

For example, Figure 7 shows the map M5 corresponding to D5; directed edges are labelled

1, 2, . . . , 11, so that

x = (1, 11, 6)(2, 5, 4)(7, 10, 8) and y = (1, 5)(2, 3)(6, 10)(8, 9),

and hence

z = (1, 2, . . . , 11).
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The permutation t = (1, 6)(2, 8)(3, 9)(4, 7)(5, 10) inverts x and y, inducing the automorphism of

M5 given by reflection in the vertical axis. The situation is similar forM6, with generators

x = (1, 11, 6)(2, 5, 3)(7, 10, 9) and y = (1, 5)(3, 4)(6, 10)(7, 8)

inverted by t = (1, 6)(2, 9)(3, 7)(4, 8)(5, 10).

11

6

1 10

5
8

2

7
4

9
3

Figure 7. The mapM5 corresponding to Klein’s plane tree V.

6. Computations and Galois orbits

Each of the ten dessinsD discussed here represents a Belyı̆ function, in this case an 11-sheeted

covering β : Σ→ Σ. As such, β is a rational function of degree 11, and having a single pole at∞ it

must be a polynomial, called a Shabat polynomial.

A computation using MAPLE shows that the Shabat polynomial P : Σ → Σ for the dessinsM1

andM1 in Figure 2 has the form

P =
1

212314
p3

1 p3
2 p3

where

p1(x) = 2x + (11 − 3
√
−11),

p2(x) = 2x2 − (11 − 3
√
−11)x − (22 + 6

√
−11),

p3(x) = x2 + 11x + (55 + 9
√
−11),

so that

P − 1 = − 1

211314
q2

1q2
2q3

where

q1(x) = 2x + (5 + 3
√
−11),

q2(x) = 2x3 + (15 − 3
√
−11)x2 − (12 − 12

√
−11)x + (56 + 96

√
−11),

q3(x) = 2x3 − 18x2 + (21 + 45
√
−11)x − (175 + 279)

√
−11).

The two possible choices for
√
−11 give the two dessins. They are defined over Q(

√
−11) (which

is not surprising, since
√
−11 appears in the character table of PSL2(11)), and they are transposed

by the Galois group of this field, generated by complex conjugation.
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Figure 8. A geometrically correct drawing ofM1.

In each dessin, the black vertices are at the zeros of P: the three vertices of valency 3 correspond

to the zeros of p1 and p2, each appearing with multiplicity 3 as a zero of P, and the two vertices

of valency 1 are at the zeros of p3. The white vertices are at the zeros of P − 1: the four vertices

of valency 2 correspond to the zeros of q1 and q2, each appearing with multiplicity 2 as a zero of

P − 1, and the three vertices of valency 1 are the zeros of q3. The unique face-centre is at ∞, the

pole of P with multiplicity 11. For example, Figure 8 shows such a geometrically correct version

ofM1 in the plane C, whereas all other plane trees, dessins and maps shown in this paper are only

combinatorially and topologically correct.

The other eight dessins form a single Galois orbit. A computation using Pari/GP produced sev-

eral defining polynomials for the field of moduli corresponding to this orbit, of which the simplest

appears to be

Z8 + 2Z6 − 3Z5 + 10Z4 − 14Z3 + 14Z2 − 8Z + 1.

The Galois group of this field is S8, inducing all possible permutations of the eight dessins. The

field does not contain Q(
√
−11), nor, indeed, does it contain Q(

√
21), even though

√
21 appears in

the character table of A11.

7. Other related dessins of degree 11

The ten dessins discussed in this paper are not the only dessins of degree 11 and type (3, 2, r) for

some r, the least common multiple of the face valencies. It is easy to see that in any such dessin the

distribution of valencies of the black vertices must be 3312, while that of the white vertices must

be 2413 or 2511. In the former case we obtain the ten dessins based on Klein’s diagram, all with
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r = 11, but in the latter case we have planar dessins with two faces, rather than one, not considered

by Klein.

The maps corresponding to these additional dessins can all be formed from the basic mapM0 in

Figure 4 by adding vertices of valency 1 to two of its free edges, as in the construction of the maps

M =Mi andMi, and then joining together two of the remaining three free edges to form a single

non-free edge. Equivalently one can perform the latter operation, in three possible ways, on each

of the ten mapsM, giving 30 maps of the required form. However, one finds that some of these

maps are mutually isomorphic, and that up to isomorphism we obtain just 16 dessins (confirmed

using GAP), consisting of four with bilateral symmetry (in the first row of Figure 9) and six chiral

pairs (those in the second row and their mirror images). There are six where the face valency split

is 10+1, three each where it is 9+2 or 7+4, and two each where it is 8+3 or 6+5. These dessins

correspond to sixteen more conjugacy classes of subgroups of index 11 in the modular group Γ, in

addition to the ten corresponding to Klein’s plane trees. (This is confirmed by [30, Theorem 1],

which gives a recurrence relation for the number Nn of subgroups of index n in Γ; here N11 = 286,

corresponding to 10 + 16 = 26 conjugacy classes each containing 11 subgroups.) In all cases

except 10 + 1, one of the face valencies is a prime p, and z11−p is a p-cycle with 11 − p ≥ 3 fixed

points; being transitive of prime degree the monodromy group G = 〈x, y〉 is primitive, so it follows

from Jordan’s Theorem and the fact that y is odd that G = S11; in the case 10 + 1 we may apply

an extension of Jordan’s Theorem in [40] to the cycles of length 10 and 11 to show that G acts as

S11 or AGL1(11), with the latter excluded since it has no elements of order 3. It follows that these

dessins correspond to non-congruence subgroups of Γ. Their regular covers have genus

1 +
(r − 6)

12r
11!

as given in the following table:

face valencies 10, 1 9, 2 8, 3 7, 4 6, 5

r 10 18 24 28 30

genus 1 330 561 2 217 601 2 494 801 2 613 601 2 661 121

dessins e, f, g a, h b, c d, i j

number of dessins 6 3 2 3 2

8. Monodromy groups of dessins of type (3, 2, p) and degree p

We can generalise our earlier arguments by considering dessins D of type (3, 2, p) and degree

p for all primes p, not just for p = 11. The monodromy group G of such a dessin D must be a

transitive permutation group of degree p, and must be perfect if p > 3, as we will assume, since 3, 2

and p are mutually coprime. The transitive groups of prime degree p are all known (modulo a very

difficult number-theoretic problem which we will discuss in the next section), and are described

in [12, 22, 38], for example. They are as follows:

Theorem 8.1. The transitive permutation groups G of prime degree are the following:

(a) subgroups G of AGL1(p) containing the translation subgroup;
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(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j)

Figure 9. Maps of degree 11 and type (3, 2, r), r , 11.

(b) G = Ap or Sp for a prime p ≥ 5;

(c) G = PSL2(11), M11 or M23 with p = 11, 11 or 23;

(d) groups G such that PSLn(q) ≤ G ≤ PΓLn(q) where the degree (qn − 1)/(q− 1) of its natural

representation(s) is prime.

By a result of Galois [25], the solvable groups of prime degree p are those in (a). Burnside

(see [10] or [11, §251]) showed that any nonsolvable group G of prime degree p is doubly tran-

sitive; in this case a straightforward argument shows that S ≤ G ≤ Aut S where S , the unique

minimal normal subgroup of G, is a doubly transitive nonabelian simple group. By the classifica-

tion of finite simple groups, the possibilities for S are S = Ap for a prime p ≥ 5, giving the groups

in (b), the three groups S = G in (c), and S = PSLn(q), giving the groups in (d).

In (a) and (b) these are the natural actions of the groups listed. In (c), PSL2(11) has two actions

of degree 11, on the cosets of two conjugacy classes of subgroups isomorphic to A5, while the

Mathieu groups M11 and M23 act on Steiner systems with 11 and 23 points. In (d) the groups act

on the points of the projective geometry Pn−1(Fq), with a second dual action on its hyperplanes if

n ≥ 3. In particular, since Out S is solvable in all cases, we have:

Corollary 8.2. The only perfect groups of prime degree are the simple groups Ap, PSL2(11), M11,

M23 and PSLn(q) appearing in parts (b), (c) and (d) of Theorem 8.1.

These simple groups G all have elements x, y and z of orders 3, 2 and p since they have orders

divisible by these primes, so there remain the questions of whether there exist such triples with

xyz = 1, whether these can generate G, and if so, of determining (or at least enumerating) the

corresponding dessinsD. We will address these questions, on a case by case basis, later in this and

the following two sections. First we calculate the genera of these maps and of their regular covers.
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If x and y have cycle structures 3a1α and 2b1β, with α = p − 3a and β = p − 2b, then D has

p − 2a black vertices, p − b white vertices, p edges and one face, so it has Euler characteristic

χ = (p − 2a) + (p − b) − p + 1 = p − 2a − b + 1 =
4α + 3β − p

6
+ 1

and hence genus

1 − χ
2
=

2a + b + 1 − p

2
=

p − 4α − 3β + 6

12
.

(Note that this implies that 2a + b ≥ p − 1, or equivalently 4α + 3β ≤ p + 6.) If it exists, such

a dessin D has a regular cover R of type (3, 2, p) with automorphism group G. Since R has |G|/3
black vertices of degree 3, |G|/2 white vertices of degree 2, |G| edges, and |G|/p faces of degree p,

its Euler characteristic is

χ =

(

1

3
+

1

2
+

1

p
− 1

)

· |G| = 6 − p

6p
|G|,

so that its genus is

g = 1 − χ
2
=

p − 6

12p
|G| + 1.

8.1. Case (c): sporadic examples. It is convenient to deal with case (c) first. We have seen in

Section 4, Examples 4.1 and 4.2, that if p = 11 then M11 does not arise as the monodromy group

of a dessin of type (3, 2, p) and degree p = 11, whereas PSL2(11) does, for the chiral pair M1

andM1. The Frobenius formula (2) eliminates M23: this group contains no triples (x, y, z) of type

(3, 2, 23) such that xyz = 1.

8.2. Case (b): alternating groups. In case (b) we have G = Ap for some prime p. The following

result shows that almost all such groups arise as monodromy groups in the required context.

Theorem 8.3. For each prime p , 2, 3, 7 there is a dessin D of degree p and type (3, 2, p) with

monodromy group Ap.

D D′

Figure 10. MapsD andD′ for p = 3k + 2 and p = 3k + 1.

Proof. First suppose that p ≡ 2 mod (3), say p = 3k + 2. There is an obvious map for p = 5,

so we may assume that p ≥ 11, and hence k ≥ 3. Let D be the map on the left in Figure 10,

where there are k vertices of degree 3, so that D has passport (3k12, 2k+11k, p1). We aim to show

that its monodromy group G is Ap. By Corollary 8.2 and the discussion of sporadic examples in

case (c) it is sufficient to show that G is not PSL2(11) acting with degree 11 or a group PSLn(q)
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acting naturally for some n ≥ 2 and prime power q. In fact, when p = 11, so that k = 3, D is

isomorphic to M3 in Figure 3, and we have seen that this has monodromy group A11. We may

therefore suppose, for a contradiction, that G = PSLn(q) acting naturally, and that p ≥ 17, so that

k ≥ 5.

If π denotes the permutation character of Sp, counting fixed points of elements, we see that the

involution y corresponding toD has fixed point ratio

π(y)

π(1)
=

k

p
=

k

3k + 2
≥ 5

17
.

We will compare this with the corresponding values for involutions in PSLn(q). Any involution

in PSL2(q) fixes at most two points, so n , 2 since π(y) = k ≥ 5. For n ≥ 3 the involutions

g ∈ PSLn(q) have fixed point ratios π(g)/π(1) bounded above by

be =
qn−2 + qn−3 + · · · + q + 1

qn−1 + qn−2 + · · · + q + 1
or bo =

(qn−3 + · · · + q + 1) + (q + 1)

qn−1 + qn−2 + · · · + q + 1

as q is even or odd: these bounds are attained when g fixes a hyperplane or two disjoint subspaces

of dimensions n − 3 and 1, respectively, corresponding to matrices in SLn(q) with Jordan normal

form given by block matrices

( J O

O I

)

where J =
( 1 1

0 1

)

or
(−1 0

0 −1

)

and I = In−2.

It is straightforward to check that if q is odd then bo < 5/17 and hence G , PSLn(q), unless

n = q = 3, when bo = 5/13; however, this exceptional case corresponds to p = 13 . 2 mod (3).

Thus q is even, so q = 2 since be < 1/q. This gives 3k + 2 = p = 2n − 1 and hence 2n ≡ 0 mod (3),

which is impossible.

We can apply a similar argument when p ≡ 1 mod (3), say p = 3k + 1. We may assume that

p ≥ 13, that is, k ≥ 4. By deleting a vertex of valency 1 from D we obtain the map D′ of degree

p, type (3, 2, p) and passport (3k11, 2k1k+1, p1) shown on the right in Figure 10. The corresponding

involution y now has fixed point ratio

π(y)

π(1)
=

k + 1

p
=

k + 1

3k + 1
≥ 5

13
.

As before, if G = PSLn(q) then π(y) > 2 implies that n ≥ 3. We have already seen that if q is odd

then bo < 5/17, so that bo < 5/13 and hence G , PSLn(q), unless n = q = 3; however, in this

case p = 13, and GAP shows thatD′ has monodromy group A13 rather than PSL3(3), so q must be

even. Again, q = 2 since be < 1/q, so if any element of G = PSLn(2) has fixed points they must

form a projective subspace. Thus k = π(y) is odd and hence p = 3k + 1 is even, a contradiction. �

It is easy to see that there is no corresponding dessin if p = 2 or 3. When p = 7 there is a chiral

pair of dessins of the required degree and type, represented byD′ in Figure 10 with k = 2, but they

have monodromy group PSL2(7), not A7 (which is not a Hurwitz group). Simple modifications to

the dessins in Figure 10 show that in the proof of Theorem 8.3 the number of choices for D and

D′ increases exponentially with p, even though that construction produces only planar dessins.
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8.3. Case (d): projective groups. For the rest of this section, we will therefore assume that

we are in case (b3), with G = PSLn(q) acting on points or hyperplanes of Pn−1(Fq). (This case,

together with associated number theoretic estimates and computer searches covered in Section 9,

is investigated in more detail in [45].)

Warning: here, in spite of an almost universal convention on notation, the unnamed prime of

which q is a power is not the prime p; instead, p will denote the degree (qn − 1)/(q − 1) of G.

Before proceeding, we need to make a short digression into number theory. Let us define a prime

p to be projective if it has the form

p =
qn − 1

q − 1
= 1 + q + q2 + · · · + qn−1

for some prime power q ≥ 2 and integer n ≥ 2. These primes include the Fermat primes p = 22k

+1

with n = 2 and q = 22k

, the Mersenne primes p = 2n−1 with q = 2 and n prime, together with other

examples with q, n ≥ 3, such as p = 13 with n = q = 3, and p = 31 with n = 3 and q = 5 (notice

that p = 31 is also a Mersenne prime). Of course, it is an open problem whether there are infinitely

many Fermat or Mersenne primes; at the time of writing, only five Fermat primes (with k =

0, . . . , 4) and 51 Mersenne primes are known to exist. More generally, the existence of infinitely

many projective primes seems to be an open problem. In [45] we give heuristic arguments based

on the Bateman–Horn Conjecture, together with associated computational evidence, to support a

conjecture that there are infinitely many such primes, even for each fixed prime n ≥ 3. These are

summarised in the next section. However, first we need to prove some necessary conditions for

(qn − 1)/(q − 1) to be prime.

Lemma 8.4. Given integers n ≥ 2 and e ≥ 1, the polynomial

f (t) =
tne − 1

te − 1
= 1 + te + t2e + · · · + t(n−1)e

is irreducible in Z[t] if and only if n is prime and e is a power ni (i ≥ 0) of n.

Proof. If k ∈ N the cyclotomic polynomial Φk(x) is, by definition, the polynomial with integer

coefficients whose roots are the primitive kth roots of unity. It is irreducible and has degree ϕ(k),

where ϕ is the Euler totient function. For any n ∈ N we have xn − 1 =
∏

d|nΦd(x) (see [7, §5.2.1]

or [65, §4.3, Problem 26]). Putting x = te gives

(4) f (t) =
tne − 1

te − 1
=

∏

d

Φd(t),

with the product over all d which divide ne but not e. Thus f is irreducible if and only if there is just

one such divisor d (which is ne itself, of course). By considering the prime power decompositions

of e and ne one can see that this happens if and only if n is prime and e is a power of n. �

Lemma 8.5. Let q = re where r is prime, and let n ≥ 2. If p = (qn − 1)/(q − 1) is prime then

(a) n is prime and e is a power ni (i ≥ 0) of n;

(b) q . 1 mod (n);
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(c) PSLn(q) = SLn(q).

Proof. (a) This follows from Lemma 8.4, using the fact that p = f (r) =
∏

d Φd(r) as in (4), with

each Φd(r) , ±1. (To see the latter, note that Φd(r) =
∏

ζ(r − ζ) where ζ ranges over the primitive

d-th roots of unity, so that |r − ζ | > 1 for each ζ.)

(b) If q ≡ 1 mod (n) then p = 1 + q + · · · + qn−1 ≡ 0 mod (n) with p > n.

(c) For any q and n we have PSLn(q) = SLn(q)/Z, where Z = {λI ∈ GLn(q) | λn = 1} � Cd is the

centre of SLn(q) and d = gcd(q − 1, n). If p is prime then d = 1 by (a) and (b). �

9. The Bateman–Horn Conjecture

The Bateman–Horn Conjecture [3] is a quantified version of Schinzel’s Hypothesis H [67].

Both of them concern the question of whether a finite set of polynomials f1(t), . . . , fk(t) ∈ Z[t]

simultaneously take prime values fi(t) at infinitely many t ∈ N. (Schinzels’s Hypothesis H is in

turn a generalisation of the Bunyakovsky Conjecture (1857, see [8, 9]), which deals with the case

k = 1.) Clearly the following conditions are necessary for this to happen:

• the leading coefficient of each fi is positive,

• each fi is irreducible,

• f := f1 . . . fk is not identically zero modulo any prime.

In any specific case, the final condition can be verified as follows: f cannot be identically zero

modulo any prime p > deg( f ) unless p divides all of its coefficients, and for the remaining primes

p one can simply evaluate f (t) at each element t ∈ Zp. Schinzel (following Bunyakovsky in the

case k = 1) conjectured that these conditions are also sufficient. If true, this would imply several

other conjectures in Number Theory. For instance, taking f1(t) = t2 + 1 would imply the Euler–

Landau Conjecture that there are infinitely many primes of the form t2 + 1, while taking f1(t) = t

and f2(t) = t + 2 or 2t + 1 would imply the conjectures that there are infinitely many twin primes

and Sophie Germain primes.

The Bateman–Horn Conjecture goes further by proposing a heuristic estimate, based on the

Prime Number Theorem, for the number Q(x) of t ≤ x in N such that each fi(t) is prime. This has

the form

(5) Q(x) ∼ E(x) :=
C

∏k
i=1 deg fi

∫ x

2

dt

(ln t)k
as x→∞

where

(6) C = C( f1, . . . , fk) :=
∏

r

(

1 − 1

r

)−k (

1 −
ω f (r)

r

)

with the product over all primes r, and ω f (r) is the number of t ∈ Fr such that f (t) = 0. If the

above conditions on f1, . . . , fk are satisfied then the infinite product in (6) converges to a limit

C > 0 (this is far from obvious: see [2], Theorem 5.4.3); since the integral in (5) diverges as

x → ∞, this would imply that f1(t), . . . , fk(t) are simultaneously prime for infinitely many t ∈ N.

So far, these three conjectures have been proved only in the case k = 1, deg f1 = 1: in the case of

the Bunyakovsky and Schinzel conjectures, this is Dirichlet’s theorem on primes in an arithmetic
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progression at+b; in the case of Bateman–Horn it is equivalent to the stronger form of this theorem,

giving an asymptotically equal distribution of primes among the congruence classes of units b

mod (a) (see [7, §5.3.2] for a proof, and [70] for an error estimate).

Nevertheless, the Bateman–Horn Conjecture has provided estimates remarkably close to experi-

mental evidence in cases such as the twin primes conjecture. To give just one example, the number

of twin prime pairs up to 1018 is 808 675 888 577 436 (see the entry A007508 of [66]), while

the Bateman–Horn estimate gives 808 675 900 456 220. The relative error is −0.000000147%.

See also [2, Figure 10]. The constant C is, in this case, equal to 1.320323630 . . ., while C/2 =

0.660161815 . . . is traditionally called the “twin primes constant”.

Remark 9.1. Li [56] has suggested a modified version of the Bateman–Horn Conjecture in which
∏

i deg fi in the denominator is removed and each factor 1/ ln(t) within the integral is replaced with

1/ ln( fi(t)); the lower limit of integration may also be adjusted to avoid a logarithmic singularity

at fi(t) = 1. The result is asymptotically equivalent to the original conjecture, but in cases such as

Sophie Germain primes, involving a non-monic polynomial fi, the approximation is significantly

better.

In our case, if we take k = 2, with f1(t) = t and f2(t) = 1 + te + t2e + · · ·+ t(n−1)e for a fixed prime

n ≥ 3 and a fixed exponent e = ni, then f2 is irreducible by Lemma 8.4, so the conjecture gives

an estimate E(x) for the number Q(x) of primes t ≤ x such that 1 + q + q2 + · · · + qn−1 is prime,

where q = te. Computer searches confirm the obvious guess that Q(x) grows fastest when e and n

take their minimum values n = 3 and e = 1 (so q is prime), so that f2(t) = 1 + t + t2. For example,

all except 301 of the 1 974 311 projective primes p ≤ 1018 have the form p = 1 + q + q2 for some

prime q.

Putting n = 3 and e = 1, so that f = t(1 + t + t2) and ω f (r) = 4, 2 or 1 as r ≡ 1 mod (3), r = 3

or otherwise, we used Maple to calculate C ≈ 1.52173006 (taking the product over all primes

r < 109) and
∫ x

2
(ln t)−2dt (by numerical quadrature) for x = i · 1010 (i = 1, 2, . . . , 10). In Table 1

the resulting estimates E(x) are compared with the true values Q(x) found by computer searches

using the Rabin–Miller primality test. (Here, Li’s improvement in Remark 9.1 made negligible

difference: for instance, using 1/ ln(1 + t + t2) instead of 1/2 ln(t) with x = 1011 gave the estimate

129 297 407.4, compared with 129 297 407.9 in Table 1.) The proportional errors shown are less

that 0.00034, that is, 0.034%. Similar comparisons for other values of n and e were reassuring

but less convincing, as the numbers of projective primes within our computing range were much

smaller: for example, with n = 5 and e = 1 we obtained an estimate of 246.718 . . . for the number

of projective primes p = 1 + q + · · · + q4 < 1018, whereas the correct number is 252. (Note that

in order to estimate the number of primes p = 1 + q + q2 ≤ 1018 we have to compute the integral

in (5) up to x = 1018/2; however, for p = 1 + q + · · · + q4 < 1018 the integral is up to 1018/4, over a

much smaller interval.)

On the basis of this evidence, we make the following conjecture:

Conjecture 9.2. There are infinitely many projective primes of the form p = 1 + q + q2 where q is

prime.
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x Q(x) E(x) E(x)/Q(x)

1 · 1010 15 801 827 1.579642126 × 107 0.9996579044

2 · 1010 29 684 763 2.968054227 × 107 0.9998578150

3 · 1010 42 963 858 4.296235691 × 107 0.9999650617

4 · 1010 55 877 571 5.587447496 × 107 0.9999445924

5 · 1010 68 522 804 6.852175590 × 107 0.9999847043

6 · 1010 80 962 422 8.096382889 × 107 1.0000173771

7 · 1010 93 236 613 9.323905289 × 107 1.0000261688

8 · 1010 105 372 725 1.053741048 × 108 1.0000130940

9 · 1010 117 383 505 1.173885689 × 108 1.0000431394

1011 129 294 308 1.292974079 × 108 1.0000239757

Table 1. Comparing the BHC estimates E(x) with true values Q(x)

On the basis of similar evidence for n > 3 or e > 1, but necessarily involving smaller numbers

of projective primes, we make the following more general conjecture:

Conjecture 9.3. For each fixed prime n ≥ 3 and each fixed power e of n, there are infinitely many

projective primes of the form p = 1 + q + · · · + qn−1 where q is the e-th power of a prime.

Of course, rather weaker statements than these would also imply the existence of infinitely many

projective primes. For example, it would be sufficient to prove that for infinitely many primes n

(resp. primes power q) there is at least one prime power q (resp. prime n) such that (qn − 1)/(q− 1)

is prime. This would give an infinite set of such pairs (n, q), with any specific prime represented

by at most finitely many of them.

10. Groups and dessins of projective prime degrees

Returning to the groups, the elements z of order p = (qn − 1)/(q − 1) in G = PSLn(q) are the

Singer cycles (see [38, Satz II.7.3], for example), induced by appropriate non-zero elements of

Fqn acting linearly by multiplication on that field, regarded as an n-dimensional vector space over

Fq, and permuting its 1-dimensional subspaces regularly. It follows from results of Berecky [6]

that when a Singer cycle z has prime order p the only maximal subgroup of G containing it is the

normaliser NG(〈z〉) � Cp ⋊Cn, where the complement is induced by the Galois group Gal Fqn/Fq =

〈t 7→ tq〉 � Cn. Being solvable, NG(〈z〉) cannot contain a perfect subgroup 〈x, y, z〉, so any triple of

type (3, 2, p), if it exists, must generate G. Moreover, there are (p − 1)/n conjugacy classes Z of

Singer cycles z in G, one for each orbit of Gal Fqn/Fq on elements of multiplicative order p in Fqn .

(Note that since n is prime we have p− 1 = q+ q2 + · · ·+ qn−1 ≡ 0 mod (n): this is obvious if q ≡ 0

or 1 mod (n), and otherwise since n is prime the summands represent the non-zero congruence

classes mod (n), so they cancel in pairs.

For the small projective primes p = 5, 7, 13 and 17 the groups PSL2(4) (� PSL2(5) � A5),

PSL3(2) (� PSL2(7)), PSL3(3) and PSL2(16) arise as monodromy groups. We will systematically

examine various possibilities for monodromy groups PSLn(q), starting with small values of n.
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10.1. The case n = 2: Fermat primes. In the case of the Fermat primes, where n = 2, we have

the following:

Theorem 10.1. For each Fermat prime p = 22k

+ 1 ≥ 5 there are 22k−k−1 dessinsD of type (3, 2, p)

and degree p with monodromy group G = PSL2(22k

), acting naturally. They have genus (p−5)/12,

while their regular covers R, which are mutually non-isomorphic, have genus p(p − 4)(p − 5)/12.

As maps,D and R are both isomorphic to their mirror images.

Proof. Let G = PSL2(q) where q = 22k ≥ 4 and p = q + 1 is prime. The conjugacy classes X and

Y of elements x and y of orders 3 and 2 are unique, while there are q/2 classes Z of elements z

of order p. Since 3 and p divide q − 1 and q + 1 respectively, the character table of G (see [43,

§5.5], for example) shows that only the principal character χ = χ1 has χ(x)χ(y)χ(z) , 0, so for

each choice of Z we have a character sum Σ = 1. Since |C(x)| = q − 1, |C(y)| = q, |C(z)| = q + 1

and |G| = q(q2 − 1), the number of triples of type (3, 2, p) in G is

q

2
· |G|2
|C(x)| · |C(y)| · |C(z)| · Σ =

q

2
· |G|.

As explained earlier, results of Berecky [6] on Singer cycles imply that each triple generates G.

We have Aut G � G ⋊ GalFq � G ⋊ C2k , acting semi-regularly on these triples, so the number of

its orbits on them is
q

2
· 1

2k
= 22k−k−1.

This is therefore the number of normal subgroups of ∆ = ∆(3, 2, p) with quotient group G, and

thus the number of regular dessins R of type (3, 2, p) with automorphism group G.

Now G has a unique conjugacy class of subgroups of index p = q + 1, the stabilisers of points

in P1(Fq). These lift back to 22k−k−1 conjugacy classes of subgroups of the same index in ∆, so they

correspond to that number of dessins D of type (3, 2, p) and degree p with monodromy group G

and regular cover one of the dessins R. Since x, y and z have cycle structures 3(q−1)/312, 2q/211 and

p1 on P1(Fq), the dessinsD have characteristic

χ =
q − 1

3
+ 2 +

q

2
+ 1 − (q + 1) + 1 =

16 − q

6

and hence have genus

g = 1 − χ
2
=

q − 4

12
=

p − 5

12
.

By the Riemann–Hurwitz formula the regular dessins R have genus

p − 6

12p
|G| + 1 =

p(p − 4)(p − 5)

12
.

Each of the conjugacy classes Z consists of mutually inverse pairs z, zq = z−1, so the maps

D and R are isomorphic to their mirror images. (In fact, as noted by Singerman [69], it follows

from results of Macbeath [57] that for any prime power q, each generating pair for PSL2(q) are

simultaneously inverted by an automorphism, implying this result more generally.) �
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Example 10.2. If k = 1 and p = 5 we obtain one planar dessinD, shown on the left in Figure 11,

with monodromy group G = PSL2(4) � A5; its regular cover R is the dodecahedron, and D is

the quotient of R by a point-stabiliser in G, isomorphic to A4. If k = 2 and p = 17 we obtain

two dessins of genus 1; they are shown in the Appendix, Figure 25. Their regular covers are of

genus 221. If k = 3 and p = 257 we obtain 16 dessins of genus 21, with regular covers of genus

1 365 441. If k = 4 and p = 65 537 we obtain 2048 dessins of genus 5461, with regular covers of

genus 23 454 100 602 881. No Fermat primes are known for k ≥ 5, and it is conjectured that none

exist, but if any do, they are covered by Theorem 10.1.

Figure 11. Dessins of type (3, 2, p) and degree p for p = 5, 7.

Having dealt with the case n = 2, we will now assume that n ≥ 3. In this case PSLn(q) has two

natural representations, on points and hyperplanes of Pn−1(Fq), transposed by the outer automor-

phism induced by the duality of this geometry. Another difference between this case and the case

n = 2 is that when n ≥ 3 the conjugacy classes Z of Singer cycles are not inverse closed: instead,

they form mutually inverse pairs of classes, transposed by duality. This implies that the dessinsD
occur in chiral pairs, each pair having the same regular cover R, which is regular as a map, that is,

isomorphic to its mirror image.

10.2. The case n = 3: projective planes. The great majority of projective primes, up to a given

bound, have n = 3, so that the group G = PSL3(q) acts on the points and lines of the projective

plane P2(Fq). In this case one can enumerate and describe the associated dessins by using the

generic character table for G given by Simpson and Frame in [68], in addition to those in the

ATLAS [16] for q ≤ 9.

Theorem 10.3. If q is a prime power such that p := 1+q+q2 is prime, there are (p−1)/3e dessins

of type (3, 2, p) and degree p with monodromy group PSL3(q) acting naturally, where q is the e-th

power of a prime. They are all chiral. If q is odd they have passport (3q(q+1)/311, 2(q2−1)/21q+2, p1)

and genus (q − 3)(q + 1)/12, whereas if q = 2e their passport is (3q(q+1)/311, 2q2/21q+1, p1) and their

genus is q(q − 2)/12.

Proof. Let G := PSL3(q). By Lemma 8.5(c) we have G = SL3(q). We will apply the Frobenius

formula (2) to G, using the generic character table for SL3(q) in [68, Table 1b].

First assume that q is coprime to 6. There are unique conjugacy classes X and Y of elements of

order 3 and 2 in G, and there are (p − 1)/3 = q(q + 1)/3 classes Z of elements (Singer cycles) of

order p; these classes have types C7, C4 and C8 in the notation of [68, Table 1a], and their elements
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have centralisers of orders q2−1, q(q−1)2(q+1) and p. The only non-principal irreducible character

of G which does not vanish on X,Y orZ is the Steinberg character, the unique irreducible charac-

ter of degree q3, which takes the values −1, q and 1 on them. Since |G| = q3(q−1)2(q+1)(q2+q+1)

we find that the number of triples of type (3, 2, p) in G is

p − 1

3
· (q3(q − 1)2(q + 1)(q2 + q + 1))2

(q2 − 1) · q(q − 1)2(q + 1) · p

(

1 +
(−1) · q · 1

q3

)

=
p − 1

3
|G|.

By [6] the only maximal subgroup of G containing z is NG(〈z〉), of order 3p, so any such triple

generates G. If q is the e-th power of a prime then |Out G| = 2e, the two factors corresponding to

duality of the projective plane P2(Fq) on which G acts and the Galois group of Fq, so ∆(3, 2, p) has

(p − 1)/6e normal subgroups with quotient G. Since G has two conjugacy classes of subgroups of

index p, the stabilisers of points and lines in P2(Fq), we obtain (p − 1)/3e dessins of type (3, 2, p)

and degree p with monodromy group G.

In each of the two actions of degree p of G, the elements x, y and z fix 1, q + 2 and 0 points, so

these dessins all have passport (3q(q+1)/311, 2(q2−1)/21q+2, p1) and hence genus (q − 3)(q + 1)/12.

If q = 3e there are two conjugacy classes of elements of order 3, of types C2 and C3, with

centralisers of order q3(q − 1) and q2. If x is chosen from the first class, then only the principal

character and the constituent of the permutation character of degree p − 1 = q(q + 1) contribute to

the character sum Σ, so the resulting number of triples in G is

p − 1

3
· (q3(q − 1)2(q + 1)(q2 + q + 1))2

q3(q − 1) · q(q − 1)2(q + 1) · p

(

1 +
q · (q + 1) · (−1)

q(q + 1)

)

= 0.

If x is chosen from the second class, then only the principal character contributes to Σ, so the

resulting number of triples in G is

p − 1

3
· (q3(q − 1)2(q + 1)(q2 + q + 1))2

q2 · q(q − 1)2(q + 1) · p =
p − 1

3
|G|

as before. The number of dessins is therefore again (p− 1)/3e, and the passport and genus are also

as before.

If q = 2e then the main changes are that the unique class Y of involutions has type C2, with

centralisers of order q3(q − 1), and that every non-principal irreducible character vanishes on x, y

or z, so Σ = 1. The number of triples of type (3, 2, p) in G is therefore

p − 1

3
· (q3(q − 1)2(q + 1)(q2 + q + 1))2

(q2 − 1) · q3(q − 1) · p =
p − 1

3
|G|,

so the number of dessins is again (p − 1)/3e. The other change is that y now fixes q + 1 points, so

that the passport is (3q(q+1)/311, 2q2/21q+1, p1) and the genus is q(q − 2)/12.

In all cases, chirality of the dessins follows from the facts that the two dual representations of

G of degree p correspond to a mutually inverse pair of conjugacy classes Z, and that Out G acts

semiregularly on the set of such pairs. �
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Example 10.4. The smallest example for the above theorem is the chiral pair of dessins of degree

p = 7 with monodromy group PSL3(2) � PSL2(7); one of this pair is shown on the right in

Figure 11.

Example 10.5. Let p = 13 and G = PSL3(3). The required conjugacy classes are (in ATLAS [16]

notation)X = 3B,Y = 2A andZ = 13A, 13B, 13C or 13D, giving four dessinsD of type (3, 2, 13)

and degree 13; they form two chiral pairs, each pair having the same regular cover. Each dessinD
(see Figure 12, or [1, Orbit 13.1, Fig. 8.22(A)]) has passport (3411, 2415, 131) and genus 0, while

the two regular covers have genus 253. (These are the duals of the regular maps R253.1 and R253.2

of type {3, 13}8 and {3, 13}12 in [15].)

Figure 12. Two dessins with monodromy group PSL3(3).

Example 10.6. Let p = 31, with G = PSL3(5). In this case X = 3A, Y = 2A and there are ten

possible classes Z = 31A, 31B, . . .. These give ten dessins D of type (3, 2, 31) and degree 31,

forming five chiral pairs with five regular covers. Each dessin D has passport (31011, 21217, 311)

and genus 1, while the regular covers have genus 25 001. Generators of the monodromy groups of

these ten dessinsD are given, as elements of S31, in the Appendix.

Example 10.7. Let p = 73 and G = PSL3(8). Here X = 3A and Y = 2A, and there are 24

classes Z = 73A, . . . of elements of order 73. Since e = 3 we obtain 24/3 = 8 dessins D. They

have passport (32411, 23219, 731) and genus 4; their permutation representations are given in the

Appendix. They form four chiral pairs, each pair having a regular cover of genus 1 260 673.

Of course, we do not consider cases such as q = 4, 7, 9 and 11 since the corresponding values of

1+q+q2 are not prime. Indeed, squares of primes can be ignored, since for p to be prime we requite

e to be a power of n = 3. For any such e, the Bateman–Horn conjecture, applied to the polynomials

t and 1 + te + t2e, suggests that infinitely many projective primes will be obtained. However, even

for e = 3 there are so few examples within our computing range (10 primes p = 1 + q + q2 < 1018,

compared with an estimate of about 12) that the computational evidence is not convincing.

10.3. Fixed n > 3. In the case of a prime n > 3 we do not have generic character tables for

PSLn(q). Nevertheless, the Bateman–Horn Conjecture still applies, again suggesting that if we

fix n and take e to be a fixed power of n we will obtain infinitely many projective primes. The

only case in which the computational evidence is persuasive is when n = 5 and e = 1, with 252

projective primes p < 1018, compared with an estimate of about 246.
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10.4. The case q = 2: Mersenne primes. When q = 2 we have G = PSLn(2) = GLn(2), and

p = 2n − 1, currently known to be prime for 51 values of n. No generic character tables for GLn(2)

are available, although there is a general theory of characters for GLn(q), largely based on the work

of Green [33]; for a concise and readable summary, see [55, §4] or [58, Ch. IV]. Here are two small

examples where character tables in [16] can be used.

Example 10.8. Let p = 23 − 1 = 7 and G = PSL3(2) (= GL3(2) � PSL2(7)). The only conjugacy

classes of elements of order 3 or 2 in G are 3A and 2A, with cycle structures 3211 and 2213 in

both of the natural representations of G, on points and lines of the Fano plane P2(F2); there are

two classes 7A, 7B of elements of order p = 7. The only character which does not vanish in the

character sum is χ1, so Σ = 1. Since |C(x)| = 3, |C(y)| = 8 = 23, |C(z)| = 7 and |G| = 168 = 23 ·3 ·7,

the number of triples of type (3, 2, 7) in G is

2 · 26 · 32 · 72

3 · 23 · 7 = 24 · 3 · 7 = 2|G| = |Aut G|.

(Note that Out G � C2, induced by the duality of the Fano plane, or equivalently by conjugation of

PSL2(7) in PGL2(7).) These triples all generate G, so ∆ = ∆(3, 2, 7) has a unique normal subgroup

with quotient G, corresponding to a regular dessin R of type (3, 2, 7) with automorphism group G.

There are two conjugacy classes of subgroups of index 7 in G, the stabilisers of points and lines

in the Fano plane; these lift to two conjugacy classes of subgroups of index 2 in ∆, corresponding

to two dessins D of type (3, 2, 7) and degree 7, each having regular cover R. Each dessin D has

passport (3211, 2213, 71), so it has genus 0, while R has genus 3. One of the two dessinsD is shown

on the right in Figure 11, and the other is its mirror image D. These two maps, corresponding

to the two choices for the conjugacy class Z or to the two choices for the class of subgroups of

index 7, are not isomorphic since the outer automorphism of G transposes both pairs. The dessin R
is Klein’s heptagonal map on his quartic curve, introduced in [49]; it is denoted by {7, 3}8 in [19]

and is the dual of R3.1 in [15]. As the common regular cover of a chiral pair of dessins (or by its

uniqueness) this map is isomorphic to its mirror image.

Example 10.9. Let p = 31 (again), but now in its role as a Mersenne prime 25 − 1, with G =

PSL5(2) = GL5(2). There are two classes each of elements of orders 3 and 2, namely 3A and 3B,

with cycle structures 3817 and 31011, and 2A and 2B, with cycle structures 28115 and 21217, together

with six classes 31A, . . . of elements of order 31. The inequality 2a + b ≥ p − 1 discussed earlier

implies that X and Y must be 3B and 2B. For each of the six choices ofZ, only χ1 and χ6 appear

in the character sum, so

Σ = 1 +
8 · (−5) · 1

280
= 1 − 1

7
=

6

7
.

We have |C(x)| = 180 = 22 · 32 · 5, |C(y)| = 1536 = 29 · 3, |C(z)| = 31 and |G| = 9 999 360 =

210 · 32 · 5 · 7 · 31, so the total number of triples in G is

6 · 29 · 3 · 5 · 72 · 31 · 6

7
= 211 · 33 · 5 · 7 · 31 = 6|G| = 3|Aut G|.

Each triple generates G, so ∆ has three normal subgroups with quotient G. There are two conjugacy

classes of subgroups of index 31 in G, the stabilisers of points and hyperplanes in P4(F2), giving six
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dessinsD of degree 31, with three chiral pairs each having the same regular cover R. Each dessin

D has passport (31011, 21217, 311), so it has genus 1, while the regular coversR have genus 672 001.

Generators of the monodromy groups of these six dessins D are given, as elements of S31, in the

Appendix.

Remark 10.10 (Goormaghtigh conjecture). Note that 31 appears twice as a projective prime, as

both 1 + 5 + 52 and 1 + 2 + 22 + 23 + 24. In 1917 Goormaghtigh [31] conjectured that this example

and 1 + 2 + 22 + · · · + 212 = 8191 = 1 + 90 + 902 are the only repetitions among numbers of the

form (qn − 1)/(q − 1) for integers q, n ≥ 2. Although 8191 is prime (and hence a projective prime

for (q, n) = (2, 13)), 90 is not a prime power, so only the first example is a repetition of projective

primes. A computer search of prime degrees up to 1018 has revealed no further examples. The

conjecture is still open. For additional information see [32].

Before attempting to find triples (x, y, z) of type (3, 2, p) in G = GLn(2) for general primes n ≥ 3,

it is useful first to consider the possibilities for elements of orders 3, 2 and p in G. Any element

x ∈ G of order 3 has a rational canonical form with r and (n − r)/2 blocks of the form

(

1
)

or

(

0 1

1 1

)

for some odd r < n, so it fixes a subspace of Pn−1(F2) of dimension r − 1; this contains α = 2r − 1

points, so x has a = (p − 2r + 1)/3 nontrivial cycles. Similarly, any element y ∈ G of order 2 has a

Jordan normal form with s and (n − s)/2 blocks of the form

(

1
)

or

(

1 1

0 1

)

for some odd s < n; it therefore fixes a subspace of dimension (n+s−2)/2 containing β = 2(n+s)/2−1

points, so it has b = (p − 2(n+s)/2 + 1)/2 nontrivial cycles. The element z is a p-cycle, so provided

a triple (x, y, z) of type (3, 2, p) exists, it will generate G by [6]; the resulting dessin D will have

passport (3a1α, 2b1β, p1) and genus (2a + b + 1 − p)/2, while its minimal regular cover R will have

genus

p − 6

12p
|G| + 1 =

p − 6

12p

n−1
∏

i=0

(2n − 2i) + 1 = (p − 6)2(n2−n−4)/2

n−1
∏

i=3

(2i − 1) + 1,

independent of r and s. In particular, if we choose the most ‘active’ elements x and y by taking

r = s = 1 (as in the earlier examples with n = 3 and 5) we will have α = 1 and β = 2(n+1)/2 − 1, so

a = (p − 1)/3 and b = (p − 2(n+1)/2 + 1)/2 and hence D will have genus

(7)
1

3
(2n−2 + 1) − 2(n−3)/2.

Theorem 10.11. For each Mersenne prime p = 2n−1 ≥ 7 there are at least (p−1)/2n chiral pairs

of dessins of type (3, 2, p), degree p and genus given by (7), with monodromy group G = PSLn(2) =

GLn(2).
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Proof. We will use the Frobenius formula (2) to show that for each conjugacy class Z of Singer

cycles in G there a triple (x, y, z) of type (3, 2, p) where x and y satisfy r = s = 1 (as above) and

z ∈ Z. The calculation is aided by the fact that most of the non-principal irreducible characters of

G vanish on the Singer cycles z (see [55, §4.2], for example), and hence do not contribute to the

character sum Σ. Among the other characters, that of degree p−1, the non-principal constituent of

the natural permutation character, vanishes on x, while the Steinberg character of degree 2n(n−1)/2

vanishes on y, so they can also be ignored. The remaining characters have sufficiently large de-

grees, compared with their values at x, y and z (see [55, §4.1,4.2] for full details), that their total

contribution to Σ has modulus less than the contribution 1 of the principal character, so that Σ > 0

and hence the required triples exist. As before, they all generate G by [6]. There are (p − 1)/n

conjugacy classes Z of Singer cycles z in G, forming (p − 1)/2n mutually inverse pairs; each pair

are transposed by the outer automorphism group of G, as are the two permutation representations

of G of degree p; thus we obtain (at least) (p − 1)/2n chiral pairs of dessins D, all with the same

passport and genus, as calculated above. �

On the basis of Theorem 10.11, and of other examples involving small projective primes, we

conjecture the following extension of this theorem:

Conjecture 10.12. For each projective prime p = 1 + q + · · · + qn−1 > 3 there exists at least one

dessin of type (3, 2, p) and degree p with monodromy group PSLn(q).

10.5. Summary. We can summarise the results of this rather long section as follows:

Theorem 10.13. Suppose that p is a prime such that there is a dessin of type (3, 2, p) and degree p

with monodromy group G. Then p ≥ 5, and one of the following holds:

(a) G = Ap, acting naturally, with p , 7;

(b) p = 11 and G = PSL2(p), acting on the cosets of a subgroup isomorphic to A5;

(c) p is a projective prime (qn − 1)/(q − 1) for some prime n and prime-power q, and G =

PSLn(q) = SLn(q) acting naturally on points or hyperplanes of Pn−1(q).

In case (a), if p = 5 there is a unique dessin, shown on the left in Figure 11; if p > 7 there are

exponentially many dessins as p → ∞, even if we restrict to planar dessins. In case (b) there is a

single chiral pair of dessins; these are the dessinsM1 andM1 studied by Klein in [50] and shown

in Figures 2 and 3. In case (c) we conjecture that there are infinitely many projective primes p,

even for any fixed prime n ≥ 3; when n = 2 (Fermat primes) or 3 (projective planes) the dessins

are all as described in Theorem 10.1 or Theorem 10.3. In the case q = 2 (Mersenne primes) we

have an existence result rather than a complete classification.

11. Modular dessins and curves

Just as we generalised our arguments about dessins of type (3, 2, p) and degree p from p = 11 to

all primes p, we can do the same for dessins of this type and of degree p+1. In this section we will

consider the dessinsD0(p) arising naturally from congruence subgroups of level p in the modular

group, and in the next section we will consider more general dessins of this type and degree.
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11.1. D0(p) and its passport. As in the case p = 11 considered earlier, for any prime p the

natural action of PSL2(p) on the projective line P1(Fp) yields a dessin D0(p) of type (3, 2, p) and

degree p+ 1. One can find its passport by using the fact that a non-identity Möbius transformation

(over any field) has at most two fixed points. The cases p = 2 and 3 are trivial, so let us assume

that p ≥ 5.

The permutation x representing the vertices has order 3, so

• if p ≡ 1 mod (3) then x has two fixed points, and its cycle type is 3(p−1)/312;

• if p ≡ −1 mod (3) then x has no fixed points, and its cycle type is 3(p+1)/3.

Similarly the permutation y representing the edges has order 2, and is even, so

• if p ≡ 1 mod (4) then y has two fixed points, and its cycle structure is 2(p−1)/212;

• if p ≡ −1 mod (4) then y has no fixed points, and its cycle structure is 2(p+1)/2.

Finally the permutation z representing the faces has order p, so its cycle structure is p111.

From the passport one can compute the Euler characteristic χ and hence the genus g of D0(p).

There are four cases:

• if p ≡ 1 mod (12) the passport is (3(p−1)/312, 2(p−1)/212, p111), giving g = (p − 13)/12;

• if p ≡ 5 mod (12) the passport is (3(p+1)/3, 2(p−1)/212, p111), giving g = (p − 5)/12;

• if p ≡ 7 mod (12) the passport is (3(p−1)/312, 2(p+1)/2, p111), giving g = (p − 7)/12;

• if p ≡ 11 mod (12) the passport is (3(p+1)/3, 2(p+1)/2, p111), giving g = (p + 1)/12;

Thus the genus ofD0(p) is (p − c)/12 for primes p ≡ c = −1, 5, 7 or 13 mod (12), and 0 for p = 2

or 3. The following table gives the values of g for the first few primes:

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59

g 0 0 0 0 1 0 1 1 2 2 2 2 3 3 4 4 5

Figure 13. D0(p) for p = 2, 3, 5, 7 and 13.

11.2. The dessin D0(13). The dessin D0(p) is planar if and only if p = 2, 3, 5, 7 or 13. These

five dessins are shown in Figure 13. It is easy to see that the first four are uniquely determined by

their passports, and the same applies to the torus dessinD0(11) which we will show in Figure 17.

However, for p = 13 there are 30 dessins with passport (3412, 2612, p111), consisting of two sym-

metric dessins, includingD0(13), and 14 chiral pairs. In fact, a simple argument shows that these

dessins can all be formed from the three basic maps in Figure 14, together with the mirror images
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of the first and last, by adding black vertices to two of their four free edges. This gives 5×
(

4

2

)

= 30

dessins.

Figure 14. Three basic maps.

Whereas D0(13) has monodromy group PSL2(13), the other 29 dessins all have monodromy

group A14; this follows from the fact that such a group must be a doubly transitive subgroup

of A14, and apart from A14 itself the only other possibility is PSL2(13), which by the Frobenius

formula corresponds to just one dessin, namelyD0(13).

The fact that D0(13) is planar gives us some hope of computing its Belyı̆ function f : Σ → Σ,

which is as follows:

f = − 1

1728
· (t4 − 7t3 + 20t2 − 19t + 1)3(t2 − 5t + 13)

t
,

f − 1 = − 1

1728
· (t6 − 10t5 + 46t4 − 108t3 + 122t2 − 38t − 1)2(t2 − 6t + 13)

t
.

In this case, of course, f is not a polynomial, since there is a pole at 0 (the face-centre enclosed by

the loop) in addition to the pole at∞ (the centre of the outer face).

Figure 15 shows a geometrically correct version of D0(13), with black and white vertices. In

this picture, the loop is so small that it is obscured by its incident black and white vertices. (We

will meet a similar problem forD0(11) in Figure 18.) Figure 16 shows a magnified drawing of the

loop, together with nearby parts of the real and imaginary axes.

11.3. The dessin D0(11). Whereas D0(p) is planar for each prime p ≤ 13 except 11, the dessin

D0(11) has genus 1, so we have the additional problem of determining the corresponding elliptic

curve. Two views of this dessin are shown in Figure 17 as maps on a torus, with opposite sides

of the outer square or hexagon identified in the usual way. Like the dessinsM1 andM1, D0(11)

has the dessin R1 as its minimal regular cover. However, in this case it is the quotient of R1 by the

subgroup of L = PSL2(11) fixing a point in P1(F11), of the form C11⋊C5 rather than A5. In addition

to coming from a more natural representation of L, D0(11) is also more pleasing because of its
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Figure 15. A geometrically correct drawing ofD0(13).

Figure 16. The loop inD0(13).

greater uniformity: the permutations x and y have no fixed points, so the black vertices all have

valency 3 and there are no free edges. Moreover, the generators y : t 7→ −1/t and z : t 7→ t + 1 of

L can both be seen from the edges and faces through the labelling of directed edges with elements

of P1(F11). Since xyz = 1, the permutation x can now easily be computed as x : t 7→ −1/(t − 1).

Another remarkable feature of this dessin is the fact that it is unique for its passport, which is

(34, 26, 11111). One does not have to consider ten different trees and sort out the corresponding

groups. We may wonder why Klein overlooked this example. Maybe the reason was that the
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4
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9

0

2

3

8
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1

8

Figure 17. Two views of the torus mapD0(11).

representation of maps via permutations was not yet invented. The first publications which intro-

duced this construction, by Dyck [23] (1888) and Heffter [37] (1891), appeared only a decade after

Klein’s paper. In fact, the pioneer in this subject was Hamilton [36] (1856), but he explained the

construction in a private letter. Even at the time close to ours, when the permutational model of

maps became a part of a common knowledge, the researchers studied mainly the automorphism

groups of maps while their monodromy groups were largely neglected. Only with the advent of the

theory of dessins d’enfants the monodromy groups rose to the fore since they are Galois invariants.

From the point of view of dessins d’enfants, the uniqueness of the dessinD0(11) implies that it

is defined over Q. However, a difficulty of a different sort appears. While in the planar case what

we need is a Belyı̆ function, which is a rational function f : Σ→ Σ, in the case of a dessin of genus

g ≥ 1 we need a Belyı̆ pair (X, f ) where X is a Riemann surface (or an algebraic curve) of genus

g, and f is a meromorphic function f : X → Σ with no critical values outside {0, 1,∞}. There

are uncountably many curves of any given genus g ≥ 1, and the dessin determines one of them in

a unique way. To find such a curve (and a Belyı̆ function defined on it) is an incredibly difficult

task. A relatively simple answer below hides numerous obstacles one has to surmount in order to

find it. The corresponding computation was made for us by John Voight, to whom we are greatly

indebted.

In our case g = 1, so the curve in question is an elliptic curve E. One possible presentation is

y2 + y = x3 − x2 − 10x − 20.(8)

The Belyı̆ function f = f (x, y) is then constructed as follows:

a = −x5 − 23x4 + 697x3 − 1031x2 − 2170x − 353;

b = −11x6 + 148x5 + 643x4 − 2704x3 − 6780x2 + 1781x + 3308;

f =
ay + b

1728(x − 16)
.(9)
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(Alternatively, putting y = z − 1
2
, x = t + 1

3
gives

z2 = t3 − 31

3
t − 2501

108
,

a Weierstrass form for E. The J-invariant of the curve is J(E) = −212313

115
.)

Even a verification of the above result is not an easy task. We give an outline of the main steps

of such a verification.

Step 0. Since the mapD0(11) has 12 directed edges, we expect its Belyı̆ function to have degree 12.

However, when one looks at the expression (9), this property does not jump to the eyes, to put it

mildly. We have an impression that this function is rather of degree 6. The clue is that it is

considered to be defined on the curve E. Let us denote h(x, y) = y2 + y − x3 + x2 + 10x + 20 (see

equation (8)). Expressing y from the equation f (x, y) = z and substituting the result in h we indeed

get a function of degree 12 in x since h contains y2.

Step 1. We must ensure that the gradients of the functions f and h are collinear, hence the following

determinant must be equal to zero:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ f

∂x

∂ f

∂y

∂h

∂x

∂h

∂y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

This gives us an equation in two variables x and y. The second equation is h(x, y) = 0 since we are

looking not for arbitrary points of collineation but for those which belong to X.

Step 2. A good idea is to find a Gröbner basis for the system thus obtained, and to do it twice.

Using the ‘pure lexicographic’ monomial order plex(y,x) we get as the first element of the basis

a polynomial in x; using plex(x,y) we get a polynomial in y. Here they are:

P = (x4 − 20x3 + 62x2 + 116x + 97)2(x − 16)2 ×
(x6 − 30x5 + 243x4 − 256x3 − 1053x2 + 654x + 7793),

Q = (y4 + 68y3 + 590y2 + 556y + 7489)2(y − 60)2 ×
(y6 + 102y5 + 2619y4 + 11272y3 + 131211y2 + 91074y + 253312).

Step 3. The roots of these two polynomials are the x-coordinates and the y-coordinates of the

critical points of f on E. Two factors of degree 4, being squared, indicate that there are four

critical points of multiplicity 3. We guess that they are the black vertices of our map. But is it true

that the value of f at all these points is equal to zero? We must also ‘couple’ x- and y-coordinates

in order to show which y correspond to which x.

These questions are easy to answer. We solve the system f = 0, h = 0 and see that the values of

x are indeed roots of p1 = x4 − 20x3 + 62x2 + 116x + 97, while

y = − 1

23
(x3 − 16x2 + 90x + 62).
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It is also easy to verify that these values of y are indeed roots of the polynomial q1 = y4 + 68y3 +

590y2 + 556y + 7489. We just substitute these expressions of y into q1 and compute the result

modulo p1: it is equal to zero.

Beside these four solutions there is one more: (x, y) = (16, 60). What does it mean? There are

two points on E over x = 16, namely (16, 60) and (16,−61). Substituting y = 60 into the numerator

of f we get

−(x − 16)(11x5 + 88x4 + 2145x3 − 4796x2 − 8096x − 1117).

Thus, x − 16 in the numerator and in the denominator of f cancel each other: this is a removable

singularity. We conclude that f has a simple pole at the point (16,−61) on the curve.

Now, the factors of degree 6 of the polynomials P and Q correspond to simple critical points,

which are mid-points of edges. And, indeed, solving the system f = 1, h = 0, we obtain, beside the

superfluous solution (16, 60), the roots of p2 = x6 − 30x5 + 243x4 − 256x3 − 1053x2 + 654x+ 7793,

while

y = − 1

101617
(104x5 − 2811x4 + 15943x3 + 64714x2 − 44258x − 217861).

Once again, it is easy to verify that these values of y are roots of the polynomial

q2 = y6 + 102y5 + 2619y4 + 11272y3 + 131211y2 + 91074y + 253312.

Step 4. Since the function f has only one simple pole on the finite part of the curve E, we may

conclude that it also has a pole of multiplicity 11 ‘over infinity’. We might stop here. However, we

prefer to make the last statement more explicit.

First of all, let us introduce the projective coordinates (X : Y : Z), where x = X/Z, y = Y/Z, and

projectivize the equation (8) of the curve:

Y2Z + YZ2 = X3 − X2Z − 10XZ2 − 20Z3.(10)

The finite part of the curve corresponds to Z = 1; the point ‘at infinity’ corresponds to Z = 0,

which implies also X = 0; thus, we must take Y = 1. Near this point, we may introduce new affine

coordinates u = X/Y = x/y, v = Z/Y = 1/y. Substituting x = u/v, y = 1/v in the initial equation

we get the equation of our curve near infinity:

v + v2 = u3 − u2v − 10uv2 − 20v3.(11)

Notice that the presence of the term v at the left-hand side of this equation ensures that the gradient

is non-zero and therefore the curve in the vicinity of the point (u, v) = (0, 0) is smooth, and u can

be taken as a local coordinate.

Let us represent v as a series v = c0+c1u+c2u2+c3u3+c4u4+ . . . and insert it into the difference

(v + v2) − (u3 − u2v − 10uv2 − 20v3).

We would like to get as the result o(u3). Then, equating to zero the coefficients in front of the

degrees up to the 3rd, we get c0 = c1 = c2 = 0, c3 = 1. What remains is to make the following two

operations:

1. Substitute x = u/v, y = 1/v in the expression (9) for the Belyı̆ function.

2. Substitute v = u3 in the resulting expression.
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Then the Belyı̆ function, up to smaller terms, becomes

f ∼ − 1

1728

1 + 11u + 23u2 − 148u3 − . . . − 3308u13

u11(1 − 16u2)
∼ Const

u11
when u→ 0.

Now a pole of degree 11 at the point u = 0 is apparent.

Figure 18. A geometrically correct drawing ofD0(11) lifted to the complex plane.

Figure 18 shows a geometrically correct picture of the dessin D0(11), lifted from the torus E

to the complex plane to give a doubly periodic map. In addition to the black vertices of degree 3,

the white vertices of degree 2 are also shown, as is a fundamental parallelogram for the associated

lattice. The repeated copies ofD0(11) are aligned as in the right-hand map in Figure 17. However,

the loop (the face of valency 1), which is obvious there, is in reality too small to be clearly visible

here. Changing accuracy parameters to make this face and its incident vertices visible would create

a mess elsewhere, so in this case we have to accept that nature, technology and human eyesight are

incompatible. We met a similar problem earlier forD0(13), in connection with Figures 15 and 16.

To obtain this diagram we use the substitution

y =
z − 1

2
, x = t +

1

3

to give the elliptic curve

z2 = 4t3 − 124

3
t − 2501

27
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in Weierstrass normal form. Then Algorithm 7.4.7 in Cohen’s book [13], using the arithmetic-

geometric mean, gives a basis

ω1 = 1.269209304, ω2 = −0.6346046520 + 1.458816617i

for the lattice, as shown in Figure 18. The associated modulus is

τ = ω2/ω1 = −0.5000000000 + 1.149390106i,

on the left-hand vertical border of the standard fundamental region for Γ, which is consistent with

the fact that J(τ) < 0. To obtain the embedded graph we lift the unit interval [0, 1] ⊂ Σ, with black

and white vertices at 0 and 1, to the curve E via the Belyı̆ function f , and then use the standard

parametrisation of E by the Weierstrass functions, namely t = ℘(w) and z = ℘′(w) for w ∈ C, to

lift the resulting dessin to the plane.

11.4. The dessins D(p). The minimal regular cover of D0(p) is a regular dessin D(p) of type

(3, 2, p) with automorphism group PSL2(p); for p > 2 it has degree p(p2 − 1)/2 and genus (p +

2)(p − 3)(p − 5)/24, while for p = 2 it has degree 6 and genus 0. The underlying curves of D(p)

and D0(p) are the modular curves X(p) = H/Γ(p) and X0(p) = H/Γ0(p) (hence the notation for

these two dessins); here Γ(p) is the principal congruence subgroup of level p in Γ, the kernel of

the reduction mod (p) : Γ → PSL2(p) (see [41, §6.9–10], for example), while Γ0(p) is the inverse

image in Γ of the subgroup of PSL2(p) fixing∞.

Theorem 11.1. For each prime p the dessin D(p) is the only regular dessin of type (3, 2, p) with

automorphism group G = PSL2(p), andD0(p) is the only dessin of degree p + 1 and type (3, 2, p)

with monodromy group G.

Proof. To prove the uniqueness of D(p) it is sufficient to show that G has, up to automorphisms,

only one generating triple (x, y, z) of type (3, 2, p). The elements z ∈ G of order p are all equivalent

under automorphisms, while the elements of order 3 and 2 are those with traces ±1 and 0. We may

therefore assume that

y = ±
(

a b

c −a

)

and z = ±
(

1 0

1 1

)

, so that yz = ±
(

a + b b

c − a −a

)

.

Since we require yz = x−1 to have order 3 we must have b = ±1, and without loss of generality we

can take b = 1. Since det y = 1 we have c = −a2 − 1, giving a 1-parameter set of solutions

y = ya = ±
(

a 1

−a2 − 1 −a

)

(a ∈ Fp).

Now conjugating the triple (x, y, z) with zi fixes z and replaces y = ya with ya+i, so all such triples

are equivalent under automorphisms, as required. One could also prove this by using the Frobenius

triple-counting formula (2), as in Example 1 of Section 4 for p = 11 (see [43, §5.5] for the character

table of G); this is easy if p ≡ ±5 mod (12) since in this case only one nonprincipal irreducible

character, of degree p, appears in the character sum, but if p ≡ ±1 mod (12) then other characters

appear and some work with algebraic numbers is required. Since G has a unique conjugacy class

of subgroups of index p + 1, namely the stabilisers of points in P1(Fp), it follows thatD0(p) is the

only dessin of degree p + 1 and type (3, 2, p) with monodromy group G. �



KLEIN’S TEN PLANAR DESSINS OF DEGREE 11, AND BEYOND 41

12. Dessins of type (3, 2, p) and degree p + 1

Having considered the dessins D0(p) in the preceding section, we will now consider arbitrary

dessins of their type (3, 2, p) and degree p + 1. The monodromy group G of such a dessin D is a

transitive permutation group of degree p+1, and since it contains a p-cycle z it is doubly transitive,

and hence primitive. As before, if p > 3, as we shall assume, G is perfect. The finite primitive

groups containing a cycle with one fixed point were determined by Müller in [64, Theorem 6.2],

and as a corollary we have:

Theorem 12.1. The perfect permutation groups of degree p + 1 (p prime), containing a p-cycle,

are the following:

(a) Ap+1 for primes p ≥ 5,

(b) PSL2(p) for primes p ≥ 5,

(c) affine groups AGLn(2) for Mersenne primes p = 2n − 1 ≥ 5,

(d) Mathieu groups M11 and M12 for p = 11 and M24 for p = 23,

all except M11 (see below) in their natural representations.

We will consider these groups in turn, together with their analogues for p < 5, to see which of

them can serve as monodromy groups of dessins of type (3, 2, p). The results will be summarized

in Theorem 12.5. It is convenient to deal with the simplest cases (b) and (d) first, and to treat the

alternating groups last.

The groups PSL2(p) in Theorem 12.1(b) arise as monodromy groups in this context for all

primes p, each of them associated with a unique dessin, the modular dessin D0(p) (see Theo-

rem 11.1).

In (d), although M11 has a permutation representation of degree 12, on the cosets of a subgroup

PSL2(11), we have seen in Example 4.2 that it is not a quotient of ∆(3, 2, 11), since all triples of

this type in M11 generate not M11 but its subgroup PSL2(11); thus it does not arise as a monodromy

group in this context.

The group G = M12 in (d) has two representations of degree 12, on the cosets of two conjugacy

classes of subgroups isomorphic to M11, transposed by Out G. It is the monodromy group of two

chiral pairs of planar dessins of type (3, 2, 11) and degree 12. One dessin from each pair is shown

in Figure 19: the dessin on the left has passport (3313, 26, 11111), with X = 3A and Y = 2A, while

that on the right has passport (34, 2414, 11111), with X = 3B and Y = 2B. Their regular covers

are a pair of dessins of type (3, 2, 11) and genus 3601. There are no other dessins of this type and

degree with monodromy group G = M12: taking X = 3B and Y = 2A, or X = 3A and Y = 2B

yields two more orbits of Aut G on triples, but these generate transitive or intransitive subgroups

isomorphic to PSL2(11). The dessin corresponding to these transitive subgroups has already been

shown in Figures 17 and 18, while the intransitive subgroups, with orbits of length 11 and 1, are

the monodromy groups of the dessinsM1 andM1 of degree 11 in Figures 1, 2 and 3.

For p = 23, the group M24 in (d), found by Mathieu [62] in 1873, is the monodromy group of

two chiral pairs of planar dessins, with passports (3616, 212, 23111) and (38, 2818, 23111): see orbits

24.2 and 24.1 in [1, pp. 129–130]. For the first pair X = 3A, Y = 2B and Z = 23A or 23B, while
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Figure 19. Two dessins with monodromy group M12. The field of moduli for both

of them is Q(
√
−11).

for the second pair X = 3B, Y = 2A and Z = 23A or 23B. A member of each pair is shown in

Figure 20. Unlike in the case of M12, there is a single permutation representation of degree p + 1

(the natural representation, on the cosets of a subgroup M23), and there is no outer automorphism

transposing the two mutually inverse conjugacy classes of elements of order p.

Figure 20. Two dessins with monodromy group M24. The field of moduli for both

of them is Q(
√
−23).

We now consider case (c) of Theorem 12.1, the affine groups AGLn(2), where n is prime and

p is a Mersenne prime 2n − 1. The case p = 3 does not arise since AGL2(2) � S4, so this group

is not a quotient of ∆(3, 2, 2) � S3. For p = 7 the only dessin of type (3, 2, 7) and degree 8 is

D0(7), with monodromy group PSL2(7), so AGL3(2) does not arise. (Note that the Hurwitz group

of genus 17 is a nonsplit extension of V8 by GL3(2), not isomorphic to AGL3(2), and it has no

transitive permutation representation of degree 8; see [44] for details.) On the other hand, for

p = 31 orbit 32.1 in [1, pp. 134–135] consists of six planar dessins of type (3, 2, 31) and degree 32

with monodromy group ASL5(2) = AGL5(2). These are shown in the Appendix, Figure 28.

Theorem 12.2. For each Mersenne prime p = 2n − 1 > 7 there are dessins of type (3, 2, p)

and degree p + 1 with passport (3(p−1)/312, 2(p+1)/2, p111), genus (p + 5)/12 and monodromy group

AGLn(2).

Proof. We will use the fact that G := AGLn(2) is a semidirect product of its translation subgroup

T � (C2)n by G0 := GLn(2), the stabiliser of 0. Let (x, y, z) be a generating triple for GLn(2) of
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type (3, 2, p), chosen as in the proof of Theorem 10.11 by taking r = s = 1, so that α = 1 and

β = (n + 1)/2. Now let u = xa, v = yb and w = zc, where a, b, c ∈ T . We will try to choose a, b

and c so that (u, v,w) is a generating triple for G of type (3, 2, p).

Since x3 = 1 we have

u3 = (xa)3 = x3ax2

axa = ax2+x+1,

so u3 = 1 if and only if a ∈ Tx := ker(x2+x+1). (Here we regard x2+x+1 as a linear transformation

of the vector space T over F2.) Similarly v2 = 1 if and only if b ∈ Ty := ker(y + 1), and wp = 1 if

and only if c ∈ Tz := ker(zp−1 + zp−2 + · · · + z + 1). Also

uvw = xa.yb.zc = xyayzbzc = xyzayzbzc = ayzbzc,

so uvw = 1 if and only if ayzbzc = 1.

Since z is a Singer cycle in G0, Tz = T and hence the condition on c is vacuous, whereas the

Jordan forms for x and y used in the proof of Theorem 10.11 show that the subspaces Tx and Ty

have dimensions n − 1 and (n + 1)/2. Within these subspaces one can choose a and b arbitrarily,

and then define c = ayzbz, so that avyzbzc = 1 and hence (u, v,w) is a triple of type (3, 2, p).

The cycle structures of u, v and w can be found as follows. One can regard AGLn(2) as acting

naturally on T , with elements of T and GLn(2) acting by translations and by linear transformations.

The element u = xa acts on T by t 7→ txa, so it fixes an element t ∈ T if and only if a = t(1 − x),

using additive notation for the vector space T . Now the Jordan form for x shows that T (1− x) = Tx,

so for every choice of a ∈ Tx there are | ker(1 − x)| = 2 fixed points t ∈ T for u. Since u has order

3 it has (p − 1)/3 cycles of length 3. In the case of v the Jordan form for y shows that T (1 − y) is

a subspace of codimension in 1 in Ty, so by choosing b ∈ Ty \ T (1 − y) we can ensure that v has

no fixed points, and therefore consists of (p + 1)/2 transpositions. Since w has order p it has cycle

structure p111.

Now let us define H := 〈u, v,w〉 ≤ G. We will prove that if p > 7 then H = G. Factoring out T

maps H onto 〈x, y, z〉 = G0, so HT = G. If H contains a non-identity translation t ∈ T then since H

contains w it contains all the non-identity translations tw, so H ≥ T and hence H = G, as required.

We may therefore assume, for a contradiction, that H ∩ T = 1, so that H is a complement for

T in G. Since the first cohomology group H1(GLn(2), T ) for GLn(2) on its natural module T is

trivial for all n > 3 (see [4]) there is a single conjugacy class of such complements, so H is a

point-stabiliser in the natural action of G. This contradicts the fact that v has no fixed points, by

our choice of the translation b.

Thus (u, v,w) is a generating triple for G, so it corresponds to a dessin of type (3, 2, p) and

degree p + 1 with monodromy group G. Its genus follows from its passport, determined above. �

The above proof fails in the case p = 7 since |H1(GL3(2), T )| = 2 (see [4]), so that there are

two conjugacy classes of complements for T in AGL3(2), consisting of the point-stabilisers and of

subgroups acting transitively on T as PSL2(7); in this case every triple of type (3, 2, 7) generates a

complement. (The fact that all complements are isomorphic to G/T provides a simple proof that

GL3(2) � PSL2(7).)

Example 12.3. Taking n = 5 we obtain a dessin of type (3, 2, 31), degree 32 and genus 3, with pass-

port (31012, 216, 31111). This should not be confused with the Galois orbit 32.1 of six planar dessins
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with the same type, degree and monodromy group in [1]: these have passport (31012, 21218, 31111),

and they correspond to taking b ∈ T (1−y), so that v fixes | ker(1−y)| = 8 points (see the Appendix).

Finally, we consider the alternating groups Ap+1, in case (a) of Theorem 12.1, as monodromy

groups.

Theorem 12.4. The alternating group Ap+1, p prime, is the monodromy group of a dessin of type

(3, 2, p) and degree p + 1 if and only if p = 3 or p ≥ 11.

Proof. For p = 2, 5 or 7 the triangle group ∆(3, 2, p) does not map onto Ap+1: this is obvious if

p = 2 or 5, and for p = 7 it is well known that A8 is not a Hurwitz group: the triples of type (3, 2, 7)

in this group all generate proper subgroups isomorphic to PSL2(7). On the other hand, A4 is the

monodromy group of the dessin of type (3, 2, 3) and degree 4 on the left in Figure 21, the quotient

of the tetrahedron {3, 3} by C3. (Note that A4 is isomorphic to PSL2(3) in case (b).)

Figure 21. Dessins with monodromy groups A4, A12 and A14.

For p = 11 and 13 it is sufficient by Theorem 12.1 to note that the dessins of degree 12 and 14 in

Figure 21 are not isomorphic to the unique dessinsD0(p) with monodromy group PSL2(p) shown

in Figures 17 and 13.

Figure 22. A dessin with monodromy group Ap+1.

Finally, let p ≥ 17. If p ≡ 2 mod (3), say p = 3k + 2 for some k ≥ 5, consider the dessin D in

Figure 22, where there are k vertices of degree 3, so that the degree ofD is p+1 and its passport is

(3k13, 2k+31k−3, p111). The monodromy group ofD cannot be PSL2(p) since a non-identity element

of that group has at most two fixed points, whereas x has three; similarly it cannot be AGLn(2) for

any n since the fixed point set of any element of that group is either empty or an affine subspace of

order 2d for some d; finally, it cannot be a Mathieu group since D is not isomorphic to any of the

dessins in Figures 19 or 20 or their mirror images, so it must be Ap+1.

If p ≡ 1 mod (3), say p = 3k + 4 for some k ≥ 5, one can apply a similar argument to the

dessin D′ obtained by adding two vertices of valency 1 to the rightmost free edges of D, so that

the passport is (3k15, 2k+51k−5, p111). �
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By reflecting an arbitrary subset of the free edges of D or D′ one obtains exponentially many

dessins of type (3, 2, p) and degree p + 1 with monodromy group Ap+1 as p→ ∞.

We summarise the results of the last two sections as follows:

Theorem 12.5. Suppose that p is a prime such that there is a dessin of type (3, 2, p) and degree

p + 1 with monodromy group G. Then one of the following holds:

(a) G = Ap+1, with p = 3 or p ≥ 11,

(b) G = PSL2(p),

(c) G = AGLn(2) for some Mersenne prime p = 2n − 1,

(d) G = M12 with p = 11 or G = M24 with p = 23,

each in its natural representation. In case (a) there are exponentially many dessins as p → ∞,

even if we restrict to planar dessins. In case (b) there is a single dessin D0(p) for each prime p.

In case (c) there is at least one dessin for each Mersenne prime p. In case (d) there are two chiral

pairs for each of the two groups G.

13. The road not taken

The starting point for Klein’s work in [50], and hence for our investigation in this paper, was the

embedding of the icosahedral group A5 in PSL2(11). This is the third and most complicated of the

three instances, known already to Galois, of PSL2(p) having a subgroup of index p; the first two,

for p = 5 and 7, each became the subject of a deservedly famous book (respectively [51] and [54]),

and one could easily imagine (though not so easily write) an analogue for p = 11. In this final

section we will briefly sketch a line of research which might form the basis of a chapter in such

a text; the road it takes is almost completely disjoint from that we have followed in the present

paper; however, there is an intriguing moment when we catch a brief glimpse of the road starting

with Klein’s paper [49] concerning the case p = 7.

There are a number of mathematical objects and phenomena closely related to the embedding

(or more precisely the embeddings) of A5 in the group L = PSL2(11). A good example is the

non-orientable regular abstract polytope 5{3, 5, 3}5, the hendecachoron or 11-cell independently

discovered by Grünbaum [35] and Coxeter [17] (see also [18, 20] for this example, and [59] for

the general theory of abstract polytopes).

5

Figure 23. The Coxeter diagram {3, 5, 3}.

Let Γ denote the string Coxeter group with Schläfli symbol {3, 5, 3}, represented by the Coxeter

diagram in Figure 23. This group has generators Ri (i = 0, . . . , 3) and defining relations

R2
i = (R0R1)3 = (R1R2)5 = (R2R3)3 = 1, (RiR j)

2 = 1 whenever |i − j| ≥ 2;

it acts as a group of isometries of hyperbolic 3-space H3, generated by reflections Ri in the sides of

a tetrahedron T ⊂ H3 with appropriate dihedral angles. As shown in [42] there is a unique normal
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subgroup N of Γ such that Γ/N � L. This is the normal closure of the elements (R0R1R2)5 and

(R1R2R3)5, so that putting these equal to 1 in Γ gives a presentation for L.

The quotient H3/N is a compact non-orientable hyperbolic 3-orbifold N , with a tessellation T
by |L| = 660 tetrahedra, induced from the tessellation of H3 by the images of T under Γ. These

tetrahedra can be partitioned into eleven sets of 60, giving a tessellation I of N by eleven hemi-

icosahedra {3, 5}5 (antipodal quotients of icosahedra {3, 5} formed by identifying edges five steps

apart along Petrie paths), which has T as its barycentric subdivision. Similarly I has eleven

vertices, each having as its vertex figure a hemi-dodecahedron {5, 3}5 formed in the same way

from a dodecahedron {5, 3}. This tessellation I is a realisation of Coxeter’s non-orientable regular

polytope 5{3, 5, 3}5, with the subscripts indicating these identifications, and also the corresponding

extra defining relations for L. It has automorphism group L, with the stabilisers of cells and of

vertices forming the two conjugacy classes of subgroups H � A5 in L, represented by the images

of the subgroups 〈R0,R1,R2〉 � 〈R1,R2,R3〉 � ∆[3, 2, 5] � A5 × C2 of Γ. Notice that N is not

torsion-free (it contains the central involution of each of these subgroups), soN is not a manifold.

Ω

Γ Ω+

Γ+

N

K

1

PGL2(11) × C2

L × C2 PGL2(11)

L

C2

1

Figure 24. Subgroups of Ω and their quotients by K.

The normaliser Ω of Γ in the isometry group of H3 is a semidirect product of Γ by a group

C2 induced by the graph automorphism Ri 7→ R3−i of Γ; this leaves N invariant, with Ω/N �

PGL2(11), and acts as a self-duality of I, transposing vertices and cells, and edges and faces. The

group Ω plays a similar role in the theory of compact 3-manifolds to that played by the triangle

groups ∆(3, 2, 7) and ∆[3, 2, 7] for Riemann and Klein surfaces: specifically, as shown by Gehring,

Marshall and Martin [28, 60],Ω has the least covolume among all cocompact discontinuous groups

of isometries of H3. It follows that the torsion-free normal subgroups K of finite index in Ω

uniformise the compact hyperbolic 3-manifolds which maximise the number of automorphisms,

namely |Ω/K|, per unit of volume. As such, these manifolds and automorphism groups are the

3-dimensional analogues of the Hurwitz curves and groups in dimension 2. As shown in [42],
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among such subgroups K that of least index is K = N ∩Ω+, where Ω+ is the orientation-preserving

subgroup of index 2 inΩ. The corresponding orientable manifoldK = H3/K, a double covering of

the orbifold N , has isometry group Ω/K � PGL2(11) × C2, with orientation-preserving subgroup

Ω+/K � PGL2(11); the subgroup Γ/K � L×C2 preserves a tessellation ofK by eleven icosahedra,

with the two conjugacy classes of icosahedral subgroups A5 ×C2 stabilising the cells and vertices,

and transposed in Ω/K by duality. By the minimality of their volumes, K and N can be regarded

as 3-dimensional analogues of Klein’s quartic curve [49], the smallest Riemann surface attaining

the Hurwitz bound on the number of automorphism per unit of area (see [54] for connections with

PSL2(7) and [49]). Figure 24 shows the relevant subgroups of Ω, together with their quotients by

K, that is, the finite groups of isometries they induce on K .
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[23] W. Dyck, Über das Problem der Nachbargebiete, Math. Ann. 32 (1888), 457–512.
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[37] L. Heffter, Über das Problem der Nachbargebiete, Math. Ann. 38 (1891), 477–508.

[38] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin – Heidelberg – New York, 1979.

[39] I. Ivrissimtzis, D. Singerman and J. Strudwick, From Farey fractions to the Klein quartic and beyond,

https://arXiv.math:1909.08568, Ars Math. Contemp. 20 (2021), to appear.

[40] G. A. Jones, Primitive permutation groups containing a cycle, Bull. Aust. Math. Soc. 89 (2014), 159–165.

[41] G. A. Jones and D. Singerman, Complex Functions: an Algebraic and Geometric Viewpoint, Cambridge

Univ. Press, Cambridge, 1987.

[42] G. A. Jones, C. D. Long and A. D. Mednykh, Hyperbolic manifolds and tessellations of type {3, 5, 3} associated

with L2(q), arXiv.math:1106.0867.

[43] G. A. Jones and J. Wolfart, Dessins d’Enfants on Riemann Surfaces, Springer, Cham, 2016.

[44] G. A. Jones and A. K. Zvonkin, Hurwitz groups as monodromy groups of dessins: several examples,

https://arxiv.org/pdf/2012.07107.pdf. To appear in Teichmüller Theory and its Impact, Higher Edu-

cation Press and International Press, Beijing.

[45] G. A. Jones and A. K. Zvonkin, Primes in geometric series and finite permutation groups,

https://arxiv.org/pdf/2010.08023.pdf.
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14. Appendix

In this Appendix we give standard generators for the monodromy groups of some of the smaller

and more interesting dessins considered earlier, together with some comments, and diagrams in a

few cases of low genus.

14.1. Klein’s dessins, degree 11. Generators xi, yi and zi for the monodromy groups of Klein’s

dessinsMi (i = 1, . . . , 6) (see Section 2 and Figure 3), as subgroups of S11, are as follows. In all

cases

zi = (1, 2, . . . , 11).

The other generators xi and yi for i = 1, . . . , 4 (unique up to conjugation by powers of zi) are:

x1 = (1, 4, 3)(5, 11, 9)(6, 8, 7), y1 = (1, 2)(4, 11)(5, 8)(9, 10);

x2 = (1, 4, 2)(5, 11, 9)(6, 8, 7), y2 = (2, 3)(4, 11)(5, 8)(9, 10);

x3 = (1, 3, 2)(4, 11, 10)(5, 9, 7), y3 = (3, 11)(4, 9)(5, 6)(7, 8);

x4 = (1, 4, 3)(5, 11, 10)(6, 9, 8), y4 = (1, 2)(4, 11)(5, 9)(6, 7);

x5 = (1, 11, 6)(2, 5, 4)(7, 10, 8), y5 = (1, 5)(2, 3)(6, 10)(8, 9);

x6 = (1, 11, 6)(2, 5, 3)(7, 10, 9), y6 = (1, 5)(3, 4)(6, 10)(7, 8).

Remark 14.1. Here and everywhere, if two dessins D and D of degree n form a chiral pair and

D = (x, y, z) then D can be obtained as (x′, y′, z′) = (x−1, y−1, yx). Notice that z′ = yx does not

necessarily have any canonical form. It can, however, be “standardized” by a common conjugation

of x′, y′, z′ in Sn.

In what follows, in order to avoid any error we just reproduce the results of the GAP sessions.

14.2. Group PSL3(3), degree 13. There are, in total, 14 trees with the passport (3411, 2415, 131).

Four of them have the monodromy group PSL3(3). They are given below. We fix the permutation

z = (1, 2, . . . , 13), and label the only fixed point of permutation x by 1. The trees split into two chi-

ral pairs: (M1,M3) and (M2,M4). TreesM1 andM2 are shown in Figure 12 (see Example 10.5).

M1 = [ (2,13,6)(3,5,4)(7,12,11)(8,10,9), (1,13)(2,5)(6,12)(7,10),

(1,2,3,4,5,6,7,8,9,10,11,12,13) ],

M2 = [ (2,13,3)(4,12,5)(6,11,10)(7,9,8), (1,13)(3,12)(5,11)(6,9),

(1,2,3,4,5,6,7,8,9,10,11,12,13) ],

M3 = [ (2,13,9)(3,8,4)(5,7,6)(10,12,11), (1,13)(2,8)(4,7)(9,12),

(1,2,3,4,5,6,7,8,9,10,11,12,13) ],

M4 = [ (2,13,12)(3,11,10)(4,9,5)(6,8,7), (1,13)(2,11)(3,9)(5,8),

(1,2,3,4,5,6,7,8,9,10,11,12,13) ]

The field of moduli of these four trees is the splitting field of the polynomial a4 + a3+ 2a2 − 4a+ 3.

Its Galois group is the cyclic group C4.
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14.3. Group PSL2(16), degree 17. There are, in this group, eight conjugacy classes of elements

of order 17, but there are also four automorphisms of the field F16. Therefore, as predicted

by Theorem 10.1, we obtain two non-isomorphic maps (see Example 10.2). Their passport is

(3512, 2811, 171), hence they are of genus 1. We also observe that they are not chiral: both are

mirror symmetric. They are shown in Figure 25.

Figure 25. Two maps representing the group PSL2(16).

We fix, as usual, the permutation z = (1, 2, . . . , 17), and put the label 1 on the only fixed point of

the permutation y. Here is what we get:

M1 = [ (1,10,2)(3,9,13)(4,12,6)(7,11,17)(8,16,14),

(2,9)(3,12)(4,5)(6,11)(7,16)(8,13)(10,17)(14,15),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17) ],

M2 = [ (1,10,2)(3,9,5)(6,8,13)(7,12,14)(11,17,15),

(2,9)(3,4)(5,8)(6,12)(7,13)(10,17)(11,14)(15,16),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17) ]

The total number of maps with this passport is 70.

Remark 14.2. The next Fermat prime, after 17, is 257. Let us give a cursory glance at the group

PSL2(256). In this group, there are 128 conjugacy classes of cycles of order 257, and there are

eight automorphisms of the field F256. Therefore, there are 16 non-isomorphic maps generating

this group. Their passport is (38512, 212811, 2571), and their genus is g = 21, in accordance with

Theorem 10.1. This theorem also implies that all these maps are mirror symmetric.

14.4. Group PSL3(5), degree 31. Below we give the ten dessins of type (3, 2, 31) with the pass-

port (31011, 21217, 311), of genus g = 1, representing the group PSL3(5) (see Example 10.6). The

mapM1 is shown in Figure 26.

• The permutation z is always the same: z = (1, 2, 3, . . . , 31).

• The fixed point of x is given the label 1. This convention, together with the preceding one,

allows us to label all the dessins uniquely

• The chiral pairs are (M1,M6), (M2,M7), (M3,M8), (M4,M9), and (M5,M10).
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M1 = [ (2,31,19)(3,18,11)(4,10,21)(5,20,30)(6,29,25)(7,24,23)(8,22,9)(12,17,16)

(13,15,14)(26,28,27), (1,31)(2,18)(3,10)(4,20)(5,29)(6,24)(7,22)(9,21)

(11,17)(12,15)(19,30)(25,28),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ]

M2 = [ (2,31,3)(4,30,16)(5,15,6)(7,14,8)(9,13,21)(10,20,23)(11,22,12)(17,29,18)

(19,28,24)(25,27,26), (1,31)(3,30)(4,15)(6,14)(8,13)(9,20)(10,22)(12,21)

(16,29)(18,28)(19,23)(24,27),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M3 = [ (2,31,3)(4,30,29)(5,28,19)(6,18,13)(7,12,8)(9,11,10)(14,17,21)(15,20,27)

(16,26,22)(23,25,24), (1,31)(3,30)(4,28)(5,18)(6,12)(8,11)(13,17)(14,20)

(15,26)(16,21)(19,27)(22,25),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M4 = [ (2,31,24)(3,23,16)(4,15,14)(5,13,12)(6,11,7)(8,10,9)(17,22,21)(18,20,27)

(19,26,28)(25,30,29), (1,31)(2,23)(3,15)(4,13)(5,11)(7,10)(16,22)(17,20)

(18,26)(19,27)(24,30)(25,28),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M5 = [ (2,31,3)(4,30,8)(5,7,6)(9,29,15)(10,14,19)(11,18,24)(12,23,22)(13,21,20)

(16,28,27)(17,26,25), (1,31)(3,30)(4,7)(8,29)(9,14)(10,18)(11,23)(12,21)

(13,19)(15,28)(16,26)(17,24),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M6 = [ (2,31,14)(3,13,28)(4,27,8)(5,7,6)(9,26,10)(11,25,24)(12,23,29)(15,30,22)

(16,21,17)(18,20,19), (1,31)(2,13)(3,27)(4,7)(8,26)(10,25)(11,23)(12,28)

(14,30)(15,21)(17,20)(22,29),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M7 = [ (2,31,30)(3,29,17)(4,16,15)(5,14,9)(6,8,7)(10,13,23)(11,22,21)(12,20,24)

(18,28,27)(19,26,25), (1,31)(2,29)(3,16)(4,14)(5,8)(9,13)(10,22)(11,20)

(12,23)(17,28)(18,26)(19,24),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M8 = [ (2,31,30)(3,29,4)(5,28,14)(6,13,18)(7,17,11)(8,10,9)(12,16,19)(15,27,20)

(21,26,25)(22,24,23), (1,31)(2,29)(4,28)(5,13)(6,17)(7,10)(11,16)(12,18)

(14,27)(15,19)(20,26)(21,24),
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(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M9 = [ (2,31,9)(3,8,4)(5,7,14)(6,13,15)(10,30,17)(11,16,12)(18,29,19)(20,28,21)

(22,27,26)(23,25,24), (1,31)(2,8)(4,7)(5,13)(6,14)(9,30)(10,16)(12,15)

(17,29)(19,28)(21,27)(22,25),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M10 = [ (2,31,30)(3,29,25)(4,24,18)(5,17,6)(7,16,8)(9,15,22)(10,21,11)(12,20,13)

(14,19,23)(26,28,27), (1,31)(2,29)(3,24)(4,17)(6,16)(8,15)(9,21)(11,20)

(13,19)(14,22)(18,23)(25,28),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ]

Figure 26. Opposite sides of the outer parallelogram are identified to form a torus.

The torus dessin thus obtained is of degree 31 and type (3, 2, 31) with monodromy

group PSL3(5). It corresponds to the tripleM1 = (x1, y1, z) in the above list.

14.5. Group PSL5(2), degree 31. Below we give the six dessins with the same passport as in the

previous example, that is, (31011, 21217, 311), and therefore also of genus 1, but this time represent-

ing the group PSL5(2) (see Example 10.9). The mapM1 is shown in Figure 27.

• The permutation z is always the same: z = (1, 2, 3, . . . , 31).

• The fixed point of x is always the point 1.

• The chiral pairs are (M1,M4), (M2,M5), and (M3,M6).
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M1 = [ (2,31,23)(3,22,4)(5,21,6)(7,20,19)(8,18,12)(9,11,10)(13,17,27)(14,26,25)

(15,24,30)(16,29,28), (1,31)(2,22)(4,21)(6,20)(7,18)(8,11)(12,17)(13,26)

(14,24)(15,29)(16,27)(23,30),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M2 = [ (2,31,11)(3,10,25)(4,24,20)(5,19,18)(6,17,16)(7,15,27)(8,26,9)(12,30,13)

(14,29,28)(21,23,22), (1,31)(2,10)(3,24)(4,19)(5,17)(6,15)(7,26)(9,25)

(11,30)(13,29)(14,27)(20,23),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M3 = [ (2,31,24)(3,23,22)(4,21,8)(5,7,6)(9,20,10)(11,19,28)(12,27,13)(14,26,15)

(16,25,30)(17,29,18), (1,31)(2,23)(3,21)(4,7)(8,20)(10,19)(11,27)(13,26)

(15,25)(16,29)(18,28)(24,30),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M4 = [ (2,31,10)(3,9,18)(4,17,5)(6,16,20)(7,19,8)(11,30,29)(12,28,27)(13,26,14)

(15,25,21)(22,24,23), (1,31)(2,9)(3,17)(5,16)(6,19)(8,18)(10,30)(11,28)

(12,26)(14,25)(15,20)(21,24),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M5 = [ (2,31,22)(3,21,20)(4,19,5)(6,18,26)(7,25,24)(8,23,30)(9,29,13)(10,12,11)

(14,28,15)(16,27,17), (1,31)(2,21)(3,19)(5,18)(6,25)(7,23)(8,29)(9,12)

(13,28)(15,27)(17,26)(22,30),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M6 = [ (2,31,9)(3,8,17)(4,16,15)(5,14,22)(6,21,20)(7,19,18)(10,30,11)(12,29,25)

(13,24,23)(26,28,27), (1,31)(2,8)(3,16)(4,14)(5,21)(6,19)(7,17)(9,30)

(11,29)(12,24)(13,22)(25,28),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ]

Remark 14.3. We see that there are different ways to draw maps on surfaces of genus g > 0:

compare Figures 17, 25, 26, 27. One may choose a representation according to his or her taste and

convenience.

Also, this time, in Figure 27, we decided once again to put the labels explicitly. We recommend

to the reader to compare them with the permutations given in the above triple M1 and, specifically,

to “go” along the cycle (1, 2, . . . , 31).
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Figure 27. The mapM1 of the above list representing the group PSL5(2). The map

M4 is mirror symmetric to this one.

14.6. Group AGL5(2), degree 32. Below we give six dessins representing the group AGL5(2)

(see Example 12.3). Their passport is (31012, 21218, 31111), so these are alternatives to the dessins

of degree 32 and passport (31012, 216, 31111) given by the construction used to prove Theorem 12.2.

• The permutation z is always the same: z = (1, 2, 3, . . . , 31).

• The label 1 is attached to the outer half-edge of the only loop; the label of the face of

degree 1 is 32.

• The chiral pairs are (M1,M4), (M2,M5), and (M3,M6).

The first three maps are shown in Figure 28.

M1 = [ (1,2,32)(3,31,4)(5,30,12)(6,11,7)(8,10,9)(13,29,17)(14,16,15)(18,28,20)

(21,27,22)(23,26,24), (1,32)(2,31)(4,30)(5,11)(7,10)(12,29)(13,16)(17,28)

(18,19)(20,27)(22,26)(24,25),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M2 = [ (1,2,32)(3,31,27)(4,26,6)(7,25,24)(8,23,18)(9,17,10)(11,16,12)(13,15,14)

(19,22,21)(28,30,29), (1,32)(2,31)(3,26)(4,5)(6,25)(7,23)(8,17)(10,16)

(12,15)(18,22)(19,20)(27,30),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M3 = [ (1,2,32)(3,31,4)(5,30,6)(7,29,8)(9,28,24)(10,23,15)(11,14,12)(16,22,20)

(17,19,18)(25,27,26), (1,32)(2,31)(4,30)(6,29)(8,28)(9,23)(10,14)(12,13)

(15,22)(16,19)(20,21)(24,27),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M4 = [ (1,32,31)(2,30,29)(3,28,21)(4,20,16)(5,15,13)(6,12,11)(7,10,9)(17,19,18)

(22,27,26)(23,25,24), (1,30)(2,28)(3,20)(4,15)(5,12)(6,10)(7,8)(13,14)

(16,19)(21,27)(22,25)(31,32),
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(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M5 = [ (1,32,31)(2,30,6)(3,5,4)(7,29,27)(8,26,9)(10,25,15)(11,14,12)(16,24,23)

(17,22,21)(18,20,19), (1,30)(2,5)(6,29)(7,26)(9,25)(10,14)(12,13)(15,24)

(16,22)(17,20)(27,28)(31,32),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ],

M6 = [ (1,32,31)(2,30,29)(3,28,27)(4,26,25)(5,24,9)(6,8,7)(10,23,18)(11,17,13)

(14,16,15)(19,22,21), (1,30)(2,28)(3,26)(4,24)(5,8)(9,23)(10,17)(11,12)

(13,16)(18,22)(19,20)(31,32),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31) ]

Figure 28. The mapsM1,M2,M3 with the passport (31012, 21218, 31111) represent-

ing the group AGL5(2). Three other maps are their mirror images.

14.7. Group PSL3(8), degree 73. Below we give the eight dessins of genus 4 with the passport

(32411, 23219, 731) representing the group PSL3(8) of degree 73 (see Example 10.7).

• The permutation z is always the same: z = (1, 2, 3, . . . , 73).

• The fixed point of x is always labelled by 1.

• The chiral pairs are (M1,M5), (M2,M6), (M3,M7) and (M4,M8).

M1 = [ (2,73,18)(3,17,36)(4,35,47)(5,46,42)(6,41,58)(7,57,50)(8,49,32)(9,31,

10)(11,30,71)(12,70,69)(13,68,21)(14,20,28)(15,27,39)(16,38,37)(19,72,

29)(22,67,66)(23,65,64)(24,63,55)(25,54,60)(26,59,40)(33,48,34)(43,45,
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44)(51,56,62)(52,61,53), (1,73)(2,17)(3,35)(4,46)(5,41)(6,57)(7,49)(8,

31)(10,30)(11,70)(12,68)(13,20)(14,27)(15,38)(16,36)(18,72)(19,28)(21,

67)(22,65)(23,63)(24,54)(25,59)(26,39)(29,71)(32,48)(34,47)(40,58)(42,

45)(50,56)(51,61)(53,60)(55,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,

39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,

62,63,64,65,66,67,68,69,70,71,72,73) ],

M2 = [ (2,73,72)(3,71,28)(4,27,48)(5,47,41)(6,40,7)(8,39,22)(9,21,13)(10,12,

11)(14,20,51)(15,50,24)(16,23,38)(17,37,59)(18,58,31)(19,30,52)(25,49,

26)(29,70,53)(32,57,62)(33,61,34)(35,60,36)(42,46,68)(43,67,66)(44,65,

55)(45,54,69)(56,64,63), (1,73)(2,71)(3,27)(4,47)(5,40)(7,39)(8,21)(9,

12)(13,20)(14,50)(15,23)(16,37)(17,58)(18,30)(19,51)(22,38)(24,49)(26,

48)(28,70)(29,52)(31,57)(32,61)(34,60)(36,59)(41,46)(42,67)(43,65)(44,

54)(45,68)(53,69)(55,64)(56,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,

39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,

62,63,64,65,66,67,68,69,70,71,72,73) ],

M3 = [ (2,73,9)(3,8,51)(4,50,66)(5,65,53)(6,52,7)(10,72,71)(11,70,47)(12,46,

13)(14,45,37)(15,36,57)(16,56,17)(18,55,28)(19,27,20)(21,26,22)(23,25,

32)(24,31,33)(29,54,64)(30,63,34)(35,62,58)(38,44,43)(39,42,68)(40,67,

49)(41,48,69)(59,61,60), (1,73)(2,8)(3,50)(4,65)(5,52)(7,51)(9,72)(10,

70)(11,46)(13,45)(14,36)(15,56)(17,55)(18,27)(20,26)(22,25)(23,31)(24,

32)(28,54)(29,63)(30,33)(34,62)(35,57)(37,44)(38,42)(39,67)(40,48)(41,

68)(47,69)(49,66)(53,64)(58,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,

39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,

62,63,64,65,66,67,68,69,70,71,72,73) ],

M4 = [ (2,73,54)(3,53,10)(4,9,33)(5,32,6)(7,31,30)(8,29,34)(11,52,44)(12,43,

65)(13,64,14)(15,63,62)(16,61,23)(17,22,18)(19,21,20)(24,60,38)(25,37,

50)(26,49,70)(27,69,47)(28,46,35)(36,45,51)(39,59,40)(41,58,57)(42,56,

66)(48,68,71)(55,72,67), (1,73)(2,53)(3,9)(4,32)(6,31)(7,29)(8,33)(10,

52)(11,43)(12,64)(14,63)(15,61)(16,22)(18,21)(23,60)(24,37)(25,49)(26,

69)(27,46)(28,34)(35,45)(36,50)(38,59)(40,58)(41,56)(42,65)(44,51)(47,

68)(48,70)(54,72)(55,66)(67,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,

39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,

62,63,64,65,66,67,68,69,70,71,72,73) ],

M5 = [ (2,73,57)(3,56,46)(4,45,64)(5,63,6)(7,62,54)(8,53,9)(10,52,11)(12,51,

20)(13,19,24)(14,23,22)(15,21,50)(16,49,35)(17,34,69)(18,68,25)(26,67,

43)(27,42,41)(28,40,71)(29,70,33)(30,32,31)(36,48,60)(37,59,38)(39,58,

72)(44,66,65)(47,55,61), (1,73)(2,56)(3,45)(4,63)(6,62)(7,53)(9,
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52)(11,51)(12,19)(13,23)(14,21)(15,49)(16,34)(17,68)(18,24)(20,50)(25,

67)(26,42)(27,40)(28,70)(29,32)(33,69)(35,48)(36,59)(38,58)(39,71)(43,

66)(44,64)(46,55)(47,60)(54,61)(57,72),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,

51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73) ],

M6 = [ (2,73,3)(4,72,47)(5,46,22)(6,21,30)(7,29,33)(8,32,9)(10,31,20)(11,19,

12)(13,18,43)(14,42,41)(15,40,39)(16,38,58)(17,57,44)(23,45,56)(24,55,

61)(25,60,51)(26,50,49)(27,48,71)(28,70,34)(35,69,68)(36,67,53)(37,52,

59)(54,66,62)(63,65,64), (1,73)(3,72)(4,46)(5,21)(6,29)(7,32)(9,

31)(10,19)(12,18)(13,42)(14,40)(15,38)(16,57)(17,43)(20,30)(22,45)(23,

55)(24,60)(25,50)(26,48)(27,70)(28,33)(34,69)(35,67)(36,52)(37,58)(44,

56)(47,71)(51,59)(53,66)(54,61)(62,65),

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,

51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73) ],

M7 = [ (2,73,66)(3,65,4)(5,64,28)(6,27,34)(7,33,36)(8,35,26)(9,25,71)(10,70,

22)(11,21,46)(12,45,41)(13,40,17)(14,16,15)(18,39,60)(19,59,58)(20,57,

47)(23,69,68)(24,67,72)(29,63,62)(30,61,38)(31,37,32)(42,44,51)(43,50,

52)(48,56,55)(49,54,53), (1,73)(2,65)(4,64)(5,27)(6,33)(7,35)(8,25)(9,

70)(10,21)(11,45)(12,40)(13,16)(17,39)(18,59)(19,57)(20,46)(22,69)(23,

67)(24,71)(26,34)(28,63)(29,61)(30,37)(32,36)(38,60)(41,44)(42,50)(43,

51)(47,56)(48,54)(49,52)(66,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,

39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,

62,63,64,65,66,67,68,69,70,71,72,73) ],

M8 = [ (2,73,21)(3,20,8)(4,7,27)(5,26,49)(6,48,28)(9,19,33)(10,32,63)(11,62,

61)(12,60,13)(14,59,52)(15,51,37)(16,36,35)(17,34,18)(22,72,65)(23,64,

31)(24,30,39)(25,38,50)(29,47,40)(41,46,67)(42,66,71)(43,70,69)(44,68,

45)(53,58,57)(54,56,55), (1,73)(2,20)(3,7)(4,26)(5,48)(6,27)(8,19)(9,

32)(10,62)(11,60)(13,59)(14,51)(15,36)(16,34)(18,33)(21,72)(22,64)(23,

30)(24,38)(25,49)(28,47)(29,39)(31,63)(37,50)(40,46)(41,66)(42,70)(43,

68)(45,67)(52,58)(53,56)(65,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,

39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,

62,63,64,65,66,67,68,69,70,71,72,73) ]

The next candidate for our series of examples would be the group PSL7(2) of degree 127. Since

we don’t see any particular interest in writing explicitly the generating permutations of that large

degree, we stop here.
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